Search results for: Pt-Sn catalysts
41 Characterization of Carbon Based Nanometer Scale Coil Growth
Authors: C. C. Su, S. H. Chang
Abstract:
The carbon based coils with the nanometer scale have the 3 dimension helix geometry. We synthesized the carbon nano-coils by the use of chemical vapor deposition technique with iron and tin as the catalysts. The fabricated coils have the external diameter of ranging few hundred nm to few thousand nm. The Scanning Electro-Microscope (SEM) and Tunneling Electro-Microscope has shown detail images of the coil-s structure. The fabrication of the carbon nano-coils can be grown on the metal and non-metal substrates, such as the stainless steel and silicon substrates. Besides growth on the flat substrate; they also can be grown on the stainless steel wires. After the synthesis of the coils, the mechanical and electro-mechanical property is measured. The experimental results were reported.Keywords: Carbon nanocoils, chemical vapor deposition, nano-materials
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140140 Influence of MgO Physically Mixed with Tungsten Oxide Supported Silica Catalyst on Coke Formation
Authors: T. Thitiapichart, P. Praserthdama
Abstract:
The effect of additional magnesium oxide (MgO) was investigated by using the tungsten oxide supported on silica catalyst (WOx/SiO2) physically mixed with MgO in a weight ratio 1:1. The both fresh and spent catalysts were characterized by FT-Raman spectrometer, UV-Vis spectrometer, X-Ray diffraction (XRD) and temperature programmed oxidation (TPO). The results indicated that the additional MgO could enhance the conversion of trans-2-butene due to isomerization reaction. However, adding MgO would increase the amount of coke deposit on the WOx/SiO2 catalyst. The TPO profile presented two peaks when the WOx/SiO2 catalyst was physically mixed with MgO. The further peak was suggested that came from coke precursor could be produced by isomerization reaction of undesired product. Then, the occurred coke precursor could deposit and form coke on the acid catalyst.Keywords: Coke formation, metathesis, magnesium oxide, physically mix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239739 Effect of Substituent on Titanocene/MMAO Catalyst for Ethylene/1-Hexene Copolymerization
Authors: M. Wannaborworn, B. Jongsomjit, T. Shiono
Abstract:
Copolymerization of ethylene with 1-hexene was carried out using two ansa-fluorenyl titanium derivative complexes. The substituent effect on the catalytic activity, monomer reactivity ratio and polymer property was investigated. It was found that the presence of t-Bu groups on fluorenyl ring exhibited remarkable catalytic activity and produced polymer with high molecular weight. However, these catalysts produce polymer with narrow molecular weight distribution, indicating the characteristic of single-site metallocene catalyst. Based on 13C NMR, we can observe that monomer reactivity ratio was affected by catalyst structure. The rH values of complex 2 were lower than that of complex 1 which might be result from the higher steric hindrance leading to a reduction of 1- hexene insertion step.Keywords: Constrained geometry catalyst, linear low density polyethylene, copolymerization, reactivity ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163538 Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials
Authors: Bashir Ahmmad, Kensaku Kanomata, Fumihiko Hirose
Abstract:
The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water / alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO2, respectively. Moreover, the increment factor of hydrogen production reached to 180, when the mixture of SWNTs and TiO2 were smashed in an agate mortar before photocatalytic reactions. The order of H2 gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO2, various parameters of experimental condition were changed. Also, a comparison between Pt/TiO2, SWNTs/TiO2 and GS/TiO2 was made for the amount of H2 gas production. Finally, the recyclability of SWNTs/TiO2or GS/TiO2 was tested.
Keywords: Photocatalysis, carbon materials, alcohol reforming, hydrogen production, titanium oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 398737 Analysis of Catalytic Properties of Ni3Al Thin Foils for the Methanol and Hexane Decomposition
Authors: M. Michalska-Domańska, P. Jóźwik, Z. Bojar
Abstract:
Intermetallic Ni3Al – based alloys belong to a group of advanced materials characterized by good chemical and physical properties (such as structural stability, corrosion resistance) which offer advenced technological applications. The paper presents the study of catalytic properties of Ni3Al foils (thickness approximately 50 &m) in the methanol and hexane decomposition. The egzamined material posses microcrystalline structure without any additional catalysts on the surface. The better catalytic activity of Ni3Al foils with respect to quartz plates in both methanol and hexane decomposition was confirmed. On thin Ni3Al foils the methanol conversion reaches approximately 100% above 480 oC while the hexane conversion reaches approximately 100% (98,5%) at 500 oC. Deposit formed during the methanol decomposition is built up of carbon nanofibers decorated with metal-like nanoparticles.Keywords: hexane decomposition, methanol decomposition, Ni3Al thin foils, Ni nanoparticles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153836 Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA
Authors: Mohamed S. Sasi, Adel M. Mlitan, Abdulfattah M. Alkherraz
Abstract:
This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH– independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.
Keywords: DNA & RNA Models, Relative Rates, Reactivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239635 Refining Waste Spent Hydroprocessing Catalyst and Their Metal Recovery
Authors: Meena Marafi, Mohan S. Rana
Abstract:
Catalysts play an important role in producing valuable fuel products in petroleum refining; but, due to feedstock’s impurities catalyst gets deactivated with carbon and metal deposition. The disposal of spent catalyst falls under the category of hazardous industrial waste that requires strict agreement with environmental regulations. The spent hydroprocessing catalyst contains Mo, V and Ni at high concentrations that have been found to be economically significant for recovery. Metal recovery process includes deoiling, decoking, grinding, dissolving and treatment with complexing leaching agent such as ethylene diamine tetra acetic acid (EDTA). The process conditions have been optimized as a function of time, temperature and EDTA concentration in presence of ultrasonic agitation. The results indicated that optimum condition established through this approach could recover 97%, 94% and 95% of the extracted Mo, V and Ni, respectively, while 95% EDTA was recovered after acid treatment.
Keywords: Spent catalyst, deactivation, hydrotreating, spent catalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132334 Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst
Authors: Meichen Lee, Michael K. H. Leung
Abstract:
In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.
Keywords: Microwave solvothermal process, nanoplates, solar energy, visible-light photocatalysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100133 Hydrated Magnesium Borate Synthesis from MgCl2.6H2O at 80oC by Hydrothermal Method
Authors: A. S. Kipcak, P. Gurses, E. Moroydor Derun, S. Piskin
Abstract:
Borate minerals have attracted considerable attention in the past years due to their structural chemistry and mechanical properties in several industries. Recently, increasing attention has been paid to the use of; synthetically produced magnesium borates as catalysts reinforcing material for plastics, the conversion of hydrocarbons, electro-conductive treating agent, anti-wear and anti-corrosion materials. Magnesium borates can be synthesized by several methods such as; hydrothermal and solid-state (thermal) processes. In this study the hydrothermal production method was applied at the modest temperature of 80C along with convenient crystal growth. Using MgCl2.6H2O, H3BO3, and NaOH as starting materials, 30, 60, 120, 240 minutes of reaction times were studied. After all, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result the forms of Admontite and Mcallisterite minerals were synthesized.
Keywords: FT-IR, hydrothermal method, magnesium borates, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 267832 Effect of Gold Loading on CeO2–Fe2O3 for Oxidative Steam Reforming of Methanol
Authors: Umpawan Satitthai, Apanee Luengnaruemitchai, Erdogan Gulari
Abstract:
In this study, oxidative steam reforming of methanol (OSRM) over a Au/CeO2–Fe2O3 catalyst prepared by a depositionprecipitation (DP) method was studied to produce hydrogen in order to feed a Proton Exchange Membrane Fuel Cell (PEMFC). The support (CeO2, Fe2O3, and CeO2–Fe2O3) were prepared by precipitation and co-precipitation methods. The impact of the support composition on the catalytic performance was studied by varying the Ce/(Ce+Fe) atomic ratio, it was found that the 1%Au/CF(0.25) calcined at 300 °C exhibited the highest catalytic activity in the whole temperature studied. In addition, the effect of Au content was investigated and 3%Au/CF(0.25) exhibited the highest activity under the optimum condition in the temperature range of 200 °C to 400 °C. The catalysts were characterized by various techniques: XRD, TPR, XRF, and UV-vis.
Keywords: CeO2, Fe2O3, Gold catalyst, Hydrogen production, Methanol, Oxidative steam reforming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150831 Study of Carbon Monoxide Oxidation in a Monolithic Converter
Authors: S. Chauhan, T. P. K. Grewal, S. K. Agrawal, V. K. Srivastava
Abstract:
Combustion of fuels in industrial and transport sector has lead to an alarming release of polluting gases to the atmosphere. Carbon monoxide is one such pollutant, which is formed as a result of incomplete oxidation of the fuel. In order to analyze the effect of catalyst on the reduction of CO emissions to the atmosphere, two catalysts Mn2O3 and Hopcalite are considered. A model was formed based on mass and energy balance equations. Results show that Hopcalite catalyst as compared to Mn2O3 catalyst helped in faster conversion of the polluting gas as the operating temperature of the hopcalite catalyst is much lower as compared to the operating temperature of Mn2O3 catalyst.
Keywords: Carbon monoxide, modeling, hopcalite, manganese oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170130 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells
Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi
Abstract:
In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.
Keywords: Alkaline fuel cell, graphene, metal-free catalyst, paraphenylenediamine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174229 Fungal Leaching of Hazardous Heavy Metals from a Spent Hydrotreating Catalyst
Authors: R. Mafi Gholami, S. M. Borghei, S. M. Mousavi
Abstract:
In this study, the ability of Aspergillus niger and Penicillium simplicissimum to extract heavy metals from a spent refinery catalyst was investigated. For the first step, a spent processing catalyst from one of the oil refineries in Iran was physically and chemically characterized. Aspergillus niger and Penicillium simplicissimum were used to mobilize Al/Co/Mo/Ni from hazardous spent catalysts. The fungi were adapted to the mixture of metals at 100-800 mg L-1 with increments in concentration of 100 mg L-1. Bioleaching experiments were carried out in batch cultures. To investigate the production of organic acids in sucrose medium, analyses of the culture medium by HPLC were performed at specific time intervals after inoculation. The results obtained from Inductive coupled plasma-optical emission spectrometry (ICP-OES) showed that after the one-step bioleaching process using Aspergillus niger, maximum removal efficiencies of 27%, 66%, 62% and 38% were achieved for Al, Co, Mo and Ni, respectively. However, the highest removal efficiencies using Penicillium simplicissimum were of 32%, 67%, 65% and 38% for Al, Co, Mo and Ni, respectivelyKeywords: Aspergillus niger, Bioleaching, Heavy metals, Penicillium simplicissimum, Spent catalyst
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224428 Hydrogen Storage In Single-Walled Carbon Nanotubes Purified By Microwave Digestion Method
Authors: Neslihan Yuca, Nilgün Karatepe
Abstract:
The aim of this study was to synthesize the single walled carbon nanotubes (SWCNTs) and determine their hydrogen storage capacities. SWCNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. Purification process of SWCNTs was fulfilled by microwave digestion at three different temperatures (120, 150 and 200 °C), three different acid concentrations (0.5, 1 and 1.5 M) and for three different time intervals (15, 30 and 60 min). Nitric acid (HNO3) was used in the removal of the metal catalysts. The hydrogen storage capacities of the purified materials were measured using volumetric method at the liquid nitrogen temperature and gas pressure up to 100 bar. The effects of the purification conditions such as temperature, time and acid concentration on hydrogen adsorption were investigated.Keywords: Carbon nanotubes, purification, microwavedigestion, hydrogen storage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224627 Congo Red Photocatalytic Decolourization using Modified Titanium
Authors: A. López–Vásquez, D. Santamaría, M. Tibatá, C. Gómez
Abstract:
A study concerning the photocatalytic decolourization of Congo red (CR) dye, over artificial UV irradiation is presented. Photocatalysts based on a commercial titanium dioxide (TiO2) modified with transition metals (Ni, Cu and Zn) were used. The dopage method used was wet impregnation. A TiO2 sample without salt was subjected to the same hydrothermal treatment to be used as reference. Congo red solutions to several pH conditions (natural and basic) were used to evaluate photocatalytic performance of each doped catalysts. Photodecolourization percentage was measured spectrofotrometically after 3 h of treatment to 499 nm as response variable. Kinetics investigations of photodegradation indicated that reactions obey to Langmuir-Hinshelwood model and pseudo–first order law. The rate constant studies of photocatalytic decolourization reactions for Zn–TiO2 and Cu–TiO2 photocatalysts indicated that in all cases the rate constant of the reaction was higher than that of TiO2 undoped. These results show that nature of the metal modifying the TiO2 influence on the efficiency of the photocatalyst evaluated in process. Ni does not present an additional effect compared with TiO2, while Zn enhances the photoactivity due to its electronic properties.Keywords: Congo red, Dopage, Photodecolourization, Titanium dioxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216826 An Experimental Design Approach to Determine Effects of The Operating Parameters on The Rate of Ru promoted Ir Carbonylation of Methanol
Authors: Vahid Hosseinpour, Mohammad Kazemini, Alireza Mohammadrezaee
Abstract:
carbonylation of methanol in homogenous phase is one of the major routesfor production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the reaction rate, experimental design for this system based upon central composite design (CCD) was utilized. Statistical rate equation developed by this method contained individual, interactions and curvature effects of parameters on the reaction rate. The model with p-value less than 0.0001 and R2 values greater than 0.9; confirmeda satisfactory fitness of the experimental and theoretical studies. In other words, the developed model and experimental data obtained passed all diagnostic tests establishing this model as a statistically significant.Keywords: Acetic Acid, Carbonylation of Methanol, Central Composite Design, Experimental Design, Iridium/Ruthenium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366225 Synthesis of Gold Nanoparticles Stabilized in Na-Montmorillonite for Nitrophenol Reduction
Authors: F. Ammari, M. Chenouf
Abstract:
Synthesis of gold nanoparticles has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nanoparticles in the reaction of CO oxidation at low temperature. In this research field, we used Na-montmorillonite for gold nanoparticles stabilization; various gold loading percentage 1, 2 and 5% were used for gold nanoparticles preparation. The gold nanoparticles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nanoparticles stabilized in Na-montmorillonite were used as catalysts for the reduction of 4- nitrophenol to aminophenol with sodium borohydride at room temperature. The UV-Vis results confirmed directly the gold nanoparticles formation. The XRD and N2 adsorption results showed the formation of gold nanoparticles in the pores of montmorillonite with an average size of 5 nm obtained on samples with 2% gold loading percentage. The gold particles size increased with the increase of gold loading percentage. The reduction reaction of 4- nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au-Namontmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 9 min for 1%Au-Na-montmorillonite and within 3 min for 2%Au-Na-montmorillonite.Keywords: Chemical reduction, gold, montmorillonite, nanoparticles, 4-nitrophenol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211024 Porous Carbon Nanoparticles Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction
Authors: Bita Bayatsarmadi, Shi-Zhang Qiao
Abstract:
Oxygen Reduction Reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.Keywords: Electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203223 Produced Gas Conversion of Microwave Carbon Receptor Reforming
Authors: Young Nam Chun, Mun Sup Lim
Abstract:
Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used.
Keywords: Microwave, gas reforming, greenhouse gas, microwave receptor, catalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105022 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties
Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying
Abstract:
SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.
Keywords: Crystallization, MTO, Si/Al ratio, SSZ-13.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88021 Deoxygenation of Beef Fat over Pd Supported Mesoporous TiO2 Catalyst Prepared by Single-Step Sol-Gel Process with Surfactant Template
Authors: Tossaporn Jindarat, Siriporn Jongpatiwut, Somchai Osuwan, Suchada Butnark
Abstract:
Deoxygenation of beef fat for the production of hydrogenated biodiesel is investigated in a high pressure continuous flow fixed bed reactor over palladium-supported mesoporous titania catalyst synthesized via a combined single-step sol-gel process with surfactant-assisted templating method (SATM). The catalyst possessed a mesoporous charactheristic with high surface area and narrow pore size distribution. The main products of all Pd/TiO2 catalysts are n-heptadecane (n-C17) and n-pentadecane (n-C15) resulting from decarbonylation reaction. Pd/TiO2 catalyst synthesized via a combined single-step sol-gel process with SATM (SSSG) gave higher activity and selectivity to the desired products when compared to IWI/SG-TiO2 and IWI/P25-TiO2, respectively. SSSG catalyst gave the average conversion up to 80-90 % and 80 % for the selectivity in diesel range hydrocarbons. This result may cause by the higher surface area and the ability in dispersion of palladium ion in mesoporous of TiO2 during sol-gel process.
Keywords: Beef fat, Deoxygenation, Hydrogenated biodiesel, Pd/TiO2
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144420 Palladium-Catalyzed Hydrodechlorination for Water Remediation: Catalyst Deactivation and Regeneration
Authors: Dalia Angeles-Wedler, Katrin Mackenzie, Frank-Dieter Kopinke
Abstract:
Palladium-catalyzed hydrodechlorination is a promising alternative for the treatment of environmentally relevant water bodies, such as groundwater, contaminated with chlorinated organic compounds (COCs). In the aqueous phase hydrodechlorination of COCs, Pd-based catalysts were found to have a very high catalytic activity. However, the full utilization of the catalyst-s potential is impeded by the sensitivity of the catalyst to poisoning and deactivation induced by reduced sulfur compounds (e.g. sulfides). Several regenerants have been tested before to recover the performance of sulfide-fouled Pd catalyst. But these only delivered partial success with respect to re-establishment of the catalyst activity. In this study, the deactivation behaviour of Pd/Al2O3 in the presence of sulfide was investigated. Subsequent to total deactivation the catalyst was regenerated in the aqueous phase using potassium permanganate. Under neutral pH condition, oxidative regeneration with permanganate delivered a slow recovery of catalyst activity. However, changing the pH of the bulk solution to acidic resulted in the complete recovery of catalyst activity within a regeneration time of about half an hour. These findings suggest the superiority of permanganate as regenerant in re-activating Pd/Al2O3 by oxidizing Pd-bound sulfide.Keywords: Deactivation, hydrodechlorination, Pd catalyst, regeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226819 Impact of Zn/Cr Ratio on ZnCrOx-SAPO-34 Bifunctional Catalyst for Direct Conversion of Syngas to Light Olefins
Authors: Yuxuan Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying
Abstract:
Light olefins are important building blocks for chemical industry. Direct conversion of syngas to light olefins has been investigated for decades. Meanwhile, the limit for light olefins selectivity described by Anderson-Schulz-Flory (ASF) distribution model is still a great challenge to conventional Fischer-Tropsch synthesis. The emerging strategy called oxide-zeolite concept (OX-ZEO) is a promising way to get rid of this limit. ZnCrOx was prepared by co-precipitation method and (NH4)2CO3 was used as precipitant. SAPO-34 was prepared by hydrothermal synthesis, and Tetraethylammonium hydroxide (TEAOH) was used as template, while silica sol, pseudo-boehmite, and phosphoric acid were Al, Si and P source, respectively. The bifunctional catalyst was prepared by mechanical mixing of ZnCrOx and SAPO-34. Catalytic reactions were carried out under H2/CO=2, 380 ℃, 1 MPa and 6000 mL·gcat-1·h-1 in a fixed-bed reactor with a quartz lining. Catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, H2-TPR, and CO-TPD. The addition of Al as structure promoter enhances CO conversion and selectivity to light olefins. Zn/Cr ratio, which decides the active component content and chemisorption property of the catalyst, influences CO conversion and selectivity to light olefins at the same time. C2-4= distribution of 86% among hydrocarbons at CO conversion of 14% was reached when Zn/Cr=1.5.
Keywords: Light olefins, OX-ZEO, syngas, ZnCrOx.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102118 Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability
Authors: K. Saravanan
Abstract:
An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.Keywords: UPFC, SMES, power system stability, flexible ac transmission systems, fuel cells, chopper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139617 Investigation of the Flow Characteristics in a Catalytic Muffler with Perforated Inlet Cone
Authors: Gyo Woo Lee, Man Young Kim
Abstract:
Emission regulations for diesel engines are being strengthened and it is impossible to meet the standards without exhaust after-treatment systems. Lack of the space in many diesel vehicles, however, make it difficult to design and install stand-alone catalytic converters such as DOC, DPF, and SCR in the vehicle exhaust systems. Accordingly, those have been installed inside the muffler to save the space, and referred to the catalytic muffler. However, that has complex internal structure with perforated plate and pipe for noise and monolithic catalyst for emission reduction. For this reason, flow uniformity and pressure drop, which affect efficiency of catalyst and engine performance, respectively, should be examined when the catalytic muffler is designed. In this work, therefore, the flow uniformity and pressure drop to improve the performance of the catalytic converter and the engine have been numerically investigated by changing various design parameters such as inlet shape, porosity, and outlet shape of the muffler using the three-dimensional turbulent flow of the incompressible, non-reacting, and steady state inside the catalytic muffler. Finally, it can be found that the shape, in which the muffler has perforated pipe inside the inlet part, has higher uniformity index and lower pressure drop than others considered in this work.
Keywords: Catalytic muffler, Perforated inlet cone, Catalysts, Perforated pipe, Flow uniformity, Pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290216 Vapor Phase Transesterification of Dimethyl Malonate with Phenol over Cordierite Honeycomb Coated with Zirconia and Its Modified Forms
Authors: Prathap S. Raghavendra, Mohamed S. Z. Shamshuddin, Thimmaraju N., Venkatesh
Abstract:
The transesterification of dimethyl malonate (DMM) with phenol has been studied in vapour phase over cordierite honeycomb coated with solid acid catalysts such as ZrO2, Mo(VI)/ZrO2 and SO42-/ZrO2. The catalytic materials were prepared honeycomb coated, powder forms, and characterized for their total surface acidity by NH3-TPD and crystalinity by powder XRD methods. Phenyl methyl malonate (PMM) and diphenyl malonate (DPM) were obtained as the reaction products. A good conversion of DMM (up to 82%) of MPM with 95% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 °C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. However, over SO4^2-/ZrO2 catalyst, the yield of DPM was found to be higher. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of Mo(VI) or SO42– ions. Transesterification reactions were also carried out over powder forms of the catalytic materials and the yield of the desired phenyl ester products were compared with that of the HC coated catalytic materials. The solid acids were found to be reusable when used for at least 5 reaction cycles.Keywords: Cordierite honeycomb, methyl phenyl malonate, vapour phase transesterification, zirconia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174115 Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor
Authors: M. Ahmadi Marvast, M. Sohrabi, H. Ganji
Abstract:
The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.
Keywords: Fischer-Tropsch, heterogeneous modeling, kinetic study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282014 The Investigation of Enzymatic Activity in the Soils under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia
Authors: T. H. Derdzyan, K. A. Ghazaryan, G. A. Gevorgyan
Abstract:
Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoesterase and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients.
Keywords: Armenia, metallurgical industrial activity, heavy metal pollutionl, soil enzyme activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 256613 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.
Keywords: Catalytic combustion, Methane, BOP, MCFC power generation system, Inlet temperature, Excess air ratio, Space velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217412 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation
Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah
Abstract:
The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy. Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.
Keywords: High-temperature oxidation, alumina protective layer, iron-chromium-aluminum alloy, sintered-metal-fibers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895