Search results for: hopcalite
3 Study of Carbon Monoxide Oxidation in a Monolithic Converter
Authors: S. Chauhan, T. P. K. Grewal, S. K. Agrawal, V. K. Srivastava
Abstract:
Combustion of fuels in industrial and transport sector has lead to an alarming release of polluting gases to the atmosphere. Carbon monoxide is one such pollutant, which is formed as a result of incomplete oxidation of the fuel. In order to analyze the effect of catalyst on the reduction of CO emissions to the atmosphere, two catalysts Mn2O3 and Hopcalite are considered. A model was formed based on mass and energy balance equations. Results show that Hopcalite catalyst as compared to Mn2O3 catalyst helped in faster conversion of the polluting gas as the operating temperature of the hopcalite catalyst is much lower as compared to the operating temperature of Mn2O3 catalyst.
Keywords: Carbon monoxide, modeling, hopcalite, manganese oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17012 Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization
Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova
Abstract:
In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why the most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best coppermanganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in two stage continuous flow equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions closest possible to the industrial. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area & pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu- Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.Keywords: Supported copper-manganese catalysts, CO and VOCs oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24091 Oxidation of Carbon Monoxide in a Monolithic Reactor
Authors: S. Chauhan, T.P.K. Grewal, S.K. Aggarwal, V.K. Srivastava
Abstract:
Solution for the complete removal of carbon monoxide from the exhaust gases still poses a challenge to the researchers and this problem is still under development. Modeling for reduction of carbon monoxide is carried out using heterogeneous reaction using low cost non-noble metal based catalysts for the purpose of controlling emissions released to the atmosphere. A simple one-dimensional model was developed for the monolith using hopcalite catalyst. The converter is assumed to be an adiabatic monolith operating under warm-up conditions. The effect of inlet gas temperatures and catalyst loading on carbon monoxide reduction during cold start period in the converter is analysed.Keywords: carbon monoxide, catalytic, modeling, monolith
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570