Search results for: association rules
708 Availability of Sports Facilities does not explain the Association between Economic Environment and Physical Inactivity in a Southern European city
Authors: Cruz Pascual, Enrique Regidor, Paloma Ortega, David Martínez, Paloma Astasio
Abstract:
This paper evaluates the association between economic environment in the districts of Madrid (Spain) and physical inactivity, using income per capita as indicator of economic environment. The analysis included 6,601 individuals aged 16 to 74 years. The measure of association estimated was the prevalence odds ratio for physical inactivity by income per capita. After adjusting for sex, age, and individual socioeconomic characteristics, people living in the districts with the lowest per capita income had an odds ratio for physical inactivity 1.58 times higher (95% confidence interval 1.35 to 1.85) than those living in districts with the highest per capita income. Additional adjustment for the availability of sports facilities in each district did not decrease the magnitude of the association. These findings show that the widely believed assumption that the availability of sports and recreational facilities, as a possible explanation for the relation between economic environment and physical inactivity, cannot be considered a universal observation.Keywords: Economic environment, physical inactivity, sports facilities, districts, Madrid, Spain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850707 Two Cases of VACTERL Association in Pregnancy with Lymphocyte Therapy
Authors: Seyed Mazyar Mortazavi, Masod Memari, Hasan Ali Ahmadi, Zhaleh Abed
Abstract:
VACTERL association is a rare disorder with various congenital malformations. The aetiology remains unknown. Combination of at least three congenital anomalies of the following criteria is required for diagnosis: vertebral defects, anal atresia, cardiac anomalies, tracheo-esophageal fistula, renal anomalies, and limb defects. The first case was 1-day old male neonate with multiple congenital anomalies was bore from 28 years old mother. The mother had history of pregnancy with lymphocyte therapy. His anomalies included: defects in thoracic and lumbar vertebral, anal atresia, bilateral hydronephrosis, atrial septal defect, and lower limb abnormality. Other anomalies were cryptorchidism and nasal canal narrowing. The second case was born with 32 weeks gestational age from mother with history of pregnancy with lymphocyte therapy. He had thoracic vertebral defect, cardiac anomalies and renal defect. diagnosis based on clinical finding is VACTERL association. Early diagnosis is very important to investigation and treatment of other coexistence anomalies. VACTERL association in mothers with history of pregnancy with lymphocyte therapy has suggested possibly of relationship between VACTERL association and this method of pregnancy.
Keywords: Anal atresia, tracheo-esophageal fistula, atrial septal defect, lymphocyte therapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545706 Robust Fractional-Order PI Controller with Ziegler-Nichols Rules
Authors: Mazidah Tajjudin, Mohd Hezri Fazalul Rahiman, Norhashim Mohd Arshad, Ramli Adnan
Abstract:
In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.
Keywords: PID controller, fractional-order PID controller, PI control tuning, steam temperature control, Ziegler-Nichols tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3472705 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data
Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto
Abstract:
This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.
Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235704 Research of Data Cleaning Methods Based on Dependency Rules
Authors: Yang Bao, Shi Wei Deng, Wang Qun Lin
Abstract:
This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSql), and gives 6 data cleaning methods based on these algorithms.Keywords: Data cleaning, dependency rules, violation data discovery, data repair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612703 Hypertension and Its Association with Oral Health Status in Adults: A Pilot Study in Padusunan Adults Community
Authors: Murniwati, Nurul Khairiyah, Putri Ovieza Maizar
Abstract:
The association between general and oral health is clearly important, particularly in adults with medical conditions. Many of the medical systemic conditions are either caused or aggravated by poor oral hygiene and vice versa. Hypertension is one of common medical systemic problem which has been a public health concern worldwide due to its known consequences. Those consequences must be related to oral health status as well, whether it may cause or worsen the oral health conditions. The objective of this study was to find out the association between hypertension and oral health status in adults. This study was an analytical observational study by using cross-sectional method. A total of 42 adults both male and female in Padusunan Village, Pariaman, West Sumatra, Indonesia were selected as subjects by using purposive sampling. Manual sphygmomanometer was used to measure blood pressure and dental examination was performed to calculate the decayed, missing, and filled teeth (DMFT) scores in order to represent oral health status. The data obtained was analyzed statistically using One Way ANOVA to determine the association between hypertensive adults and their oral health status. The result showed that majority age of the subjects was ranging from 51-70 years (40.5%). Based on blood pressure examination, 57.1% of subjects were classified to prehypertension. Overall, the mean of DMFT score calculated in normal, prehypertension and hypertension group was not considered statistically significant. There was no significant association (p>0.05) between hypertension and oral health status in adults.Keywords: Blood pressure, hypertension, DMFT, oral health status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774702 Discovery of Production Rules with Fuzzy Hierarchy
Authors: Fadl M. Ba-Alwi, Kamal K. Bharadwaj
Abstract:
In this paper a novel algorithm is proposed that integrates the process of fuzzy hierarchy generation and rule discovery for automated discovery of Production Rules with Fuzzy Hierarchy (PRFH) in large databases.A concept of frequency matrix (Freq) introduced to summarize large database that helps in minimizing the number of database accesses, identification and removal of irrelevant attribute values and weak classes during the fuzzy hierarchy generation.Experimental results have established the effectiveness of the proposed algorithm.Keywords: Data Mining, Degree of subsumption, Freq matrix, Fuzzy hierarchy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312701 Emotion Classification by Incremental Association Language Features
Authors: Jheng-Long Wu, Pei-Chann Chang, Shih-Ling Chang, Liang-Chih Yu, Jui-Feng Yeh, Chin-Sheng Yang
Abstract:
The Major Depressive Disorder has been a burden of medical expense in Taiwan as well as the situation around the world. Major Depressive Disorder can be defined into different categories by previous human activities. According to machine learning, we can classify emotion in correct textual language in advance. It can help medical diagnosis to recognize the variance in Major Depressive Disorder automatically. Association language incremental is the characteristic and relationship that can discovery words in sentence. There is an overlapping-category problem for classification. In this paper, we would like to improve the performance in classification in principle of no overlapping-category problems. We present an approach that to discovery words in sentence and it can find in high frequency in the same time and can-t overlap in each category, called Association Language Features by its Category (ALFC). Experimental results show that ALFC distinguish well in Major Depressive Disorder and have better performance. We also compare the approach with baseline and mutual information that use single words alone or correlation measure.Keywords: Association language features, Emotion Classification, Overlap-Category Feature, Nature Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897700 A Study on the Nostalgia Contents Analysis of Hometown Alumni in the Online Community
Authors: Heejin Yun, Juanjuan Zang
Abstract:
This study aims to analyze the text terms posted on an online community of people from the same hometown and to understand the topic and trend of nostalgia composed online. For this purpose, this study collected 144 writings which the natives of Yeongjong Island, Incheon, South-Korea have posted on an online community. And it analyzed association relations. As a result, online community texts means that just defining nostalgia as ‘a mind longing for hometown’ is not an enough explanation. Second, texts composed online have abstractness rather than persons’ individual stories. This study figured out the relationship that had the most critical and closest mutual association among the terms that constituted nostalgia through literature research and association rule concerning nostalgia. The result of this study has a characteristic that it summed up the core terms and emotions related to nostalgia.
Keywords: Nostalgia, cultural memory, data mining, online community.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046699 Join and Meet Block Based Default Definite Decision Rule Mining from IDT and an Incremental Algorithm
Authors: Chen Wu, Jingyu Yang
Abstract:
Using maximal consistent blocks of tolerance relation on the universe in incomplete decision table, the concepts of join block and meet block are introduced and studied. Including tolerance class, other blocks such as tolerant kernel and compatible kernel of an object are also discussed at the same time. Upper and lower approximations based on those blocks are also defined. Default definite decision rules acquired from incomplete decision table are proposed in the paper. An incremental algorithm to update default definite decision rules is suggested for effective mining tasks from incomplete decision table into which data is appended. Through an example, we demonstrate how default definite decision rules based on maximal consistent blocks, join blocks and meet blocks are acquired and how optimization is done in support of discernibility matrix and discernibility function in the incomplete decision table.Keywords: rough set, incomplete decision table, maximalconsistent block, default definite decision rule, join and meet block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288698 What Are the Factors Underlying the Differences between Young Saudi Women in Traditional Families That Choose to Conform to the Society Norms, and Young Saudi Women Who Do Not Conform?
Authors: Mai Al-Subaie
Abstract:
This research suggests that women in traditional families of Saudi Arabia are divided into two groups, the one who conforms to the society and the new type of women that has been emerged due to the changing and development of the culture, who do not want to conform to the rules. The factors underlying the differences were explored by using a test and an interview. And that concluded some of the main factors that were a real affect of why some women still want to follow the society and traditional rules, and other want to break free.
Keywords: Conformity, Non-Conformity, Saudi Arabia, Women.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687697 Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques
Authors: F. H. Abanda, B. Kamsu-Foguem, J. H. M. Tah
Abstract:
Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or underestimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improve accuracies. This requires standard measurement methods to be structured in ontological and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.
Keywords: BIM, Construction projects, Cost estimation, NRM, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4444696 Multiple Job Shop-Scheduling using Hybrid Heuristic Algorithm
Authors: R.A.Mahdavinejad
Abstract:
In this paper, multi-processors job shop scheduling problems are solved by a heuristic algorithm based on the hybrid of priority dispatching rules according to an ant colony optimization algorithm. The objective function is to minimize the makespan, i.e. total completion time, in which a simultanous presence of various kinds of ferons is allowed. By using the suitable hybrid of priority dispatching rules, the process of finding the best solution will be improved. Ant colony optimization algorithm, not only promote the ability of this proposed algorithm, but also decreases the total working time because of decreasing in setup times and modifying the working production line. Thus, the similar work has the same production lines. Other advantage of this algorithm is that the similar machines (not the same) can be considered. So, these machines are able to process a job with different processing and setup times. According to this capability and from this algorithm evaluation point of view, a number of test problems are solved and the associated results are analyzed. The results show a significant decrease in throughput time. It also shows that, this algorithm is able to recognize the bottleneck machine and to schedule jobs in an efficient way.
Keywords: Job shops scheduling, Priority dispatching rules, Makespan, Hybrid heuristic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670695 Association of G-174C Polymorphism of the Interleukin-6 Gene Promoter with Obesity in Iranian Population
Authors: Rostami F, Haj Hosseini R, Sharifi K, Daneshpour M, Azizi F, Hedayati M
Abstract:
Expression and secretion of inflammation markers are disturbed in obesity. Interleukin-6 reduces body fat mass. The common G-174C polymorphism in the promoter of IL-6 gene has been reported that effects on transcriptional regulation. The objective was to investigate association of the common polymorphism G-174C with obesity in Iranian population. The present study is cross sectional association study that included 242 individuals (110 men and 132 women). Serum IL-6 levels, C-reactive protein, fasting blood glucose and blood lipids profile were measured .BMI and WHR were calculated. Genotyping is carried out by PCR and RFLP. The frequencies of G and C allele were 64.5% and 35.5%, respectively. The G-174C polymorphism was not associated with BMI and WHR. However in obese individual, fasting blood glucose was significantly higher in carrier of C allele compared with the noncarrier. The IL-6 G-174C polymorphism is not a risk factor for obesity in Iranian population.Keywords: Interleukin 6, Polymorphism genetic, Obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611694 The Effect of Board Composition and Ownership Concentration on Earnings Management: Evidence from IRAN
Authors: F. Rahnamay Roodposhti, S. A. Nabavi Chashmi
Abstract:
The role of corporate governance is to reduce the divergence of interests between shareholders and managers. The role of corporate governance is more useful when managers have an incentive to deviate from shareholders- interests. One example of management-s deviation from shareholders- interests is the management of earnings through the use of accounting accruals. This paper examines the association between corporate governance internal mechanisms ownership concentration, board independence, the existence of CEO-Chairman duality and earnings management. Firm size and leverage are control variables. The population used in this study comprises firms listed on the Tehran Stock Exchange (TSE) between 2004 and 2008, the sample comprises 196 firms. Panel Data method is employed as technique to estimate the model. We find that there is negative significant association between ownership concentration and board independence manage earnings with earnings management, there is negative significant association between the existence of CEO-Chairman duality and earnings management. This study also found a positive significant association between control variable (firm size and leverage) and earnings management.Keywords: Earnings management, board independence, ownership concentration, corporate governance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3920693 Customer Segmentation in Foreign Trade based on Clustering Algorithms Case Study: Trade Promotion Organization of Iran
Authors: Samira Malekmohammadi Golsefid, Mehdi Ghazanfari, Somayeh Alizadeh
Abstract:
The goal of this paper is to segment the countries based on the value of export from Iran during 14 years ending at 2005. To measure the dissimilarity among export baskets of different countries, we define Dissimilarity Export Basket (DEB) function and use this distance function in K-means algorithm. The DEB function is defined based on the concepts of the association rules and the value of export group-commodities. In this paper, clustering quality function and clusters intraclass inertia are defined to, respectively, calculate the optimum number of clusters and to compare the functionality of DEB versus Euclidean distance. We have also study the effects of importance weight in DEB function to improve clustering quality. Lastly when segmentation is completed, a designated RFM model is used to analyze the relative profitability of each cluster.Keywords: Customers segmentation, Customer relationship management, Clustering, Data Mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288692 A Diagnostic Fuzzy Rule-Based System for Congenital Heart Disease
Authors: Ersin Kaya, Bulent Oran, Ahmet Arslan
Abstract:
In this study, fuzzy rule-based classifier is used for the diagnosis of congenital heart disease. Congenital heart diseases are defined as structural or functional heart disease. Medical data sets were obtained from Pediatric Cardiology Department at Selcuk University, from years 2000 to 2003. Firstly, fuzzy rules were generated by using medical data. Then the weights of fuzzy rules were calculated. Two different reasoning methods as “weighted vote method" and “singles winner method" were used in this study. The results of fuzzy classifiers were compared.Keywords: Congenital heart disease, Fuzzy rule-basedclassifiers, Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823691 Data Mining Using Learning Automata
Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri
Abstract:
In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935690 How Efficiency of Password Attack Based on a Keyboard
Authors: Hsien-cheng Chou, Fei-pei Lai, Hung-chang Lee
Abstract:
At present, dictionary attack has been the basic tool for recovering key passwords. In order to avoid dictionary attack, users purposely choose another character strings as passwords. According to statistics, about 14% of users choose keys on a keyboard (Kkey, for short) as passwords. This paper develops a framework system to attack the password chosen from Kkeys and analyzes its efficiency. Within this system, we build up keyboard rules using the adjacent and parallel relationship among Kkeys and then use these Kkey rules to generate password databases by depth-first search method. According to the experiment results, we find the key space of databases derived from these Kkey rules that could be far smaller than the password databases generated within brute-force attack, thus effectively narrowing down the scope of attack research. Taking one general Kkey rule, the combinations in all printable characters (94 types) with Kkey adjacent and parallel relationship, as an example, the derived key space is about 240 smaller than those in brute-force attack. In addition, we demonstrate the method's practicality and value by successfully cracking the access password to UNIX and PC using the password databases createdKeywords: Brute-force attack, dictionary attack, depth-firstsearch, password attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3475689 Detecting Interactions between Behavioral Requirements with OWL and SWRL
Authors: Haibo Hu, Dan Yang, Chunxiao Ye, Chunlei Fu, Ren Li
Abstract:
High quality requirements analysis is one of the most crucial activities to ensure the success of a software project, so that requirements verification for software system becomes more and more important in Requirements Engineering (RE) and it is one of the most helpful strategies for improving the quality of software system. Related works show that requirement elicitation and analysis can be facilitated by ontological approaches and semantic web technologies. In this paper, we proposed a hybrid method which aims to verify requirements with structural and formal semantics to detect interactions. The proposed method is twofold: one is for modeling requirements with the semantic web language OWL, to construct a semantic context; the other is a set of interaction detection rules which are derived from scenario-based analysis and represented with semantic web rule language (SWRL). SWRL based rules are working with rule engines like Jess to reason in semantic context for requirements thus to detect interactions. The benefits of the proposed method lie in three aspects: the method (i) provides systematic steps for modeling requirements with an ontological approach, (ii) offers synergy of requirements elicitation and domain engineering for knowledge sharing, and (3)the proposed rules can systematically assist in requirements interaction detection.Keywords: Requirements Engineering, Semantic Web, OWL, Requirements Interaction Detection, SWRL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798688 Concepts Extraction from Discharge Notes using Association Rule Mining
Authors: Basak Oguz Yolcular
Abstract:
A large amount of valuable information is available in plain text clinical reports. New techniques and technologies are applied to extract information from these reports. In this study, we developed a domain based software system to transform 600 Otorhinolaryngology discharge notes to a structured form for extracting clinical data from the discharge notes. In order to decrease the system process time discharge notes were transformed into a data table after preprocessing. Several word lists were constituted to identify common section in the discharge notes, including patient history, age, problems, and diagnosis etc. N-gram method was used for discovering terms co-Occurrences within each section. Using this method a dataset of concept candidates has been generated for the validation step, and then Predictive Apriori algorithm for Association Rule Mining (ARM) was applied to validate candidate concepts.Keywords: association rule mining, otorhinolaryngology, predictive apriori, text mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615687 Intelligent Agents for Distributed Intrusion Detection System
Authors: M. Benattou, K. Tamine
Abstract:
This paper presents a distributed intrusion detection system IDS, based on the concept of specialized distributed agents community representing agents with the same purpose for detecting distributed attacks. The semantic of intrusion events occurring in a predetermined network has been defined. The correlation rules referring the process which our proposed IDS combines the captured events that is distributed both spatially and temporally. And then the proposed IDS tries to extract significant and broad patterns for set of well-known attacks. The primary goal of our work is to provide intrusion detection and real-time prevention capability against insider attacks in distributed and fully automated environments.Keywords: Mobile agent, specialized agent, interpreter agent, event rules, correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834686 Fuzzy Logic Speed Controller with Reduced Rule Base for Dual PMSM Drives
Authors: Jurifa Mat Lazi, Zulkifilie Ibrahim, Marizan Sulaiman, Fizatul Aini Patakor, Siti Noormiza Mat Isa
Abstract:
Dual motor drives fed by single inverter is purposely designed to reduced size and cost with respect to single motor drives fed by single inverter. Previous researches on dual motor drives only focus on the modulation and the averaging techniques. Only a few of them, study the performance of the drives based on different speed controller other than Proportional and Integrator (PI) controller. This paper presents a detailed comparative study on fuzzy rule-base in Fuzzy Logic speed Controller (FLC) for Dual Permanent Magnet Synchronous Motor (PMSM) drives. Two fuzzy speed controllers which are standard and simplified fuzzy speed controllers are designed and the results are compared and evaluated. The standard fuzzy controller consists of 49 rules while the proposed controller consists of 9 rules determined by selecting the most dominant rules only. Both designs are compared for wide range of speed and the robustness of both controllers over load disturbance changes is tested to demonstrate the effectiveness of the simplified/reduced rulebase.Keywords: Dual Motor Drives, Fuzzy Logic Speed Controller, Reduced Rule-Base, PMSM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612685 Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules
Authors: Suraiya Jabin, Kamal K. Bharadwaj
Abstract:
In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. All LCSs models more or less, comprise four main components; a finite population of condition–action rules, called classifiers; the performance component, which governs the interaction with the environment; the credit assignment component, which distributes the reward received from the environment to the classifiers accountable for the rewards obtained; the discovery component, which is responsible for discovering better rules and improving existing ones through a genetic algorithm. The concatenate of the production rules in the LCS form the genotype, and therefore the GA should operate on a population of classifier systems. This approach is known as the 'Pittsburgh' Classifier Systems. Other LCS that perform their GA at the rule level within a population are known as 'Mitchigan' Classifier Systems. The most predominant representation of the discovered knowledge is the standard production rules (PRs) in the form of IF P THEN D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski and Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: IF P THEN D UNLESS C, where Censor C is an exception to the rule. Such rules are employed in situations, in which conditional statement IF P THEN D holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the IF P THEN D part of CPR expresses important information, while the UNLESS C part acts only as a switch and changes the polarity of D to ~D. In this paper Pittsburgh style LCSs approach is used for automated discovery of CPRs. An appropriate encoding scheme is suggested to represent a chromosome consisting of fixed size set of CPRs. Suitable genetic operators are designed for the set of CPRs and individual CPRs and also appropriate fitness function is proposed that incorporates basic constraints on CPR. Experimental results are presented to demonstrate the performance of the proposed learning classifier system.Keywords: Censored Production Rule, Data Mining, GeneticAlgorithm, Learning Classifier System, Machine Learning, PittsburgApproach, , Reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530684 Parallel and Distributed Mining of Association Rule on Knowledge Grid
Authors: U. Sakthi, R. Hemalatha, R. S. Bhuvaneswaran
Abstract:
In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear.Keywords: Association rule, Grid computing, Knowledge grid, Mobility prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182683 Web Service Providing Using Web Service Transformation
Authors: Youngmee Shin, Hyunjoo Bae
Abstract:
In order to provide existing SOAP (Simple Object Access Protocol)-based Web services with users who are familiar with REST (REpresentational State Transfer)-style Web services, this paper proposes Web service providing method using Web service transformation. This enables SOAP-based service providers to define rules for mapping from RESTful Web services to SOAP-based ones. Using these mapping rules, HTTP request messages for RESTful services are converted automatically into SOAP-based service invocations. Web service providers need not develop duplicate RESTful services and they can avoid programming mediation modules per service. Furthermore, they need not equip mediation middleware like ESB (Enterprise Service Bus) only for the purpose of transformation of two different Web service styles.Keywords: REST, SOAP, Web Services, Web ServiceTransformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849682 Bottom Up Text Mining through Hierarchical Document Representation
Authors: Y. Djouadi., F. Souam.
Abstract:
Most of the existing text mining approaches are proposed, keeping in mind, transaction databases model. Thus, the mined dataset is structured using just one concept: the “transaction", whereas the whole dataset is modeled using the “set" abstract type. In such cases, the structure of the whole dataset and the relationships among the transactions themselves are not modeled and consequently, not considered in the mining process. We believe that taking into account structure properties of hierarchically structured information (e.g. textual document, etc ...) in the mining process, can leads to best results. For this purpose, an hierarchical associations rule mining approach for textual documents is proposed in this paper and the classical set-oriented mining approach is reconsidered profits to a Direct Acyclic Graph (DAG) oriented approach. Natural languages processing techniques are used in order to obtain the DAG structure. Based on this graph model, an hierarchical bottom up algorithm is proposed. The main idea is that each node is mined with its parent node.Keywords: Graph based association rules mining, Hierarchical document structure, Text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058681 Mining Educational Data to Support Students’ Major Selection
Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri
Abstract:
This paper aims to create the model for student in choosing an emphasized track of student majoring in computer science at Suan Sunandha Rajabhat University. The objective of this research is to develop the suggested system using data mining technique to analyze knowledge and conduct decision rules. Such relationships can be used to demonstrate the reasonableness of student choosing a track as well as to support his/her decision and the system is verified by experts in the field. The sampling is from student of computer science based on the system and the questionnaire to see the satisfaction. The system result is found to be satisfactory by both experts and student as well.
Keywords: Data mining technique, the decision support system, knowledge and decision rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3284680 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.
Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859679 Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations
Authors: N. M. Kamoh, D. G. Gyemang, M. C. Soomiyol
Abstract:
This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.
Keywords: Collocation shifted Legendre polynomials, Simpson’s rule and Volterra integro-differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977