Search results for: card recognition
776 Pakistan Sign Language Recognition Using Statistical Template Matching
Authors: Aleem Khalid Alvi, M. Yousuf Bin Azhar, Mehmood Usman, Suleman Mumtaz, Sameer Rafiq, RaziUr Rehman, Israr Ahmed
Abstract:
Sign language recognition has been a topic of research since the first data glove was developed. Many researchers have attempted to recognize sign language through various techniques. However none of them have ventured into the area of Pakistan Sign Language (PSL). The Boltay Haath project aims at recognizing PSL gestures using Statistical Template Matching. The primary input device is the DataGlove5 developed by 5DT. Alternative approaches use camera-based recognition which, being sensitive to environmental changes are not always a good choice.This paper explains the use of Statistical Template Matching for gesture recognition in Boltay Haath. The system recognizes one handed alphabet signs from PSL.Keywords: Gesture Recognition, Pakistan Sign Language, DataGlove, Human Computer Interaction, Template Matching, BoltayHaath
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3024775 Low Resolution Face Recognition Using Mixture of Experts
Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour
Abstract:
Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724774 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences
Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui
Abstract:
The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.
Keywords: Recognition of shape, generalized hough transformation, histogram, Spatiogram, learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618773 Quantitative Analysis of PCA, ICA, LDA and SVM in Face Recognition
Authors: Liton Jude Rozario, Mohammad Reduanul Haque, Md. Ziarul Islam, Mohammad Shorif Uddin
Abstract:
Face recognition is a technique to automatically identify or verify individuals. It receives great attention in identification, authentication, security and many more applications. Diverse methods had been proposed for this purpose and also a lot of comparative studies were performed. However, researchers could not reach unified conclusion. In this paper, we are reporting an extensive quantitative accuracy analysis of four most widely used face recognition algorithms: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) using AT&T, Sheffield and Bangladeshi people face databases under diverse situations such as illumination, alignment and pose variations.
Keywords: PCA, ICA, LDA, SVM, face recognition, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431772 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information
Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung
Abstract:
The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.Keywords: Color moments, visual thing recognition system, SIFT, color SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032771 Inverse Sets-based Recognition of Video Clips
Authors: Alexei M. Mikhailov
Abstract:
The paper discusses the mathematics of pattern indexing and its applications to recognition of visual patterns that are found in video clips. It is shown that (a) pattern indexes can be represented by collections of inverted patterns, (b) solutions to pattern classification problems can be found as intersections and histograms of inverted patterns and, thus, matching of original patterns avoided.Keywords: Artificial neural cortex, computational biology, data mining, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116770 Initialization Method of Reference Vectors for Improvement of Recognition Accuracy in LVQ
Authors: Yuji Mizuno, Hiroshi Mabuchi
Abstract:
Initial values of reference vectors have significant influence on recognition accuracy in LVQ. There are several existing techniques, such as SOM and k-means, for setting initial values of reference vectors, each of which has provided some positive results. However, those results are not sufficient for the improvement of recognition accuracy. This study proposes an ACO-used method for initializing reference vectors with an aim to achieve recognition accuracy higher than those obtained through conventional methods. Moreover, we will demonstrate the effectiveness of the proposed method by applying it to the wine data and English vowel data and comparing its results with those of conventional methods.
Keywords: Clustering, LVQ, ACO, SOM, k-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256769 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses
Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas
Abstract:
We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.
Keywords: Transient noise pulses, noise reduction, dynamic time warping, speech recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946768 Posture Recognition using Combined Statistical and Geometrical Feature Vectors based on SVM
Authors: Omer Rashid, Ayoub Al-Hamadi, Axel Panning, Bernd Michaelis
Abstract:
It is hard to percept the interaction process with machines when visual information is not available. In this paper, we have addressed this issue to provide interaction through visual techniques. Posture recognition is done for American Sign Language to recognize static alphabets and numbers. 3D information is exploited to obtain segmentation of hands and face using normal Gaussian distribution and depth information. Features for posture recognition are computed using statistical and geometrical properties which are translation, rotation and scale invariant. Hu-Moment as statistical features and; circularity and rectangularity as geometrical features are incorporated to build the feature vectors. These feature vectors are used to train SVM for classification that recognizes static alphabets and numbers. For the alphabets, curvature analysis is carried out to reduce the misclassifications. The experimental results show that proposed system recognizes posture symbols by achieving recognition rate of 98.65% and 98.6% for ASL alphabets and numbers respectively.Keywords: Feature Extraction, Posture Recognition, Pattern Recognition, Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520767 Finger Vein Recognition using PCA-based Methods
Authors: Sepehr Damavandinejadmonfared, Ali Khalili Mobarakeh, Mohsen Pashna, , Jiangping Gou Sayedmehran Mirsafaie Rizi, Saba Nazari, Shadi Mahmoodi Khaniabadi, Mohamad Ali Bagheri
Abstract:
In this paper a novel algorithm is proposed to merit the accuracy of finger vein recognition. The performances of Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), and Kernel Entropy Component Analysis (KECA) in this algorithm are validated and compared with each other in order to determine which one is the most appropriate one in terms of finger vein recognition.Keywords: Biometrics, finger vein recognition, PrincipalComponent Analysis (PCA), Kernel Principal Component Analysis(KPCA), Kernel Entropy Component Analysis (KPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680766 Implementation and Modeling of a Quadrotor
Authors: Ersan Aktas, Eren Turanoğuz
Abstract:
In this study, the quad-electrical rotor driven unmanned aerial vehicle system is designed and modeled using fundamental dynamic equations. After that, mechanical, electronical and control system of the air vehicle are designed and implemented. Brushless motor speeds are altered via electronic speed controllers in order to achieve desired controllability. The vehicle's fundamental Euler angles (i.e., roll angle, pitch angle, and yaw angle) are obtained via AHRS sensor. These angles are provided as an input to the control algorithm that run on soft the processor on the electronic card. The vehicle control algorithm is implemented in the electronic card. Controller is designed and improved for each Euler angles. Finally, flight tests have been performed to observe and improve the flight characteristics.
Keywords: Quadrotor, UAS applications, control architectures, PID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606765 Hybrid Modeling Algorithm for Continuous Tamil Speech Recognition
Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi
Abstract:
In this paper, Fuzzy C-Means clustering with Expectation Maximization-Gaussian Mixture Model based hybrid modeling algorithm is proposed for Continuous Tamil Speech Recognition. The speech sentences from various speakers are used for training and testing phase and objective measures are between the proposed and existing Continuous Speech Recognition algorithms. From the simulated results, it is observed that the proposed algorithm improves the recognition accuracy and F-measure up to 3% as compared to that of the existing algorithms for the speech signal from various speakers. In addition, it reduces the Word Error Rate, Error Rate and Error up to 4% as compared to that of the existing algorithms. In all aspects, the proposed hybrid modeling for Tamil speech recognition provides the significant improvements for speechto- text conversion in various applications.
Keywords: Speech Segmentation, Feature Extraction, Clustering, HMM, EM-GMM, CSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139764 Sentence Modality Recognition in French based on Prosody
Authors: Pavel Král, Jana Klečková, Christophe Cerisara
Abstract:
This paper deals with automatic sentence modality recognition in French. In this work, only prosodic features are considered. The sentences are recognized according to the three following modalities: declarative, interrogative and exclamatory sentences. This information will be used to animate a talking head for deaf and hearing-impaired children. We first statistically study a real radio corpus in order to assess the feasibility of the automatic modeling of sentence types. Then, we test two sets of prosodic features as well as two different classifiers and their combination. We further focus our attention on questions recognition, as this modality is certainly the most important one for the target application.Keywords: Automatic sentences modality recognition (ASMR), fundamental frequency (F0), energy, modal corpus, prosody.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679763 Real-Time Hand Tracking and Gesture Recognition System Using Neural Networks
Authors: Tin Hninn Hninn Maung
Abstract:
This paper introduces a hand gesture recognition system to recognize real time gesture in unstrained environments. Efforts should be made to adapt computers to our natural means of communication: Speech and body language. A simple and fast algorithm using orientation histograms will be developed. It will recognize a subset of MAL static hand gestures. A pattern recognition system will be using a transforrn that converts an image into a feature vector, which will be compared with the feature vectors of a training set of gestures. The final system will be Perceptron implementation in MATLAB. This paper includes experiments of 33 hand postures and discusses the results. Experiments shows that the system can achieve a 90% recognition average rate and is suitable for real time applications.
Keywords: Hand gesture recognition, Orientation Histogram, Myanmar Alphabet Language, Perceptronnetwork, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4697762 The Performance Improvement of Automatic Modulation Recognition Using Simple Feature Manipulation, Analysis of the HOS, and Voted Decision
Authors: Heroe Wijanto, Sugihartono, Suhartono Tjondronegoro, Kuspriyanto
Abstract:
The use of High Order Statistics (HOS) analysis is expected to provide so many candidates of features that can be selected for pattern recognition. More candidates of the feature can be extracted using simple manipulation through a specific mathematical function prior to the HOS analysis. Feature extraction method using HOS analysis combined with Difference to the Nth-Power manipulation has been examined in application for Automatic Modulation Recognition (AMR) to perform scheme recognition of three digital modulation signal, i.e. QPSK-16QAM-64QAM in the AWGN transmission channel. The simulation results is reported when the analysis of HOS up to order-12 and the manipulation of Difference to the Nth-Power up to N = 4. The obtained accuracy rate of AMR using the method of Simple Decision obtained 90% in SNR > 10 dB in its classifier, while using the method of Voted Decision is 96% in SNR > 2 dB.Keywords: modulation, automatic modulation recognition, feature analysis, feature manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121761 Word Recognition and Learning based on Associative Memories and Hidden Markov Models
Authors: Zöhre Kara Kayikci, Günther Palm
Abstract:
A word recognition architecture based on a network of neural associative memories and hidden Markov models has been developed. The input stream, composed of subword-units like wordinternal triphones consisting of diphones and triphones, is provided to the network of neural associative memories by hidden Markov models. The word recognition network derives words from this input stream. The architecture has the ability to handle ambiguities on subword-unit level and is also able to add new words to the vocabulary during performance. The architecture is implemented to perform the word recognition task in a language processing system for understanding simple command sentences like “bot show apple".Keywords: Hebbian learning, hidden Markov models, neuralassociative memories, word recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524760 An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seongwon Cho
Abstract:
Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an improved illumination normalization method for face recognition. Illumination normalization algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing-based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing the effect of illumination variations. Due to the result of these improvements, face images preprocessed by the proposed illumination normalization method becomes to have more distinctive feature vectors (Gabor feature vectors) for face recognition. Through experiments of face recognition based on Gabor feature vector similarity, the effectiveness of the proposed illumination normalization method is verified.Keywords: Illumination Normalization, Face Recognition, Anisotropic smoothing, Gabor feature vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549759 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435758 Robust Face Recognition using AAM and Gabor Features
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seoungseon Jeon, Jaemin Kim, Seongwon Cho
Abstract:
In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization method employed in EBGM is based on Gabor jet similarity and is sensitive to initial values. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we devise a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based facial feature localization method with initial points set by the rough facial feature points obtained from AAM, and propose a face recognition algorithm using the devised localization method for facial feature localization and Gabor feature vectors. It is observed through experiments that such a cascaded localization method based on both AAM and Gabor jet similarity is more robust than the localization method based on only Gabor jet similarity. Also, it is shown that the proposed face recognition algorithm using this devised localization method and Gabor feature vectors performs better than the conventional face recognition algorithm using Gabor jet similarity-based localization method and Gabor feature vectors like EBGM.Keywords: Face Recognition, AAM, Gabor features, EBGM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206757 Javanese Character Recognition Using Hidden Markov Model
Authors: Anastasia Rita Widiarti, Phalita Nari Wastu
Abstract:
Hidden Markov Model (HMM) is a stochastic method which has been used in various signal processing and character recognition. This study proposes to use HMM to recognize Javanese characters from a number of different handwritings, whereby HMM is used to optimize the number of state and feature extraction. An 85.7 % accuracy is obtained as the best result in 16-stated vertical model using pure HMM. This initial result is satisfactory for prompting further research.Keywords: Character recognition, off-line handwritingrecognition, Hidden Markov Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989756 A New Recognition Scheme for Machine- Printed Arabic Texts based on Neural Networks
Authors: Z. Shaaban
Abstract:
This paper presents a new approach to tackle the problem of recognizing machine-printed Arabic texts. Because of the difficulty of recognizing cursive Arabic words, the text has to be normalized and segmented to be ready for the recognition stage. The new scheme for recognizing Arabic characters depends on multiple parallel neural networks classifier. The classifier has two phases. The first phase categories the input character into one of eight groups. The second phase classifies the character into one of the Arabic character classes in the group. The system achieved high recognition rate.
Keywords: Neural Networks, character recognition, feature extraction, multiple networks, Arabic text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478755 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using well-known geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.
Keywords: Camera-based OCR, Feature extraction, Document and image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470754 View-Point Insensitive Human Pose Recognition using Neural Network and CUDA
Authors: Sanghyeok Oh, Keechul Jung
Abstract:
Although lots of research work has been done for human pose recognition, the view-point of cameras is still critical problem of overall recognition system. In this paper, view-point insensitive human pose recognition is proposed. The aims of the proposed system are view-point insensitivity and real-time processing. Recognition system consists of feature extraction module, neural network and real-time feed forward calculation. First, histogram-based method is used to extract feature from silhouette image and it is suitable for represent the shape of human pose. To reduce the dimension of feature vector, Principle Component Analysis(PCA) is used. Second, real-time processing is implemented by using Compute Unified Device Architecture(CUDA) and this architecture improves the speed of feed-forward calculation of neural network. We demonstrate the effectiveness of our approach with experiments on real environment.Keywords: computer vision, neural network, pose recognition, view-point insensitive, PCA, CUDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339753 Study of Features for Hand-printed Recognition
Authors: Satish Kumar
Abstract:
The feature extraction method(s) used to recognize hand-printed characters play an important role in ICR applications. In order to achieve high recognition rate for a recognition system, the choice of a feature that suits for the given script is certainly an important task. Even if a new feature required to be designed for a given script, it is essential to know the recognition ability of the existing features for that script. Devanagari script is being used in various Indian languages besides Hindi the mother tongue of majority of Indians. This research examines a variety of feature extraction approaches, which have been used in various ICR/OCR applications, in context to Devanagari hand-printed script. The study is conducted theoretically and experimentally on more that 10 feature extraction methods. The various feature extraction methods have been evaluated on Devanagari hand-printed database comprising more than 25000 characters belonging to 43 alphabets. The recognition ability of the features have been evaluated using three classifiers i.e. k-NN, MLP and SVM.Keywords: Features, Hand-printed, Devanagari, Classifier, Database
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729752 Automatic Music Score Recognition System Using Digital Image Processing
Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng
Abstract:
Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.
Keywords: Connected component labeling, image processing, morphological processing, optical musical recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931751 A Optimal Subclass Detection Method for Credit Scoring
Authors: Luciano Nieddu, Giuseppe Manfredi, Salvatore D'Acunto, Katia La Regina
Abstract:
In this paper a non-parametric statistical pattern recognition algorithm for the problem of credit scoring will be presented. The proposed algorithm is based on a clustering k- means algorithm and allows for the determination of subclasses of homogenous elements in the data. The algorithm will be tested on two benchmark datasets and its performance compared with other well known pattern recognition algorithm for credit scoring.
Keywords: Constrained clustering, Credit scoring, Statistical pattern recognition, Supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049750 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: Sign language recognition, computer vision, infrared, artificial neural network, dynamic time warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878749 Face Recognition with Image Rotation Detection, Correction and Reinforced Decision using ANN
Authors: Hemashree Bordoloi, Kandarpa Kumar Sarma
Abstract:
Rotation or tilt present in an image capture by digital means can be detected and corrected using Artificial Neural Network (ANN) for application with a Face Recognition System (FRS). Principal Component Analysis (PCA) features of faces at different angles are used to train an ANN which detects the rotation for an input image and corrected using a set of operations implemented using another system based on ANN. The work also deals with the recognition of human faces with features from the foreheads, eyes, nose and mouths as decision support entities of the system configured using a Generalized Feed Forward Artificial Neural Network (GFFANN). These features are combined to provide a reinforced decision for verification of a person-s identity despite illumination variations. The complete system performing facial image rotation detection, correction and recognition using re-enforced decision support provides a success rate in the higher 90s.Keywords: Rotation, Face, Recognition, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062748 Recognition and Reconstruction of Partially Occluded Objects
Authors: Michela Lecca, Stefano Messelodi
Abstract:
A new automatic system for the recognition and re¬construction of resealed and/or rotated partially occluded objects is presented. The objects to be recognized are described by 2D views and each view is occluded by several half-planes. The whole object views and their visible parts (linear cuts) are then stored in a database. To establish if a region R of an input image represents an object possibly occluded, the system generates a set of linear cuts of R and compare them with the elements in the database. Each linear cut of R is associated to the most similar database linear cut. R is recognized as an instance of the object 0 if the majority of the linear cuts of R are associated to a linear cut of views of 0. In the case of recognition, the system reconstructs the occluded part of R and determines the scale factor and the orientation in the image plane of the recognized object view. The system has been tested on two different datasets of objects, showing good performance both in terms of recognition and reconstruction accuracy.
Keywords: Occluded Object Recognition, Shape Reconstruction, Automatic Self-Adaptive Systems, Linear Cut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285747 Investigation of New Gait Representations for Improving Gait Recognition
Authors: Chirawat Wattanapanich, Hong Wei
Abstract:
This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.
Keywords: Convolutional image, lower knee, gait.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068