Search results for: Operational deflection shape
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1369

Search results for: Operational deflection shape

1279 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire

Authors: Asal Pournaghshband

Abstract:

This paper presents the development of a finite element model to study the large deflection behaviour of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behaviour in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. Parametric studies to explore the influence of variation in i) axial restraint stiffness, ii) steel grades, iii) shape and size of web openings, and iv) load level were described. Hence, the structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behaviour of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.

Keywords: Axial restraint, catenary action, cellular beam, fire, numerical modelling, stainless steel, transit temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13
1278 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices

Authors: Khosrow Maleknejad, Yaser Rostami

Abstract:

In this paper, Semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions

Keywords: Integro-differential equations, Quartic B-spline wavelet, Operational matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3137
1277 An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply

Authors: A. R. Malekpour, A.R. Seifi

Abstract:

This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.

Keywords: DG, Load shedding, Optimization, Capacity Deficiency Modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
1276 Lorentz Forces in the Container

Authors: K. Horáková, K. Fraňa

Abstract:

Leading topic of this article is description of Lorentz forces in the container with cuboid and cylindrical shape. Inside of the container is an electrically conductive melt. This melt is driven by rotating magnetic field. Input data for comparing Lorentz forces in the container with cuboid shape were obtained from the computing program NS-FEM3D, which uses DDS method of computing. Values of Lorentz forces for container with cylindrical shape were obtained from inferred analytical formula.

Keywords: Lorentz forces, magnetohydrodynamics, rotatingmagnetic field, computing program NS-FEM3D

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
1275 Photocatalytic Detoxification Method for Zero Effluent Discharge in Dairy Industry: Effect of Operational Parameters

Authors: Janhavi Inamdar, S.K. Singh

Abstract:

Laboratory experiments have been performed to investigate photocatalytic detoxification by using TiO2 photocatalyst for treating dairy effluent. Various operational parameters such as catalyst concentration, initial concentration, angle of tilt of solar flat plate reactor and flow rate were investigated. Results indicated that the photocatalytic detoxification process can efficiently treat dairy effluent. Experimental runs with dairy wastewater can be used to identify the optimum operational parameters to perform wastewater degradation on large scale for recycling purpose. Also effect of two different types of reactors on degradation process was analyzed.

Keywords: Photocatalytic detoxification, TiO2 photocatalyst, solar flat plate reactor, Zero effluent discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
1274 Enhancement of Cement Mortar Mechanical Properties with Replacement of Seashell Powder

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

Many synthetic additives have been using for improve cement mortar and concrete characteristics, but natural additive is a friendly environment option. The quantity of (2% and 4%) seashell powder has been replaced in cement mortar, and compared with plain cement mortar in early age of 7 days. The strain gauges have been installed on beams and cube, for monitoring fluctuation of flexural and compressive strength. Main objective of this paper is to study effect of linear static force on flexural and compressive strength of modified cement mortar. The results have been indicated that the replacement of appropriate proportion of seashell powder enhances cement mortar mechanical properties. The replacement of 2% seashell causes improvement of deflection, time to failure and maximum load to failure on concrete beam and cube, the same occurs for compressive modulus elasticity. Increase replacement of seashell to 4% reduces all flexural strength, compressive strength and strain of cement mortar.

Keywords: Compressive strength, flexural strength, compressive modulus elasticity, time to failure, deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3442
1273 Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology

Authors: Richard Ji

Abstract:

Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available.

Keywords: Nondestructive testing, Pavement moduli backcalculation, Finite Element Method, FEM, concrete pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
1272 MIOM: A Mixed-Initiative Operational Model for Robots in Urban Search and Rescue

Authors: Mario Gianni, Federico Nardi, Federico Ferri, Filippo Cantucci, Manuel A. Ruiz Garcia, Karthik Pushparaj, Fiora Pirri

Abstract:

In this paper, we describe a Mixed-Initiative Operational Model (MIOM) which directly intervenes on the state of the functionalities embedded into a robot for Urban Search&Rescue (USAR) domain applications. MIOM extends the reasoning capabilities of the vehicle, i.e. mapping, path planning, visual perception and trajectory tracking, with operator knowledge. Especially in USAR scenarios, this coupled initiative has the main advantage of enhancing the overall performance of a rescue mission. In-field experiments with rescue responders have been carried out to evaluate the effectiveness of this operational model.

Keywords: Actively articulated tracked vehicles, mixed-initiative planning interfeces, robot planning, urban search and rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
1271 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure

Authors: Yashar Haghighatfar, Shahrzad Mirhosseini

Abstract:

Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.

Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
1270 An Approach to Task Modeling for User Interface Design

Authors: Costin Pribeanu

Abstract:

The model-based approach to user interface design relies on developing separate models capturing various aspects about users, tasks, application domain, presentation and dialog structures. This paper presents a task modeling approach for user interface design and aims at exploring mappings between task, domain and presentation models. The basic idea of our approach is to identify typical configurations in task and domain models and to investigate how they relate each other. A special emphasis is put on applicationspecific functions and mappings between domain objects and operational task structures. In this respect, we will address two layers in task decomposition: a functional (planning) layer and an operational layer.

Keywords: task modeling, user interface design, unit tasks, basic tasks, operational task model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
1269 Hydrogen-Fueled Micro-Thermophotovoltaic Power Generator: Flame Regimes and Flame Stability

Authors: Hosein Faramarzpour

Abstract:

This work presents the optimum operational conditions for a hydrogen-based micro-scale power source, using a verified mathematical model including fluid dynamics and reaction kinetics. Thereafter, the stable operational flame regime is pursued as a key factor in optimizing the design of micro-combustors. The results show that with increasing velocities, four H2 flame regimes develop in the micro-combustor, namely: 1) periodic ignition-extinction regime, 2) steady symmetric regime, 3) pulsating asymmetric regime, and 4) steady asymmetric regime. The first regime that appears in 0.8 m/s inlet velocity is a periodic ignition-extinction regime which is characterized by counter flows and tulip-shape flames. For flow velocity above 0.2 m/s, the flame shifts downstream, and the combustion regime switches to a steady symmetric flame where temperature increases considerably due to the increased rate of incoming energy. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Ultimately, when the inlet velocity reached 1.2 m/s, the last regime was observed, and a steady asymmetric regime appeared.

Keywords: Thermophotovoltaic generator, micro combustor, micro power generator, combustion regimes, flame dynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125
1268 Virtual Prototyping and Operational Monitoring of PLC-Based Control System

Authors: Kwan Hee Han, Jun Woo Park, Seock Kyu Yoo, Geon Lee

Abstract:

As business environments are rapidly changing, the manufacturing system must be reconfigured to adapt to various customer needs. In order to cope with this challenge, it is quintessential to test industrial control logic rapidly and easily in the design time, and monitor operational behavior in the run time of automated manufacturing system. Proposed integrated model for virtual prototyping and operational monitoring of industrial control logic is to improve limitations of current ladder programming practices and general discrete event simulation method. Each plant layout model using HMI package and object-oriented control logic model is designed independently and is executed simultaneously in integrated manner to reflect design practices of automation system in the design time. Control logic is designed and executed using UML activity diagram without considering complicated control behavior to deal with current trend of reconfigurable manufacturing. After the physical installation, layout model of virtual prototype constructed in the design time is reused for operational monitoring of system behavior during run time.

Keywords: automated manufacturing system, HMI, monitoring, object-oriented, PLC, virtual prototyping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
1267 Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection

Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi

Abstract:

This paper presents a finite element model for a Sandwich Plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.

Keywords: Finite element method, Sandwich plate, Poling vector, Piezoelectric materials, Smart structure, Electric enthalpy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
1266 Task Modeling for User Interface Design: A Layered Approach

Authors: Costin Pribeanu

Abstract:

The model-based approach to user interface design relies on developing separate models that are capturing various aspects about users, tasks, application domain, presentation and dialog representations. This paper presents a task modeling approach for user interface design and aims at exploring the mappings between task, domain and presentation models. The basic idea of our approach is to identify typical configurations in task and domain models and to investigate how they relate each other. A special emphasis is put on application-specific functions and mappings between domain objects and operational task structures. In this respect, we will distinguish between three layers in the task decomposition: a functional layer, a planning layer, and an operational layer.

Keywords: task modeling, user interface design, unit tasks, basic tasks, operational task model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
1265 In vivo Histomorphometric and Corrosion Analysis of Ti-Ni-Cr Shape Memory Alloys in Rabbits

Authors: T. Ahmed, Z. Butt, M. Ali, S. Attiq, M. Ali

Abstract:

A series of Ti based shape memory alloys with composition of Ti50Ni49Cr1, Ti50Ni47Cr3 and Ti50Ni45Cr5 were developed by vacuum arc-melting under a purified argon atmosphere. The histometric and corrosion evaluation of Ti-Ni-Cr shape memory alloys have been considered in this research work. The alloys were developed by vacuum arc melting and implanted subcutaneously in rabbits for 4, 8 and 12 weeks. Metallic implants were embedded in order to determine the outcome of implantation on histometric and corrosion evaluation of Ti-Ni-Cr metallic strips. Encapsulating membrane formation around the alloys was minimal in the case of all materials. After histomorphometric analyses it was possible to demonstrate that there were no statistically significant differences between the materials. Corrosion rate was also determined in this study which is within acceptable range. The results showed the Ti- Ni-Cr alloy was neither cytotoxic, nor have any systemic reaction on living system in any of the test performed. Implantation shows good compatibility and a potential of being used directly in vivo system.

Keywords: Shape memory alloy, Ti-Ni-Fe, histomorphometric, corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
1264 A New Heuristic Approach to Solving U-shape Assembly Line Balancing Problems Type-1

Authors: M. Fathi, M. J. Alvarez, V. Rodríguez

Abstract:

Assembly line balancing is a very important issue in mass production systems due to production cost. Although many studies have been done on this topic, but because assembly line balancing problems are so complex they are categorized as NP-hard problems and researchers strongly recommend using heuristic methods. This paper presents a new heuristic approach called the critical task method (CTM) for solving U-shape assembly line balancing problems. The performance of the proposed heuristic method is tested by solving a number of test problems and comparing them with 12 other heuristics available in the literature to confirm the superior performance of the proposed heuristic. Furthermore, to prove the efficiency of the proposed CTM, the objectives are increased to minimize the number of workstation (or equivalently maximize line efficiency), and minimizing the smoothness index. Finally, it is proven that the proposed heuristic is more efficient than the others to solve the U-shape assembly line balancing problem.

Keywords: Critical task method, Heuristic, Line balancingproblem, U-shape

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
1263 Enhanced Frame-based Video Coding to Support Content-based Functionalities

Authors: Prabhudev Hosur, Rolando Carrasco

Abstract:

This paper presents the enhanced frame-based video coding scheme. The input source video to the enhanced frame-based video encoder consists of a rectangular-size video and shapes of arbitrarily-shaped objects on video frames. The rectangular frame texture is encoded by the conventional frame-based coding technique and the video object-s shape is encoded using the contour-based vertex coding. It is possible to achieve several useful content-based functionalities by utilizing the shape information in the bitstream at the cost of a very small overhead to the bitrate.

Keywords: Video coding, content-based, hyper video, interactivity, shape coding, polygon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1262 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: Active linear control, Lyapunov stability theorem, piezoelectricity, smart structure, static deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
1261 Sediment Transport Experiments: The Influence of the Furrow Geometry

Authors: S. Haddad, M. Bouhadef

Abstract:

In this experimental work, we have shown that the geometric shape of the grooves (furrows) plays an important role in sediment dynamics. In addition, the rheological behaviour of solid discharge does not depend only on the velocity discharge but also on the geometric shape.

Keywords: Laboratory experiments, soil erosion, groove, furrow, sediment transport

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
1260 A Numerical Solution Based On Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

Authors: Rajeev, N. K. Raigar

Abstract:

In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.

Keywords: Operational matrix of differentiation, Similarity transformation, Shifted second kind Chebyshev wavelets, Stefan problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
1259 Optimum Shape and Design of Cooling Towers

Authors: A. M. El Ansary, A. A. El Damatty, A. O. Nassef

Abstract:

The aim of the current study is to develop a numerical tool that is capable of achieving an optimum shape and design of hyperbolic cooling towers based on coupling a non-linear finite element model developed in-house and a genetic algorithm optimization technique. The objective function is set to be the minimum weight of the tower. The geometric modeling of the tower is represented by means of B-spline curves. The finite element method is applied to model the elastic buckling behaviour of a tower subjected to wind pressure and dead load. The study is divided into two main parts. The first part investigates the optimum shape of the tower corresponding to minimum weight assuming constant thickness. The study is extended in the second part by introducing the shell thickness as one of the design variables in order to achieve an optimum shape and design. Design, functionality and practicality constraints are applied.

Keywords: B-splines, Cooling towers, Finite element, Genetic algorithm, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3243
1258 Network-Constrained AC Unit Commitment under Uncertainty Using a Bender’s Decomposition Approach

Authors: B. Janani, S. Thiruvenkadam

Abstract:

In this work, the system evaluates the impact of considering a stochastic approach on the day ahead basis Unit Commitment. Comparisons between stochastic and deterministic Unit Commitment solutions are provided. The Unit Commitment model consists in the minimization of the total operation costs considering unit’s technical constraints like ramping rates, minimum up and down time. Load shedding and wind power spilling is acceptable, but at inflated operational costs. The evaluation process consists in the calculation of the optimal unit commitment and in verifying the fulfillment of the considered constraints. For the calculation of the optimal unit commitment, an algorithm based on the Benders Decomposition, namely on the Dual Dynamic Programming, was developed. Two approaches were considered on the construction of stochastic solutions. Data related to wind power outputs from two different operational days are considered on the analysis. Stochastic and deterministic solutions are compared based on the actual measured wind power output at the operational day. Through a technique capability of finding representative wind power scenarios and its probabilities, the system can analyze a more detailed process about the expected final operational cost.

Keywords: Benders’ decomposition, network constrained AC unit commitment, stochastic programming, wind power uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
1257 The Effect of Stress Biaxiality on Crack Shape Development

Authors: Osama A. Terfas

Abstract:

The development of shape and size of a crack in a pressure vessel under uniaxial and biaxial loadings is important in fitness-for-service evaluations such as leak-before-break. In this work finite element modelling was used to evaluate the mean stress and the J-integral around a front of a surface-breaking crack. A procedure on the basis of ductile tearing resistance curves of high and low constrained fracture mechanics geometries was developed to estimate the amount of ductile crack extension for surface-breaking cracks and to show the evolution of the initial crack shape. The results showed non-uniform constraint levels and crack driving forces around the crack front at large deformation levels. It was also shown that initially semi-elliptical surface cracks under biaxial load developed higher constraint levels around the crack front than in uniaxial tension. However similar crack shapes were observed with more extensions associated with cracks under biaxial loading.

Keywords: biaxial load, crack shape, fracture toughness, surface crack, uniaxial load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
1256 Design of Stilling Basins using Artificial Roughness

Authors: N. AboulAtta, G. Ezizah, N. Yousif , S. Fathy

Abstract:

The stilling basins are commonly used to dissipate the energy and protect the downstream floor from erosion. The aim of the present experimental work is to improve the roughened stilling basin using T-shape roughness instead of the regular cubic one and design this new shape. As a result of the present work the best intensity and the best roughness length are identified. Also, it is found that the T-shape roughness save materials and reduce the jump length compared to the cubic one. Sensitivity analysis was performed and it was noticed that the change in the length of jump is more sensitive to the change in roughness length than the change in intensity.

Keywords: hydraulic jump, energy dissipater, roughened bed, stilling basin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
1255 Exploring the Impact of Body Shape on Bra Fit: Integrating 3D Body Scanning and Traditional Patternmaking Methods

Authors: Yin-Ching Keung, Kit-Lun Yick

Abstract:

The issue of bra fitting has persisted throughout history despite advancements in molded bra cups. To gain a deeper understanding of the interaction between the breast and bra pattern, this study combines the art of traditional bra patternmaking with 3D body scanning technology. By employing a 2D bra pattern drafting method and analyzing the effect of body shape on the desired bra cup shape, the study focuses on the differentiation of the lower cup among bras designed for flat and round body-shaped breasts. The results shed light on the impact of body shape on bra fit and provide valuable insights for further research and improvements in bra design, pattern drafting, and fit. The integration of 3D body scanning technology enhances the accuracy and precision of measurements, allowing for a more comprehensive analysis of the unique contours and dimensions of the breast and body. Ultimately, the study aims to provide individuals with different body shapes a more comfortable and well-fitted bra-wearing experience, contributing to the ongoing efforts to alleviate the longstanding problem of bra fitting.

Keywords: Breast shapes, bra fitting, 3D body scanning, bra patternmaking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37
1254 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation

Authors: Jeong-Won Kang

Abstract:

Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force-vs-deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.

Keywords: Graphene, pressure sensor, circular graphene nanoflake, molecular dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
1253 Simulation of Large Deformations of Rubbers by the RKPM Method

Authors: M. Foroutan, H. Dalayeli, M. Sadeghian

Abstract:

In this paper processes including large deformations of a rubber with hyperelastic material behavior are simulated by the RKPM method. Due to the loss of kronecker delta properties in the mesh less shape functions, the imposition of essential boundary conditions consumes significant CPU time in mesh free computations. In this work transformation method is used for imposition of essential boundary conditions. A RKPM material shape function is used in this analysis. The support of the material shape functions covers the same set of particles during material deformation and hence the transformation matrix is formed only once at the initial stages. A computer program in MATLAB is developed for simulations.

Keywords: RKPM, large deformations, transformation, essentialboundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
1252 Mining Image Features in an Automatic Two-Dimensional Shape Recognition System

Authors: R. A. Salam, M.A. Rodrigues

Abstract:

The number of features required to represent an image can be very huge. Using all available features to recognize objects can suffer from curse dimensionality. Feature selection and extraction is the pre-processing step of image mining. Main issues in analyzing images is the effective identification of features and another one is extracting them. The mining problem that has been focused is the grouping of features for different shapes. Experiments have been conducted by using shape outline as the features. Shape outline readings are put through normalization and dimensionality reduction process using an eigenvector based method to produce a new set of readings. After this pre-processing step data will be grouped through their shapes. Through statistical analysis, these readings together with peak measures a robust classification and recognition process is achieved. Tests showed that the suggested methods are able to automatically recognize objects through their shapes. Finally, experiments also demonstrate the system invariance to rotation, translation, scale, reflection and to a small degree of distortion.

Keywords: Image mining, feature selection, shape recognition, peak measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
1251 Template-Based Object Detection through Partial Shape Matching and Boundary Verification

Authors: Feng Ge, Tiecheng Liu, Song Wang, Joachim Stahl

Abstract:

This paper presents a novel template-based method to detect objects of interest from real images by shape matching. To locate a target object that has a similar shape to a given template boundary, the proposed method integrates three components: contour grouping, partial shape matching, and boundary verification. In the first component, low-level image features, including edges and corners, are grouped into a set of perceptually salient closed contours using an extended ratio-contour algorithm. In the second component, we develop a partial shape matching algorithm to identify the fractions of detected contours that partly match given template boundaries. Specifically, we represent template boundaries and detected contours using landmarks, and apply a greedy algorithm to search the matched landmark subsequences. For each matched fraction between a template and a detected contour, we estimate an affine transform that transforms the whole template into a hypothetic boundary. In the third component, we provide an efficient algorithm based on oriented edge lists to determine the target boundary from the hypothetic boundaries by checking each of them against image edges. We evaluate the proposed method on recognizing and localizing 12 template leaves in a data set of real images with clutter back-grounds, illumination variations, occlusions, and image noises. The experiments demonstrate the high performance of our proposed method1.

Keywords: Object detection, shape matching, contour grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
1250 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber

Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi

Abstract:

This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.

Keywords: Bending and deflection, Bridge beam, Compression, Nigerian Opepe, Shear, Structural reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244