Search results for: Particle-swarm optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1861

Search results for: Particle-swarm optimization

1771 Comparison of Particle Swarm Optimization and Genetic Algorithm for TCSC-based Controller Design

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of PSO and GA optimization techniques, for Thyristor Controlled Series Compensator (TCSC)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques in terms of computational time and convergence rate is compared. Further, the optimized controllers are tested on a weakly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a TCSC-based controller, to enhance power system stability.

Keywords: Thyristor Controlled Series Compensator, geneticalgorithm; particle swarm optimization; Phillips-Heffron model;power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3152
1770 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
1769 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
1768 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is a subset of the Deep Reinforcement Learning (DRL) combines Deep Neural Networks (DNN) with Reinforcement Learning (RL). This approach finds the optimal policy of robot movement, based on the experience it gains from interaction with its environment. Unlike previous policy gradient algorithms, which were unable to handle the two types of error variance and bias introduced by the DNN model due to over- or underestimation, this algorithm is capable of handling both types of error variance and bias. This article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: Deep neural networks, deep reinforcement learning, Proximal Policy Optimization, state-of-the-art, trust region policy optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183
1767 Multi-Criteria Based Robust Markowitz Model under Box Uncertainty

Authors: Pulak Swain, A. K. Ojha

Abstract:

Portfolio optimization is based on dealing with the problems of efficient asset allocation. Risk and Expected return are two conflicting criteria in such problems, where the investor prefers the return to be high and the risk to be low. Using multi-objective approach we can solve those type of problems. However the information which we have for the input parameters are generally ambiguous and the input values can fluctuate around some nominal values. We can not ignore the uncertainty in input values, as they can affect the asset allocation drastically. So we use Robust Optimization approach to the problems where the input parameters comes under box uncertainty. In this paper, we solve the multi criteria robust problem with the help of  E- constraint method.

Keywords: Portfolio optimization, multi-objective optimization, E-constraint method, box uncertainty, robust optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
1766 Optimization of GAMM Francis Turbine Runner

Authors: Sh. Derakhshan, A. Mostafavi

Abstract:

Nowadays, the challenge in hydraulic turbine design is the multi-objective design of turbine runner to reach higher efficiency. The hydraulic performance of a turbine is strictly depends on runner blades shape. The present paper focuses on the application of the multi-objective optimization algorithm to the design of a small Francis turbine runner. The optimization exercise focuses on the efficiency improvement at the best efficiency operating point (BEP) of the GAMM Francis turbine. A global optimization method based on artificial neural networks (ANN) and genetic algorithms (GA) coupled by 3D Navier-Stokes flow solver has been used to improve the performance of an initial geometry of a Francis runner. The results show the good ability of optimization algorithm and the final geometry has better efficiency with initial geometry. The goal was to optimize the geometry of the blades of GAMM turbine runner which leads to maximum total efficiency by changing the design parameters of camber line in at least 5 sections of a blade. The efficiency of the optimized geometry is improved from 90.7% to 92.5%. Finally, design parameters and the way of selection have been considered and discussed.

Keywords: Francis Turbine, Runner, Optimization, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3341
1765 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure

Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold

Abstract:

Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure had been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1m length, 8mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.

Keywords: Heat pipe, inclination, optimization, ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
1764 Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning

Authors: Yahya H. Zweiri

Abstract:

The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm with a dynamically optimal learning rate and a momentum factor is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.

Keywords: Neural Networks, Backpropagation, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1763 Optimization Approaches for a Complex Dairy Farm Simulation Model

Authors: Jagannath Aryal, Don Kulasiri, Dishi Liu

Abstract:

This paper describes the optimization of a complex dairy farm simulation model using two quite different methods of optimization, the Genetic algorithm (GA) and the Lipschitz Branch-and-Bound (LBB) algorithm. These techniques have been used to improve an agricultural system model developed by Dexcel Limited, New Zealand, which describes a detailed representation of pastoral dairying scenarios and contains an 8-dimensional parameter space. The model incorporates the sub-models of pasture growth and animal metabolism, which are themselves complex in many cases. Each evaluation of the objective function, a composite 'Farm Performance Index (FPI)', requires simulation of at least a one-year period of farm operation with a daily time-step, and is therefore computationally expensive. The problem of visualization of the objective function (response surface) in high-dimensional spaces is also considered in the context of the farm optimization problem. Adaptations of the sammon mapping and parallel coordinates visualization are described which help visualize some important properties of the model-s output topography. From this study, it is found that GA requires fewer function evaluations in optimization than the LBB algorithm.

Keywords: Genetic Algorithm, Linux Cluster, LipschitzBranch-and-Bound, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
1762 Heuristic Optimization Techniques for Network Reconfiguration in Distribution System

Authors: A. Charlangsut, N. Rugthaicharoencheep, S. Auchariyamet

Abstract:

Network reconfiguration is an operation to modify the network topology. The implementation of network reconfiguration has many advantages such as loss minimization, increasing system security and others. In this paper, two topics about the network reconfiguration in distribution system are briefly described. The first topic summarizes its impacts while the second explains some heuristic optimization techniques for solving the network reconfiguration problem.

Keywords: Network Reconfiguration, Optimization Techniques, Distribution System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
1761 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall.  In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall.  This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
1760 Design Optimization of a Double Stator Cup- Rotor Machine

Authors: E. Diryak, P. Lefley, L. Petkovska, G. Cvetkovski

Abstract:

This paper presents the optimum design for a double stator, cup rotor machine; a novel type of BLDC PM Machine. The optimization approach is divided into two stages: the first stage is calculating the machine configuration using Matlab, and the second stage is the optimization of the machine using Finite Element Modeling (FEM). Under the design specifications, the machine model will be selected from three pole numbers, namely, 8, 10 and 12 with an appropriate slot number. A double stator brushless DC permanent magnet machine is designed to achieve low cogging torque; high electromagnetic torque and low ripple torque.

Keywords: Permanent magnet machine, low- cogging torque, low- ripple torque, high- electromagnetic torque, design optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
1759 Beam Orientation Optimization Using Ant Colony Optimization in Intensity Modulated Radiation Therapy

Authors: Xi Pei, Ruifen Cao, Hui Liu, Chufeng Jin, Mengyun Cheng, Huaqing Zheng, Yican Wu, FDS Team

Abstract:

In intensity modulated radiation therapy (IMRT) treatment planning, beam angles are usually preselected on the basis of experience and intuition. Therefore, getting an appropriate beam configuration needs a very long time. Based on the present situation, the paper puts forward beam orientation optimization using ant colony optimization (ACO). We use ant colony optimization to select the beam configurations, after getting the beam configuration using Conjugate Gradient (CG) algorithm to optimize the intensity profiles. Combining with the information of the effect of pencil beam, we can get the global optimal solution accelerating. In order to verify the feasibility of the presented method, a simulated and clinical case was tested, compared with dose-volume histogram and isodose line between target area and organ at risk. The results showed that the effect was improved after optimizing beam configurations. The optimization approach could make treatment planning meet clinical requirements more efficiently, so it had extensive application perspective.

Keywords: intensity modulated radiation therapy, ant colonyoptimization, Conjugate Gradient algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
1758 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)

Authors: Vassilios Moussas, Dimos N. Pantazis, Panagiotis Stratakis

Abstract:

The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.

Keywords: Coastal transport, modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
1757 Solving the Economic Dispatch Problem using Novel Particle Swarm Optimization

Authors: S. Khamsawang, S. Jiriwibhakorn

Abstract:

This paper proposes an improved approach based on conventional particle swarm optimization (PSO) for solving an economic dispatch(ED) problem with considering the generator constraints. The mutation operators of the differential evolution (DE) are used for improving diversity exploration of PSO, which called particle swarm optimization with mutation operators (PSOM). The mutation operators are activated if velocity values of PSO nearly to zero or violated from the boundaries. Four scenarios of mutation operators are implemented for PSOM. The simulation results of all scenarios of the PSOM outperform over the PSO and other existing approaches which appeared in literatures.

Keywords: Novel particle swarm optimization, Economic dispatch problem, Mutation operator, Prohibited operating zones, Differential Evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
1756 A Novel Optimal Setting for Directional over Current Relay Coordination using Particle Swarm Optimization

Authors: D. Vijayakumar, R. K. Nema

Abstract:

Over Current Relays (OCRs) and Directional Over Current Relays (DOCRs) are widely used for the radial protection and ring sub transmission protection systems and for distribution systems. All previous work formulates the DOCR coordination problem either as a Non-Linear Programming (NLP) for TDS and Ip or as a Linear Programming (LP) for TDS using recently a social behavior (Particle Swarm Optimization techniques) introduced to the work. In this paper, a Modified Particle Swarm Optimization (MPSO) technique is discussed for the optimal settings of DOCRs in power systems as a Non-Linear Programming problem for finding Ip values of the relays and for finding the TDS setting as a linear programming problem. The calculation of the Time Dial Setting (TDS) and the pickup current (Ip) setting of the relays is the core of the coordination study. PSO technique is considered as realistic and powerful solution schemes to obtain the global or quasi global optimum in optimization problem.

Keywords: Directional over current relays, Optimization techniques, Particle swarm optimization, Power system protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
1755 An Ant Colony Optimization for Dynamic JobScheduling in Grid Environment

Authors: Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan Abdullah, Chai Chompoo-inwai

Abstract:

Grid computing is growing rapidly in the distributed heterogeneous systems for utilizing and sharing large-scale resources to solve complex scientific problems. Scheduling is the most recent topic used to achieve high performance in grid environments. It aims to find a suitable allocation of resources for each job. A typical problem which arises during this task is the decision of scheduling. It is about an effective utilization of processor to minimize tardiness time of a job, when it is being scheduled. This paper, therefore, addresses the problem by developing a general framework of grid scheduling using dynamic information and an ant colony optimization algorithm to improve the decision of scheduling. The performance of various dispatching rules such as First Come First Served (FCFS), Earliest Due Date (EDD), Earliest Release Date (ERD), and an Ant Colony Optimization (ACO) are compared. Moreover, the benefit of using an Ant Colony Optimization for performance improvement of the grid Scheduling is also discussed. It is found that the scheduling system using an Ant Colony Optimization algorithm can efficiently and effectively allocate jobs to proper resources.

Keywords: Grid computing, Distributed heterogeneous system, Ant colony optimization algorithm, Grid scheduling, Dispatchingrules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705
1754 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted

Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova

Abstract:

The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.

Keywords: Communication protocol, transmission optimization, data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
1753 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics

Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris

Abstract:

The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.

Keywords: Cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
1752 An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes

Authors: Radhwan Yousif Sedik Al-Jawadi

Abstract:

Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm.

Keywords: Genetic algorithm, similarity and dissimilarity, chromosome injection, dynamic schema.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
1751 A New Method for Multiobjective Optimization Based on Learning Automata

Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri

Abstract:

The necessity of solving multi dimensional complicated scientific problems beside the necessity of several objective functions optimization are the most motive reason of born of artificial intelligence and heuristic methods. In this paper, we introduce a new method for multiobjective optimization based on learning automata. In the proposed method, search space divides into separate hyper-cubes and each cube is considered as an action. After gathering of all objective functions with separate weights, the cumulative function is considered as the fitness function. By the application of all the cubes to the cumulative function, we calculate the amount of amplification of each action and the algorithm continues its way to find the best solutions. In this Method, a lateral memory is used to gather the significant points of each iteration of the algorithm. Finally, by considering the domination factor, pareto front is estimated. Results of several experiments show the effectiveness of this method in comparison with genetic algorithm based method.

Keywords: Function optimization, Multiobjective optimization, Learning automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
1750 Constrained Particle Swarm Optimization of Supply Chains

Authors: András Király, Tamás Varga, János Abonyi

Abstract:

Since supply chains highly impact the financial performance of companies, it is important to optimize and analyze their Key Performance Indicators (KPI). The synergistic combination of Particle Swarm Optimization (PSO) and Monte Carlo simulation is applied to determine the optimal reorder point of warehouses in supply chains. The goal of the optimization is the minimization of the objective function calculated as the linear combination of holding and order costs. The required values of service levels of the warehouses represent non-linear constraints in the PSO. The results illustrate that the developed stochastic simulator and optimization tool is flexible enough to handle complex situations.

Keywords: stochastic processes, empirical distributions, Monte Carlo simulation, PSO, supply chain management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
1749 How to Build and Evaluate a Solution Method: An Illustration for the Vehicle Routing Problem

Authors: Nicolas Zufferey

Abstract:

The vehicle routing problem (VRP) is a famous combinatorial optimization problem. Because of its well-known difficulty, metaheuristics are the most appropriate methods to tackle large and realistic instances. The goal of this paper is to highlight the key ideas for designing VRP metaheuristics according to the following criteria: efficiency, speed, robustness, and ability to take advantage of the problem structure. Such elements can obviously be used to build solution methods for other combinatorial optimization problems, at least in the deterministic field.

Keywords: Vehicle routing problem, Metaheuristics, Combinatorial optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
1748 The Particle Swarm Optimization Against the Runge’s Phenomenon: Application to the Generalized Integral Quadrature Method

Authors: A. Zerarka, A. Soukeur, N. Khelil

Abstract:

In the present work, we introduce the particle swarm optimization called (PSO in short) to avoid the Runge-s phenomenon occurring in many numerical problems. This new approach is tested with some numerical examples including the generalized integral quadrature method in order to solve the Volterra-s integral equations

Keywords: Integral equation, particle swarm optimization, Runge's phenomenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
1747 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data

Authors: Ayudhia P. Gusti, Semin

Abstract:

It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.

Keywords: Maritime transportation, reducing fuel, shipping log data, speed optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1746 Production Plan and Technological Variants Optimization by Goal Programming Methods

Authors: Tunjo Perić, Franjo Bratić

Abstract:

In this paper, the goal programming methodology for solving multiple objective problem of the technological variants and production plan optimization has been applied. The optimization criteria are determined and the multiple objective linear programming model for solving a problem of the technological variants and production plan optimization is formed and solved. Then the obtained results are analysed. The obtained results point out to the possibility of efficient application of the goal programming methodology in solving the problem of the technological variants and production plan optimization. The paper points out on the advantages of the application of the goal programming methodology compare to the Surrogat Worth Trade-off method in solving this problem.

Keywords: Goal programming, multi objective programming, production plan, SWT method, technological variants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
1745 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem

Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih

Abstract:

Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.

Keywords: Evolutionary Algorithms, Chemical Reaction Optimization, Traveling Salesman, Board Drilling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3230
1744 A Ground Structure Method to Minimize the Total Installed Cost of Steel Frame Structures

Authors: Filippo Ranalli, Forest Flager, Martin Fischer

Abstract:

This paper presents a ground structure method to optimize the topology and discrete member sizing of steel frame structures in order to minimize total installed cost, including material, fabrication and erection components. The proposed method improves upon existing cost-based ground structure methods by incorporating constructability considerations well as satisfying both strength and serviceability constraints. The architecture for the method is a bi-level Multidisciplinary Feasible (MDF) architecture in which the discrete member sizing optimization is nested within the topology optimization process. For each structural topology generated, the sizing optimization process seek to find a set of discrete member sizes that result in the lowest total installed cost while satisfying strength (member utilization) and serviceability (node deflection and story drift) criteria. To accurately assess cost, the connection details for the structure are generated automatically using accurate site-specific cost information obtained directly from fabricators and erectors. Member continuity rules are also applied to each node in the structure to improve constructability. The proposed optimization method is benchmarked against conventional weight-based ground structure optimization methods resulting in an average cost savings of up to 30% with comparable computational efficiency.

Keywords: Cost-based structural optimization, cost-based topology and sizing optimization, steel frame ground structure optimization, multidisciplinary optimization of steel structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1743 Exponential Particle Swarm Optimization Approach for Improving Data Clustering

Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi

Abstract:

In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.

Keywords: Particle swarm optimization, data clustering, exponential PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
1742 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069