

Abstract—In order to provide existing SOAP (Simple Object

Access Protocol)-based Web services with users who are familiar with
REST (REpresentational State Transfer)-style Web services, this
paper proposes Web service providing method using Web service
transformation. This enables SOAP-based service providers to define
rules for mapping from RESTful Web services to SOAP-based ones.
Using these mapping rules, HTTP request messages for RESTful
services are converted automatically into SOAP-based service
invocations. Web service providers need not develop duplicate
RESTful services and they can avoid programming mediation
modules per service. Furthermore, they need not equip mediation
middleware like ESB (Enterprise Service Bus) only for the purpose of
transformation of two different Web service styles.

Keywords—REST, SOAP, Web Services, Web Service
Transformation.

I. INTRODUCTION
EB services can be accessed by service consumers
through abstract and easy interfaces and can be executed

on remote systems hosting the requested services. Web services
are based on SOAP (Simple Object Access Protocol), WSDL
(Web Service Description Language), and UDDI (Universal
Description, Discovery and Integration) standards [2]–[5].
Web services have been gaining attentions and recently are
widely used because they are regarded as the default underlying
technology for SOA (Service Oriented Architecture) [1].
Meanwhile, REST (REpresentationl State Transfer)-style Web
services are also gaining popularity together with success of
Web 2.0. A RESTful service is a simple Web service
implemented using HTTP and the principles of REST [6][7].
RESTful services have several merits such as light-weight and
easiness for users to use, as compared with SOAP-based Web
services which are based on SOAP, WSDL, and WS-* stack .

As stated above, there are two technologies to provide Web
services. Recently because of the popularity of RESTful Web
services, existing SOAP-based service providers need to
provide their services with users who are familiar with
RESTful services.

Youngmee Shin is with the Service Platform Research Department, ETRI

(Electronics and Telecommunications Research Institute), Daejeon 305-700
Korea (corresponding author to provide phone: 82-42-860-1314; fax:
82-42-861-1342; e-mail: ymshin@ etri.re.kr).

Hyunjoo Bae is with the Service Platform Research Department, ETRI
(Electronics and Telecommunications Research Institute), Daejeon 305-700
Korea (e-mail: hjbae@etri.re.kr).

The simplest way to realize this requirement is that service
providers develop the same RESTful services as existing
SOAP-based services. But this has demerits such as
duplication, developing cost, and maintenance.

ESB (Enterprise Service Bus) can be a solution for the
requirement. ESB is a mediation middleware to integrate a
variety of legacy applications of an enterprise using
SOAP-based Web services [8]. Recently ESB tries to
incorporate REST-style Web services [9]–[13]. But because
most of ESB products are based on SOAP-based Web services,
these can’t meet the requirements for REST-style service users.
Meanwhile, a few ESB products support exposing RESTful
services in order to integrate many backend services
[10][11][13]. These products are good solutions for REST
users, but these are expensive solutions and they require lots of
effort for adaptation and maintenance. Furthermore, these
originally aim at integrating a variety of legacy applications, so
it is not a cost-effective method to use ESB only for the purpose
of conversion of two different Web services styles.

Policy Studio and XML Gateway of Vordel pursues the same
objective as this paper [13]. Users create a policy which reads
parameters from the REST URL and then inserts those
parameters into a SOAP message which it creates on-the-fly.
But Vordel makes users handle SOAP message directly and it
covers mapping from REST URL to SOAP message.
Furthermore, Vordel does not support for users to customize
error messages and a variety of data representation such as RSS
(Really Simple Syndication), JSON (JavaScript Object
Notation), and etc.

In this paper, in order to provide existing SOAP-based Web
services with users who are familiar with RESTful Web
services, this paper proposes the method for Web service
providing method using Web service transformaiton.

The paper is organized as follows: in section 2, it reviews the
concept of Web services. Section 3 and 4 describes the Web
service transformation which is main part of this paper. Finally
it summarizes and comments on future work in section 5.

II. WEB SERVICES

A. SOAP-based Web Services
A Web service is defined by the W3C as "a software system

designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other
systems interact with the Web services in a manner prescribed

Web Service Providing
Using Web Service Transformation

Youngmee Shin, Hyunjoo Bae

W

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1956International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

88
.p

df

by its description using SOAP-messages, typically conveyed
using HTTP with an XML serialization in conjunction with
other Web-related standards" [2]. A Web service is frequently
just Internet Application Programming Interfaces that can be
accessed over a network, such as the Internet, and executed on a
remote system hosting the requested services.

Fig. 1 shows the general Web services architecture. A
service provider publishes his/her Web services into UDDI
registry using WSDL. A service requester looks for required
services in UDDI registry. After finding the required service,
the service requester gets WSDL of the found service from
UDDI registry and then invokes the required service through
sending SOAP-based request message to the service provider
who provides the required service.

Fig. 1 Web services architecture

B. RESTful Web Services
RESTful Web services have gained widespread acceptance

across the Web as a simpler alternative to SOAP-based Web
services. Key evidence of this shift in interface design is the
adoption of REST by mainstream Web 2.0 service providers,
including Yahoo, Google, and Facebook, for an easier-to-use
and resource-oriented model to expose their services.

REST defines a set of architectural principles by which
developers can design Web services that focus on a system's
resources, including how resource states are addressed and
transferred over HTTP by a wide range of clients written in
different languages. REST Web services follow four basic
design principles [6][7]:

 Use HTTP methods explicitly : GET, POST, PUT,
DELETE

 Be stateless.
 Expose directory structure-like URIs.
 Transfer XML, JSON, or both.

If measured by the number of Web services that use it, REST
has emerged in the last few years alone as a predominant Web
service design model. In fact, REST has had such a large
impact on the Web that it has mostly displaced SOAP-based
interface design because it's a considerably simpler style to use.

III. WEB SERVICE TRANSFORMATION

A. Web Service Providing System
Fig. 2 shows the Web service providing system which this

paper is applied to. It consists of Web server, Web service
converter, SOAP engine, and SOAP-based Web services.

n

Web Service
Converter

2

SOAP-
based
Web

Service1

Web
Server

SOAP
Engine

RESTful Service
Request

RESTful Service
Response

SOAP-based
Service Request

SOAP-based
Service Response

Fig. 2 Web service providing system using Web service

transformation

The Web server receives and sends HTTP messages. It
dispatches the received messages. It sends RESTful service
requests to the Web service converter. And it sends
SOAP-based service requests to the SOAP engine.

The Web service converter transforms a RESTful service
request into a SOAP-based service invocation statement and
then executes the generated statement. It also receives a result
from the invoked SOAP-based service and transforms the
received results into a RESTful service response.

The SOAP engine such as Apache Axis provides
SOAP-based Web service framework. It includes
implementation of the SOAP server, and various utilities and
APIs for generating and deploying Web service applications. It
handles SOAP and activates proper web services depending on
request messages.

The SOAP-based Web Services provides services exposed
to users through WSDL.

B. Web Service Converter
Fig. 3 shows the structure of the Web service converter

depicted in Fig. 2. It consists of request receiver, conversion
process manager, a number of conversion processes, and
mapping rules.

Request Receiver

Conversion Process
Manager

Mapping
Rules

Process n

Process 2

Conversion
Process1

Fig. 3 Structure of the Web service converter

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1957International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

88
.p

df

The request receiver receives RESTful service requests and

validates the received requests.
The conversion process manager creates or kills conversion

processes which are in charge of converting a RESTful service
request into a SOAP-based service invocation statement. In
case of abrupt stop of a conversion process caused by exception
during processing, the conversion process manager generates a
RESTful service response including description of error
occurrence on behalf of the conversion process stopped
abruptly and sends the generated message to the user who
requested the service. The process of generating response
including description of error occurrence is as follows. The
conversion process manager makes a decision what kind of
error occurs depending on exception types. And it determines
HTTP status code corresponding to the occurred error. It
obtains mapping rules corresponding to the determined status
code and finally generates a RESTful service response which
consists of HTTP status code, entity-headers, and an
entity-body describing error types and reasons of errors.

 The conversion processes transform the received RESTful
service request into a SOAP-based service invocation
statement by using mapping rules and then executes the
generated invocation statement. These also receive the result
returned by the invoked Web service and generate RESTful
service responses by using mapping rules. And then these send
the generated responses to the users who requested the services.

The mapping rules include rules for error handling and for
transforming input parameters and results. These rules are
described in next section.

Fig. 4 shows the structure of the conversion process at
position i depicted in Fig. 3.

RESTful Service
Request Analyzer

Mapping Rule
Provider

SOAP-based Service
Request Generator

SOAP-based Service
Result Analyzer

RESTful Service
Response Generator

SOAP-based Service
Invoker

SOAP-based Service
Result Receiver

RESTful Service
Response

RESTful Service
Request

Mapping
Rules

SOAP-based Service
Request

SOAP-based Service
Response

Conversion Process

RESTful Service
Request Receiver

Fig. 4 Structure of the ith conversion process

The ith conversion process is created by the conversion

process manager and terminates by itself in case of completing
its processing. When some errors occur, it throws exceptions to
the conversion process manager and terminates.

The ith conversion process consists of RESTful service
request receiver, RESTful service request analyzer,
SOAP-based service request generator, SOAP-based service
invoker, SOAP-based service result receiver, SOAP-based
service result analyzer, RESTful service response generator,
and mapping rule provider.

The RESTful service request receiver receives request and
validates the received request. After validation, it sends the
received request to the SOAP-based service request generator.

The SOAP-based service request generator generates
SOAP-based service invocation statement with the help of the
RESTful service request analyzer and the mapping rule
provider. The RESTful service request analyzer parses the
received request message and extracts HTTP method, URL
resource name, and URL query string from the received
message. And it separates tokens from the extracted URL query
string based on the delimiter ‘&’ [14][15]. The mapping rule
provider finds mapping rules corresponding to the extracted
HTTP method and URL resource and provides the found
mapping rules with the SOAP-based service request generator.

The SOAP-based service request generator applies tokens
separated from URL query string to input parameter mapping
rules provided by the mapping rule provider. It finally
generates a SOAP-based service invocation statement and the
generated statement is sent to the SOAP service invoker. The
SOAP service invoker executes the generated invocation
statement.

 The SOAP-based service result receiver receives a result
returned by the invoked SOAP-based service and it sends the
received result to the RESTful service response generator.

The RESTful service response generator generates a
response with the help of the SOAP-based service result
analyzer and the mapping rule provider. The SOAP-based
service result analyzer validates if there is an error in a received
result. The mapping rule provider provides the applicable
mapping rules, which were obtained during generation of
invocation statement, to the RESTful service response
generator.

If there is no error in the result, the RESTful service response
generator generates a HTTP status code representing success
such as 2xx [14]. And it generates entity-headers and an
entity-body through applying mapping rules provided by the
mapping rule provider. If the result has some errors, the REST
response generator makes a decision what kind of error occurs
and determines a HTTP status code such as 4xx and 5xx
depending on the occurred errors [14]. With the help of the
mapping rule provider, it obtains mapping rules corresponding
to the determined status code and finally generates a response
which consists of a HTTP status code, entity-headers, and
entity-body representing error type and reason of error.

IV. MAPPING RULES

A. Error Handling Rules
The error handling rules are used by the RESTful service

response generator when some errors occur in the result
returned by the invoked SOAP-based service. In case of sudden
stop of the conversion process by exception, the conversion
process manager can also use these rules to generate a response
message on behalf of the conversion process stopped abruptly.
Fig. 5 shows the error handling rules.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1958International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

88
.p

df

HTTP Response
St at us Code Response Template

Status Code

Content-type : content_type_string
Content- length : length

Data Representation to describe error occurrence

Fig. 5 Error Handling Rules

These rules consist of HTTP response status code and
response template fields. The HTTP response status code field
is used to identify a number of error handling rules. The value
of this field can be 4xx to indicate client-side error and 5xx for
server-side error.

The response template field has a template consisting of
entity-header and entity-body. The entity-header portion of a
template can have Content-type and Content-length headers.
The entity-body of a template includes descriptions of error
types and error reasons. This can be described in a data
representation such as XML, RSS, and etc. Special notation
marked with %variable can be used in a data representation.
The notation is replaced with a proper value by the response
generator.

For an example, suppose a response template is as follow.

In this case, the RESTful service response generator can
make a following response. The notation %code is replaced
with an appropriate error code.

B. Service Mapping Rules
Fig. 6 represents rules applicable to transformation from a

REST request to a SOAP-based service invocation statement.

Fig. 6 Service Mapping Rules

A rule consists of HTTP method, URL resource name, input

parameter mapping rule, and result mapping rule fields. The
HTTP method and the URL resource name fields are used to
identify a number of mapping rules. The input parameter
mapping rule field has a reference to a rule for input parameter
conversion from a REST request to a SOPA-based service
invocation shown in Fig. 7. This rule is described in next

section. The result mapping rule filed includes a response
template and this is also explained in next section.

C. Input Parameter Mapping Rules
In case that input parameters are conveyed in a REST request

message, Fig. 7 shows how each of input parameters of a target
SOAP-based service is generated. A rule consists of target
parameter, target parameter name, target parameter category,
and rule reference fields.

Target Parameter
Target

Parameter
Name

Target Parameter
Category

Rule Reference for
Mapping Value

parameter[1] name Basic, Array, or
Structure reference

… … … …

parameter[n]
(where n is the number

of parameters)
name Basic, Array, or

Structure reference

Fig. 7 Input Parameter Mapping Rules

The target parameter category field can have one among

basic, array, and structure as a value depending on a data type
of a target parameter. The rule reference field has a reference to
value mapping rule shown in following Fig. 8, 9, and 10.

We consider three cases for the purpose of parameter value
mapping; 1) in case that a target parameter has a value of a
basic data type such as string, integer, float, and etc., 2) in case
that a target parameter has a value of array type, and 3) in case
that a target parameter has a value of structure type.

And we also consider how input parameters in a REST
request message are delivered. There are two ways; 1) input
parameters are delivered in the URL query string of a request
message and 2) input parameter are conveyed in the
entity-body of a request message.

First, we consider the case that input parameters are
delivered in the URL query string of a request message. Fig. 8
shows value mapping rules when a target parameter has a value
of a basic data type. A target parameter is mapped from one of
tokens of a URL query string.

Target Parameter Data Type Token of URL Query String

data_type token[i].value
(where 0 < i ≤ the number of tokens)

Fig. 8 Value Mapping Rules for Basic Data Type from URL Query

Fig. 9 shows value mapping rules when a target parameter

has a value of array type. Each array element of a target
parameter is mapped from one of tokens of URL query string.

Content-type : application/xml
Content-length:xxx
<error>Error occurred. Error code is %code : %reason.

<\error>

HTTP 1.1 403 Forbidden
Content-type : application/xml
Content-length:xxx
<error> Error occurred. Error code is POL-200: Busy
criteria is not supported </error>

HTTP
Method

URL Resource
Name

Input Parameter
Mapping Rule

Result
Mapping Rule

GET,PUT,
POST, or
DELETE

name
Rule references for

mapping input
parameters

Content - type : type_string
Content - length : length

Data Representation

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1959International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

88
.p

df

Target Array
Data Type

Target Array
Length

Target Array
Element

Token of URL
Query String

data_type name

element[1]
token[i].value

(where 0 < i ≤ the
number of tokens)

… …
element[n]

(where n is the
length of array)

Token[j].value
(where 0 < j ≤ the
number of tokens)

Fig. 9 Value Mapping Rules for Array Type from URL Query

Fig. 10 shows value mapping rules when a target parameter

has a value of structure type. Each structure field of a target
parameter is mapped by a value mapping rule. The last field of
Fig. 10 has a reference to a rule shown in Fig. 8 and 9. This field
also has a recursive reference to a rule shown in Fig. 10.

Target
Structure

Name

Target
Structure

Field
Number

Target Structure
Field

Field
Name

Field
Category

Rule
Reference

for Mapping
Value

name number

field[1] name Basic, Array,
or Structure reference

… ... … …
field[n]

(where n is the
number of fields)

name Basic, Array,
or Structure reference

Fig. 10 Value Mapping Rules for Structure Type from URL Query

Second, we consider the case that Input parameters are

delivered in the entity-body of a request message.
Fig. 11 shows value mapping rules when a target parameter

has a value of a basic data type. A target parameter is mapped
from one of tags of an entity- body. For supporting of nested
tags in multi-levels, the notation marked with {} which means
repetition zero or more times is used.

Target ParameterData Type Tag Name

data_type {parent_tag_name}.tag_name.value

Fig. 11 Value Mapping Rules for Basic Data Type from Entity-Body

Fig. 9 shows value mapping rules when a target parameter
has a value of array type. Each array element of a target
parameter is mapped from one of tags of a message body.

Target
Array

Data Type

Target
Array

Length
Target Array

Element Tag Name

data_type name

element [1]

{parent_tag_name} .
tag_name[i].value
(where 0 < i ≤ the

number of tag
occurrence)

… …

element [n]
(where n is the
length of array)

{parent_tag_name} .
tag_name[j].value
(where 0 < j ≤ the

number of tag
occurrence)

Fig. 12 Value Mapping Rules for Array Type from Entity-Body

Value mapping rules applied when a target parameter has a
value of structure type is the same as one shown in Fig. 10.

For an example, suppose a SOAP-based service has a
following API.

1) Operation : getLocation

2) Input message of getLocation
 requester : string
 address: string[1..unbounded]
 requestedAccuracy : integer
 acceptableAccuracy : integer

3) Output message of getLocation
 result : LocationInfo structure

4) LocationInfo structure
 latitude :float
 longitude: float
 altitude : float

 And we suppose a REST request message is as follows.

In this case, the generated SOAP-based service invocation

statement is as follow.

D. Result Mapping Rules
The result mapping rule field shown in Fig. 6 includes a

response template consisting of entity-header and entity-body.
The entity-header portion of a template includes Content-type
and Content-length headers. The value of Content-type can be
application/xml, application/json, or etc.

The entity-body of a template can be described in a data
representation such as XML, JSON, RSS, and etc. The data
representation consists of a number of pairs of tag name and
value. The tag names are pre-defined in the template and the
values are notated with replacement variable marked with
%variable. This notation means that the response generator has
to substitute the notation with the value of a designated
variable.

Return value of invoked service can be categorized into 3
types such as single value, array value, and structure value. In
each case, replacement variable marked with %variable is
notated differently.

In the first case that the invoked service returns a single
value, replacement variable is marked with %result that means
direct mapping from the value returned by the invoked service.

GET
http://www.example.com/location?address=tel:8601111&addre
ss=tel:8602222& requestedAccuracy=
500&acceptableaccuracy=1000 HTTP/1.1
Accept:application/xml
…

String requester = null;
String[] address = new String[2];
address[0] = “tel:8601111”;
address[1] = “tel:8601111”;
Integer requestAccuracy = 500;
Integer acceptableAccuracy = 1000;
LocationInfo result = svc.getLocation(requester, address,
requestAccuracy, acceptableAccuracy);

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1960International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

88
.p

df

For an example, suppose that a response template is as follow.

In this case, the response generator can make a following
response message.

In the second case that the invoked service returns an array

value, replacement variable is marked with %result[i] that
means mapping from the value of an element of the returned
array. For an example, suppose a response template is as
follow.

In this case, the response generator can make a following
response.

In the third case of a structure value being returned,

replacement variable is marked with %result.fieldName that
means mapping from the value of a designated field among
fields of a returned structure. For an example, suppose a
response template is as follow.

In this case, the response generator can make a following
response.

V. CONCLUSION
This paper showed the Web service mediation method in

order to provide existing SOAP-based Web services with

RESTful service users. This mediation method provides merits
like that the Web service providers need not develop duplicate
RESTful services or they don’t have to program mediation
modules per service.

This paper focused on transformation using mapping rules.
But from the viewpoint of service provider, how easy to
describe mapping rule is also important. As a next step, we
have a plan to design and develop a mapping rule definition
tool using user-friendly interface.

ACKNOWLEDGMENT
This research is supported by the IT R&D program of

MKE/KEIT of South Korea. [KI002076, Development of
Customer Oriented Convergent Service Common Platform
Technology based on Network].

REFERENCES
[1] Liang-Jie Zhang, Jia Zhang, and Hong Cai, Services Computin, Springer,

2007.
[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,

and D. Orchard, “Web Services Architecture”, W3C Working Group
Note, Feb. 2004 (Available at
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/).

[3] M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, and H. Nielsen,
“SOAP Version 1.2 Part 1: Messaging Framework”, W3C
Recommendation, Jun. 2003 (Available at
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/).

[4] Erik Christensen, Erik Christensen, Greg Meredith, and Sanjiva
Weerawarana, “Web Services Description Language (WSDL) 1.1”, W3C
Note, Mar. 2001 (Available at http://www.w3.org/TR/wsdl).

[5] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers,
“UDDI Version 3.0.2”, UDDI Specification Technical Committee Draft,
Oct. 2004 (Available at http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf).

[6] Leonard Richardson and Sam Ruby, Restful Web Services, O’Reilly
Media, 2007.

[7] Alex Rodriguez, “RESTful Web services: The basics”, Nov. 2008 ,
Available at
http://www.ibm.com/developerworks/Webservices/library/ws-restful/.

[8] Dave Chappell, Enterprise Service Bus, O’Reilly, Jun. 2004.
[9] Jeff Davies, David Schorow, Samrat Ray, and David Rieber, The

Definitive Guide to SOA: Oracle Service Bus, Second Edition, Apress,
2008.

[10] WebSphere Enterprise Service Bus, Available at
http://www-01.ibm.com/software/integration/wsesb/.

[11] ORACLE SERVICE BUS, Available at
http://www.oracle.com/technologies/soa/docs/service-bus-datasheet.pdf.

[12] Mule ESB, Available at
http://www.mulesoft.org/display/MULE2INTRO/Home.

[13] Vordel XML Gateway, Available at
http://www.vordel.com/products/vx_gateway/.

[14] R. Fielding, J. Gettys, J. Mogul, and et all, “Hypertext Transfer Protocol --
HTTP/1.1”, IETF rfc, Jun. 1999, Available at
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[15] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource
Identifier (URI): Generic Syntax”, IETF rfc, Jan. 2005, Available at
http://www.ietf.org/rfc/rfc3986.txt

Content-type : application/xml
Content-length:xxx
<TerminalDistance>%result</TerminalDistance>

HTTP 1.1 200 OK
Content-type : application/xml
Content-length:xxx
<TerminalDistance>500</TerminalDistance>

Content-type : application/xml
Content-length:xxx
<TerminalAddress>%result[i]</TerminalAddress>

HTTP 1.1 200 OK
Content-type : application/xml
Content-length:xxx
<Terminal Address>tel: 8601111</TerminalAddress>
<Terminal Address>tel: 8602222</TerminalAddress>
<Terminal Address>tel: 8603333</TerminalAddress>

Content-type : application/xml
Content-length:xxx
<Terminal Location>
 <latitude>$result.latitude </latitude>
 <longitude>$result.longitude </longitude>

<altitude>$ result.altitude</altitude>
</TerminalLocation>

HTTP 1.1 200 OK
Content-type : application/xml
Content-length:xxx
<Terminal Location>
 <latitude>100.23</latitude>
 <longitude>-200.45 </longitude>

<altitude>85</altitude>
</TerminalLocation>

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:12, 2010

1961International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

12
, 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

88
.p

df

