Search results for: heart sound classification.
1474 Vehicle Type Classification with Geometric and Appearance Attributes
Authors: Ghada S. Moussa
Abstract:
With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management.
This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.
Keywords: Appearance attributes, Geometric attributes, Support vector machine, Vehicle classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42781473 Wavelet and K-L Seperability Based Feature Extraction Method for Functional Data Classification
Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai
Abstract:
This paper proposes a novel feature extraction method, based on Discrete Wavelet Transform (DWT) and K-L Seperability (KLS), for the classification of Functional Data (FD). This method combines the decorrelation and reduction property of DWT and the additive independence property of KLS, which is helpful to extraction classification features of FD. It is an advanced approach of the popular wavelet based shrinkage method for functional data reduction and classification. A theory analysis is given in the paper to prove the consistent convergence property, and a simulation study is also done to compare the proposed method with the former shrinkage ones. The experiment results show that this method has advantages in improving classification efficiency, precision and robustness.Keywords: classification, functional data, feature extraction, K-Lseperability, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14661472 Development and Evaluation of a Dynamic Cardiac Phantom for use in Nuclear Medicine
Authors: Marcos A. Dullius, Ramon C. Fernandes, Divanízia N. Souza
Abstract:
The aim of this study was to develop a dynamic cardiac phantom for quality control in myocardial scintigraphy. The dynamic heart phantom constructed only contained the left ventricle, made of elastic material (latex), comprising two cavities: one internal and one external. The data showed a non-significant variation in the values of left ventricular ejection fraction (LVEF) obtained by varying the heart rate. It was also possible to evaluate the ejection fraction (LVEF) through different arrays of image acquisition and to perform an intercomparison of LVEF by two different scintillation cameras. The results of the quality control tests were satisfactory, showing that they can be used as parameters in future assessments. The new dynamic heart phantom was demonstrated to be effective for use in LVEF measurements. Therefore, the new heart simulator is useful for the quality control of scintigraphic cameras.
Keywords: sheart, nuclear medicine, phantom
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25001471 Classification of Non Stationary Signals Using Ben Wavelet and Artificial Neural Networks
Authors: Mohammed Benbrahim, Khalid Benjelloun, Aomar Ibenbrahim, Adil Daoudi
Abstract:
The automatic classification of non stationary signals is an important practical goal in several domains. An essential classification task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "Ben wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.
Keywords: Seismic signals, Ben Wavelet, Dimensionality reduction, Artificial neural networks, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14501470 An Amalgam Approach for DICOM Image Classification and Recognition
Authors: J. Umamaheswari, G. Radhamani
Abstract:
This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.
Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22591469 Improving Classification Accuracy with Discretization on Datasets Including Continuous Valued Features
Authors: Mehmet Hacibeyoglu, Ahmet Arslan, Sirzat Kahramanli
Abstract:
This study analyzes the effect of discretization on classification of datasets including continuous valued features. Six datasets from UCI which containing continuous valued features are discretized with entropy-based discretization method. The performance improvement between the dataset with original features and the dataset with discretized features is compared with k-nearest neighbors, Naive Bayes, C4.5 and CN2 data mining classification algorithms. As the result the classification accuracies of the six datasets are improved averagely by 1.71% to 12.31%.Keywords: Data mining classification algorithms, entropy-baseddiscretization method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24611468 Extraction of Fetal Heart Rate and Fetal Heart Rate Variability from Mother's ECG Signal
Authors: Khaldon Lweesy, Luay Fraiwan, Christoph Maier, Hartmut Dickhaus
Abstract:
This paper describes a new method for extracting the fetal heart rate (fHR) and the fetal heart rate variability (fHRV) signal non-invasively using abdominal maternal electrocardiogram (mECG) recordings. The extraction is based on the fundamental frequency (Fourier-s) theorem. The fundamental frequency of the mother-s electrocardiogram signal (fo-m) is calculated directly from the abdominal signal. The heart rate of the fetus is usually higher than that of the mother; as a result, the fundamental frequency of the fetal-s electrocardiogram signal (fo-f) is higher than that of the mother-s (fo-f > fo-m). Notch filters to suppress mother-s higher harmonics were designed; then a bandpass filter to target fo-f and reject fo-m is implemented. Although the bandpass filter will pass some other frequencies (harmonics), we have shown in this study that those harmonics are actually carried on fo-f, and thus have no impact on the evaluation of the beat-to-beat changes (RR intervals). The oscillations of the time-domain extracted signal represent the RR intervals. We have also shown in this study that zero-to-zero evaluation of the periods is more accurate than the peak-to-peak evaluation. This method is evaluated both on simulated signals and on different abdominal recordings obtained at different gestational ages.
Keywords: Aabdominal ECG, fetal heart rate variability, frequency harmonics, fundamental frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26731467 Computer-aided Lenke Classification of Scoliotic Spines
Authors: Neila Mezghani, Philippe Phan, Hubert Labelle, Carl Eric Aubin, Jacques de Guise
Abstract:
The identification and classification of the spine deformity play an important role when considering surgical planning for adolescent patients with idiopathic scoliosis. The subject of this article is the Lenke classification of scoliotic spines using Cobb angle measurements. The purpose is two-fold: (1) design a rulebased diagram to assist clinicians in the classification process and (2) investigate a computer classifier which improves the classification time and accuracy. The rule-based diagram efficiency was evaluated in a series of scoliotic classifications by 10 clinicians. The computer classifier was tested on a radiographic measurement database of 603 patients. Classification accuracy was 93% using the rule-based diagram and 99% for the computer classifier. Both the computer classifier and the rule based diagram can efficiently assist clinicians in their Lenke classification of spine scoliosis.
Keywords: Scoliosis, Lenke model, decision-rules, computer aided classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16361466 Dataset Analysis Using Membership-Deviation Graph
Authors: Itgel Bayarsaikhan, Jimin Lee, Sejong Oh
Abstract:
Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.Keywords: feature, classification, machine learning algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14451465 Unsupervised Texture Classification and Segmentation
Authors: V.P.Subramanyam Rallabandi, S.K.Sett
Abstract:
An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15911464 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks
Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang
Abstract:
For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.Keywords: High-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16631463 Effect of Physical Contact (Hand-Holding) on Heart Rate Variability
Authors: T. Pishbin, S.M.P. Firoozabadi, N. Jafarnia Dabanloo, F. Mohammadi, S. Koozehgari
Abstract:
Heart-s electric field can be measured anywhere on the surface of the body (ECG). When individuals touch, one person-s ECG signal can be registered in other person-s EEG and elsewhere on his body. Now, the aim of this study was to test the hypothesis that physical contact (hand-holding) of two persons changes their heart rate variability. Subjects were sixteen healthy female (age: 20- 26) which divided into eight sets. In each sets, we had two friends that they passed intimacy test of J.sternberg. ECG of two subjects (each set) acquired for 5 minutes before hand-holding (as control group) and 5 minutes during they held their hands (as experimental group). Then heart rate variability signals were extracted from subjects' ECG and analyzed in linear feature space (time and frequency domain) and nonlinear feature space. Considering the results, we conclude that physical contact (hand-holding of two friends) increases parasympathetic activity, as indicate by increase SD1, SD1/SD2, HF and MF power (p<0.05) and decreases sympathetic activity, as indicate by decrease LF power (p<0.01) and LF/HF ratio (p<0.05).Keywords: Autonomic nervous system (ANS), Hand- holding, Heart rate variability (HRV), Power spectral density analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31031462 Experimental Study on the Floor Vibration Evaluation of Concrete Slab for Existing Buildings
Authors: Yong-Taeg Lee, Jun-Ho Na, Seung-Hun Kim, Seong-Uk Hong
Abstract:
Damages from noise and vibration are increasing every year, most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the concrete slab measured vibration impact sound for evaluation floor vibration of deteriorated buildings that fails to satisfy with the minimum thickness. In this experimental study, the vibration scale by impact sound was calibrated and compared with ISO and AIJ standard for vibration. The results show that vibration in slab with thickness used in existing building reach human perception levels.
Keywords: Vibration, Frequency, Accelerometer, Concrete slab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38841461 WebGD: A CORBA-based Document Classification and Retrieval System on the Web
Authors: Fuyang Peng, Bo Deng, Chao Qi, Mou Zhan
Abstract:
This paper presents the design and implementation of the WebGD, a CORBA-based document classification and retrieval system on Internet. The WebGD makes use of such techniques as Web, CORBA, Java, NLP, fuzzy technique, knowledge-based processing and database technology. Unified classification and retrieval model, classifying and retrieving with one reasoning engine and flexible working mode configuration are some of its main features. The architecture of WebGD, the unified classification and retrieval model, the components of the WebGD server and the fuzzy inference engine are discussed in this paper in detail.Keywords: Text Mining, document classification, knowledgeprocessing, fuzzy logic, Web, CORBA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18481460 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: Landcover classification, artificial neural network, remote sensing, SPOT-5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16061459 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection
Authors: K.M. Faraoun, A. Boukelif
Abstract:
This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].Keywords: Genetic programming, patterns classification, intrusion detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17111458 Feature Selection for Web Page Classification Using Swarm Optimization
Authors: B. Leela Devi, A. Sankar
Abstract:
The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.
Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32591457 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty
Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong
Abstract:
This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.
Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331456 Support Vector Machine Approach for Classification of Cancerous Prostate Regions
Authors: Metehan Makinacı
Abstract:
The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.
Keywords: Computer-aided diagnosis, support vector machines, Gauss-Markov random fields, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17921455 Ear Protectors and Their Action in Protecting Hearing System of Workers against Occupational Noise
Authors: F. Forouharmajd, S. Pourabdian, N. Ziayi Ghahnavieh
Abstract:
For many years, the ear protectors have been used to preventing the audio and non-audio effects of received noise from occupation environments. Despite performing hearing protection programs, there are many people which still suffer from noise-induced hearing loss. This study was conducted with the aim of determination of human hearing system response to received noise and the effectiveness of ear protectors on preventing of noise-induced hearing loss. Sound pressure microphones were placed in a simulated ear canal. The severity of noise measured inside and outside of ear canal. The noise reduction values due to installing ear protectors were calculated in the octave band frequencies and LabVIEW programmer. The results of noise measurement inside and outside of ear canal showed a different in received sound levels by ear canal. The effectiveness of ear protectors has been considerably reduced for the low frequency limits. A change in resonance frequency also was observed after using ear protectors. The study indicated the ear canal structure may affect the received noise and it may lead a difference between the received sound from the measured sound by a sound level meter, and hearing system. It means the human hearing system may probably respond different from a sound level meter. Hearing protectors’ efficiency declines by increasing the noise levels, and thus, they are not suitable to protect workers against industrial noise particularly low frequency noise. Hearing protectors may be solely a reason to damaging of hearing system in a special frequency via changing of human hearing system acoustical structure. We need developing the subjective method of hearing protectors testing, because their evaluation is not designed based on industrial noise or in the field.
Keywords: Ear protector, hearing system, occupational noise, workers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7601454 A Simplified Solid Mechanical and Acoustic Model for Human Middle Ear
Authors: Adarsh Venkataraman Ganesan, Sundaram Swaminathan, Rama Jayaraj
Abstract:
Human middle-ear is the key component of the auditory system. Its function is to transfer the sound waves through the ear canal to provide sufficient stimulus to the fluids of the inner ear. Degradation of the ossicles that transmit these sound waves from the eardrum to the inner ear leads to hearing loss. This problem can be overcome by replacing one or more of these ossicles by middleear prosthesis. Designing such prosthesis requires a comprehensive knowledge of the biomechanics of the middle-ear. There are many finite element modeling approaches developed to understand the biomechanics of the middle ear. The available models in the literature, involve high computation time. In this paper, we propose a simplified model which provides a reasonably accurate result with much less computational time. Simulation results indicate a maximum sound pressure gain of 10 dB at 5500 Hz.Keywords: Ear, Ossicles, COMSOL, Stapes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26781453 Comparison between Different Classifications of Periodontal Diseases and Their Advantages
Authors: Ilma Robo, Saimir Heta, Merilda Tarja, Sonila Kapaj, Eduart Kapaj, Geriona Lasku
Abstract:
The classification of periodontal diseases has changed significantly in favor of simplifying the protocol of diagnosis and periodontal treatment. This review study aims to highlight the latest publications in the new periodontal disease classification, talking about the most significant differences versus the old classification with the tendency to express the advantages or disadvantages of clinical application. The aim of the study also includes the growing tendency to link the way of classification of periodontal diseases with predetermined protocols of periodontal treatment of the diagnoses included in the classification. The new classification of periodontal diseases is rather comprehensive in its subdivisions, as the disease is viewed in its entirety, with the biological dimensions of the disease, the degree of aggravation and progression of the disease, in relation to risk factors, predisposition to patient susceptibility and impact of periodontal disease to the general health status of the patient.
Keywords: Periodontal diseases, clinical application, periodontal treatment, oral diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5971452 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14971451 An Efficient Classification Method for Inverse Synthetic Aperture Radar Images
Authors: Sang-Hong Park
Abstract:
This paper proposes an efficient method to classify inverse synthetic aperture (ISAR) images. Because ISAR images can be translated and rotated in the 2-dimensional image place, invariance to the two factors is indispensable for successful classification. The proposed method achieves invariance to translation and rotation of ISAR images using a combination of two-dimensional Fourier transform, polar mapping and correlation-based alignment of the image. Classification is conducted using a simple matching score classifier. In simulations using the real ISAR images of five scaled models measured in a compact range, the proposed method yields classification ratios higher than 97 %.Keywords: Radar, ISAR, radar target classification, radar imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21941450 A New Approach for Fingerprint Classification based on Minutiae Distribution
Authors: Jayant V Kulkarni, Jayadevan R, Suresh N Mali, Hemant K Abhyankar, Raghunath S Holambe
Abstract:
The paper describes a new approach for fingerprint classification, based on the distribution of local features (minute details or minutiae) of the fingerprints. The main advantage is that fingerprint classification provides an indexing scheme to facilitate efficient matching in a large fingerprint database. A set of rules based on heuristic approach has been proposed. The area around the core point is treated as the area of interest for extracting the minutiae features as there are substantial variations around the core point as compared to the areas away from the core point. The core point in a fingerprint has been located at a point where there is maximum curvature. The experimental results report an overall average accuracy of 86.57 % in fingerprint classification.Keywords: Minutiae distribution, Minutiae, Classification, Orientation, Heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671449 Content-based Indoor/Outdoor Video Classification System for a Mobile Platform
Authors: Mitko Veta, Tomislav Kartalov, Zoran Ivanovski
Abstract:
Organization of video databases is becoming difficult task as the amount of video content increases. Video classification based on the content of videos can significantly increase the speed of tasks such as browsing and searching for a particular video in a database. In this paper, a content-based videos classification system for the classes indoor and outdoor is presented. The system is intended to be used on a mobile platform with modest resources. The algorithm makes use of the temporal redundancy in videos, which allows using an uncomplicated classification model while still achieving reasonable accuracy. The training and evaluation was done on a video database of 443 videos downloaded from a video sharing service. A total accuracy of 87.36% was achieved.Keywords: Indoor/outdoor, video classification, imageclassification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15221448 Chilean Wines Classification based only on Aroma Information
Authors: Nicolás H. Beltrán, Manuel A. Duarte-Mermoud, Víctor A. Soto, Sebastián A. Salah, and Matías A. Bustos
Abstract:
Results of Chilean wine classification based on the information provided by an electronic nose are reported in this paper. The classification scheme consists of two parts; in the first stage, Principal Component Analysis is used as feature extraction method to reduce the dimensionality of the original information. Then, Radial Basis Functions Neural Networks is used as pattern recognition technique to perform the classification. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère wine samples from different years, valleys and vineyards of Chile.Keywords: Feature extraction techniques, Pattern recognitiontechniques, Principal component analysis, Radial basis functionsneural networks, Wine classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471447 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods
Authors: M. Sinecen, M. Makinacı
Abstract:
The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.
Keywords: Artificial neural networks, texture classification, cancer diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15911446 Improving RBF Networks Classification Performance by using K-Harmonic Means
Authors: Z. Zainuddin, W. K. Lye
Abstract:
In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.Keywords: Neural networks, Radial basis functions, Clusteringmethod, K-harmonic means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18501445 Automatic Fingerprint Classification Using Graph Theory
Authors: Mana Tarjoman, Shaghayegh Zarei
Abstract:
Using efficient classification methods is necessary for automatic fingerprint recognition system. This paper introduces a new structural approach to fingerprint classification by using the directional image of fingerprints to increase the number of subclasses. In this method, the directional image of fingerprints is segmented into regions consisting of pixels with the same direction. Afterwards the relational graph to the segmented image is constructed and according to it, the super graph including prominent information of this graph is formed. Ultimately we apply a matching technique to compare obtained graph with the model graphs in order to classify fingerprints by using cost function. Increasing the number of subclasses with acceptable accuracy in classification and faster processing in fingerprints recognition, makes this system superior.
Keywords: Classification, Directional image, Fingerprint, Graph, Super graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3634