Search results for: Object motion detection
2582 An Efficient Method of Shot Cut Detection
Authors: Lenka Krulikovská, Jaroslav Polec
Abstract:
In this paper we present a method of abrupt cut detection with a novel logic of frames- comparison. Actual frame is compared with its motion estimated prediction instead of comparison with successive frame. Four different similarity metrics were employed to estimate the resemblance of compared frames. Obtained results were evaluated by standard used measures of test accuracy and compared with existing approach. Based on the results, we claim the proposed method is more effective and Pearson correlation coefficient obtained the best results among chosen similarity metrics.
Keywords: Abrupt cut, mutual information, shot cut detection, Pearson correlation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19352581 Performance Improvement of Moving Object Recognition and Tracking Algorithm using Parallel Processing of SURF and Optical Flow
Authors: Jungho Choi, Youngwan Cho
Abstract:
The paper proposes a way of parallel processing of SURF and Optical Flow for moving object recognition and tracking. The object recognition and tracking is one of the most important task in computer vision, however disadvantage are many operations cause processing speed slower so that it can-t do real-time object recognition and tracking. The proposed method uses a typical way of feature extraction SURF and moving object Optical Flow for reduce disadvantage and real-time moving object recognition and tracking, and parallel processing techniques for speed improvement. First analyse that an image from DB and acquired through the camera using SURF for compared to the same object recognition then set ROI (Region of Interest) for tracking movement of feature points using Optical Flow. Secondly, using Multi-Thread is for improved processing speed and recognition by parallel processing. Finally, performance is evaluated and verified efficiency of algorithm throughout the experiment.Keywords: moving object recognition, moving object tracking, SURF, Optical Flow, Multi-Thread.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26492580 Kalman Filter Based Adaptive Reduction of Motion Artifact from Photoplethysmographic Signal
Authors: S. Seyedtabaii, L. Seyedtabaii
Abstract:
Artifact free photoplethysmographic (PPG) signals are necessary for non-invasive estimation of oxygen saturation (SpO2) in arterial blood. Movement of a patient corrupts the PPGs with motion artifacts, resulting in large errors in the computation of Sp02. This paper presents a study on using Kalman Filter in an innovative way by modeling both the Artillery Blood Pressure (ABP) and the unwanted signal, additive motion artifact, to reduce motion artifacts from corrupted PPG signals. Simulation results show acceptable performance regarding LMS and variable step LMS, thus establishing the efficacy of the proposed method.Keywords: Kalman filter, Motion artifact, PPG, Photoplethysmography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42642579 Sensor-Based Motion Planning for a Car-like Robot Based On Bug Family Algorithms
Authors: Dong-Hyung Kim, Ji Yeong Lee, Chang-Soo Han
Abstract:
This paper presents a sensor-based motion planning algorithm for 3-DOF car-like robots with a nonholonomic constraint. Similar to the classic Bug family algorithms, the proposed algorithm enables the car-like robot to navigate in a completely unknown environment using only the range sensor information. The car-like robot uses the local range sensor view to determine the local path so that it moves towards the goal. To guarantee that the robot can approach the goal, the two modes of motion are repeated, termed motion-to-goal and wall-following. The motion-to-goal behavior lets the robot directly move toward the goal, and the wall-following behavior makes the robot circumnavigate the obstacle boundary until it meets the leaving condition. For each behavior, the nonholonomic motion for the car-like robot is planned in terms of the instantaneous turning radius. The proposed algorithm is implemented to the real robot and the experimental results show the performance of proposed algorithm.
Keywords: Motion planning, car-like robot, bug algorithm, autonomous motion planning, nonholonomic constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22392578 Accurate Position Electromagnetic Sensor Using Data Acquisition System
Authors: Z. Ezzouine, A. Nakheli
Abstract:
This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.
Keywords: Electromagnetic sensor, data acquisition, accurately, position measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9662577 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems
Authors: Barış Can Yalçın
Abstract:
Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.
Keywords: Calibration of sensors, data acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43412576 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images
Authors: Mehrnoosh Omati, Mahmod Reza Sahebi
Abstract:
The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.
Keywords: Coupled Markov random field, environment, object-based analysis, Polarimetric SAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8662575 Human Motion Regeneration in 2-Dimension as Stick Figure Animation with Accelerometers
Authors: Alpha Agape Gopalai, Darwin Gouwanda, S.M.N. Arosha Senanayake
Abstract:
This paper explores the opportunity of using tri-axial wireless accelerometers for supervised monitoring of sports movements. A motion analysis system for the upper extremities of lawn bowlers in particular is developed. Accelerometers are placed on parts of human body such as the chest to represent the shoulder movements, the back to capture the trunk motion, back of the hand, the wrist and one above the elbow, to capture arm movements. These sensors placement are carefully designed in order to avoid restricting bowler-s movements. Data is acquired from these sensors in soft-real time using virtual instrumentation; the acquired data is then conditioned and converted into required parameters for motion regeneration. A user interface was also created to facilitate in the acquisition of data, and broadcasting of commands to the wireless accelerometers. All motion regeneration in this paper deals with the motion of the human body segment in the X and Y direction, looking into the motion of the anterior/ posterior and lateral directions respectively.Keywords: Motion Regeneration, Virtual Instrumentation, Wireless Accelerometers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17322574 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.
Keywords: AlexNet, Deep learning, image recognition, 6D posture estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5942573 Vision Based People Tracking System
Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti
Abstract:
In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.
Keywords: Camshift Algorithm, Computer Vision, Kalman Filter, Object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13452572 Cost-Effective Private Grid Using Object-based Grid Architecture
Authors: M. Victor Jose, V. Seenivasagam
Abstract:
This paper proposes a cost-effective private grid using Object-based Grid Architecture (OGA). In OGA, the data process privacy and inter communication are increased through an object- oriented concept. The limitation of the existing grid is that the user can enter or leave the grid at any time without schedule and dedicated resource. To overcome these limitations, cost-effective private grid and appropriate algorithms are proposed. In this, each system contains two platforms such as grid and local platforms. The grid manager service running in local personal computer can act as grid resource. When the system is on, it is intimated to the Monitoring and Information System (MIS) and details are maintained in Resource Object Table (ROT). The MIS is responsible to select the resource where the file or the replica should be stored. The resource storage is done within virtual single private grid nodes using random object addressing to prevent stolen attack. If any grid resource goes down, then the resource ID will be removed from the ROT, and resource recovery is efficiently managed by the replicas. This random addressing technique makes the grid storage a single storage and the user views the entire grid network as a single system.Keywords: Object Grid Architecture, Grid Manager Service, Resource Object table, Random object addressing, Object storage, Dynamic Object Update.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10342571 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5062570 An Efficient Algorithm for Motion Detection Based Facial Expression Recognition using Optical Flow
Authors: Ahmad R. Naghsh-Nilchi, Mohammad Roshanzamir
Abstract:
One of the popular methods for recognition of facial expressions such as happiness, sadness and surprise is based on deformation of facial features. Motion vectors which show these deformations can be specified by the optical flow. In this method, for detecting emotions, the resulted set of motion vectors are compared with standard deformation template that caused by facial expressions. In this paper, a new method is introduced to compute the quantity of likeness in order to make decision based on the importance of obtained vectors from an optical flow approach. For finding the vectors, one of the efficient optical flow method developed by Gautama and VanHulle[17] is used. The suggested method has been examined over Cohn-Kanade AU-Coded Facial Expression Database, one of the most comprehensive collections of test images available. The experimental results show that our method could correctly recognize the facial expressions in 94% of case studies. The results also show that only a few number of image frames (three frames) are sufficient to detect facial expressions with rate of success of about 83.3%. This is a significant improvement over the available methods.Keywords: Facial expression, Facial features, Optical flow, Motion vectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23782569 Spatio-Temporal Patterns and Dynamics in Motion of Pathogenic Spirochetes: Implications toward Virulence and Treatment of Leptospirosis
Authors: R. Amornmaneekul, S. Chadsuthi, D. Triampo, W. Triampo
Abstract:
We apply a particle tracking technique to track the motion of individual pathogenic Leptospira. We observe and capture images of motile Leptospira by means of CCD and darkfield microscope. Image processing, statistical theories and simulations are used for data analysis. Based on trajectory patterns, mean square displacement, and power spectral density characteristics, we found that the motion modes are most likely to be directed motion mode (70%) and the rest are either normal diffusion or unidentified mode. Our findings may support the fact that why leptospires are very well efficient toward targeting internal tissues as a result of increase in virulence factor.
Keywords: Leptospirosis, spirochetes, patterns, motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15722568 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses
Authors: El Sayed A. Sharara, A. Tsuji, K. Terada
Abstract:
Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.
Keywords: Call center agents, fatigue, skin color detection, face recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10482567 Dynamic Optimization of Industrial Servomechanisms using Motion Laws Based On Bezier Curves
Authors: Giovanni Incerti
Abstract:
The motion planning procedure described in this paper has been developed in order to eliminate or reduce the residual vibrations of electromechanical positioning systems, without augmenting the motion time (usually imposed by production requirements), nor introducing overtime for vibration damping. The proposed technique is based on a suitable choice of the motion law assigned to the servomotor that drives the mechanism. The reference profile is defined by a Bezier curve, whose shape can be easily changed by modifying some numerical parameters. By means of an optimization technique these parameters can be modified without altering the continuity conditions imposed on the displacement and on its time derivatives at the initial and final time instants.
Keywords: Servomechanism, residual vibrations, motion optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14162566 The Role of Object Oriented Simulation F Modeling in Maintenance Processes
Authors: Abdulsalam A. Al-Sudairi
Abstract:
Object-oriented simulation is considered one of the most sophisticated techniques that has been widely used in planning, designing, executing and maintaining construction projects. This technique enables the modeler to focus on objects which is extremely important for thorough understanding of a system. Thus, identifying an object is an essential point of building a successful simulation model. In a maintenance process an object is a maintenance work order (MWO). This study demonstrates a maintenance simulation model for the building maintenance division of Saudi Consolidated Electric Company (SCECO) in Dammam, Saudi Arabia. The model focused on both types of maintenance processes namely: (1) preventive maintenance (PM) and (2) corrective maintenance (CM). It is apparent from the findings that object-oriented simulation is a good diagnostic and experimental tool. This is because problems, limitations, bottlenecks and so forth are easily identified. These features are very difficult to obtain when using other tools.
Keywords: Object oriented, simulation, maintenance, process, work orders
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14982565 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.
Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5912564 Flexible Follower Response of a Translating Cam with Four Different Profiles for Rise-Dwell-Fall-Dwell motion
Authors: Jer-Rong Chang
Abstract:
The flexible follower response of a translating cam with four different profiles for rise-dwell-fall-dwell (RDFD) motion is investigated. The cycloidal displacement motion, the modified sinusoidal acceleration motion, the modified trapezoidal acceleration motion, and the 3-4-5 polynomial motion are employed to describe the rise and the fall motions of the follower and the associated four kinds of cam profiles are studied. Since the follower flexibility is considered, the contact point of the roller and the cam is an unknown. Two geometric constraints formulated to restrain the unknown position are substituted into Hamilton-s principle with Lagrange multipliers. Applying the assumed mode method, one can obtain the governing equations of motion as non-linear differential-algebraic equations. The equations are solved using Runge-Kutta method. Then, the responses of the flexible follower undergoing the four different motions are investigated in time domain and in frequency domain.Keywords: translating cam, flexible follower, rise-dwell-falldwell, response
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21252563 A Robust Visual SLAM for Indoor Dynamic Environment
Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to gather information in unknown environments to achieve simultaneous localization and mapping of the environment. This technology has a wide range of applications in autonomous driving, virtual reality, and other related fields. Currently, the research advancements related to VSLAM can maintain high accuracy in static environments. But in dynamic environments, the presence of moving objects in the scene can reduce the stability of the VSLAM system, leading to inaccurate localization and mapping, or even system failure. In this paper, a robust VSLAM method was proposed to effectively address the challenges in dynamic environments. We proposed a dynamic region removal scheme based on a semantic segmentation neural network and geometric constraints. Firstly, a semantic segmentation neural network is used to extract the prior active motion region, prior static region, and prior passive motion region in the environment. Then, the lightweight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static regions and dynamic regions. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under a high dynamic environment.
Keywords: Dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842562 Human Motion Capture: New Innovations in the Field of Computer Vision
Authors: Najm Alotaibi
Abstract:
Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.
Keywords: Human Motion Capture, Computer Vision, Vision based, Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24942561 On the Study of the Electromagnetic Scattering by Large Obstacle Based on the Method of Auxiliary Sources
Authors: Sami Hidouri, Taoufik Aguili
Abstract:
We consider fast and accurate solutions of scattering problems by large perfectly conducting objects (PEC) formulated by an optimization of the Method of Auxiliary Sources (MAS). We present various techniques used to reduce the total computational cost of the scattering problem. The first technique is based on replacing the object by an array of finite number of small (PEC) object with the same shape. The second solution reduces the problem on considering only the half of the object.These t
Keywords: Method of Auxiliary Sources, Scattering, large object, RCS, computational resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18822560 Integrating Low and High Level Object Recognition Steps
Authors: András Barta, István Vajk
Abstract:
In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.Keywords: Object recognition, Bayesian network, Wavelets, Document processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14902559 Evaluation of Classification Algorithms for Road Environment Detection
Authors: T. Anbu, K. Aravind Kumar
Abstract:
The road environment information is needed accurately for applications such as road maintenance and virtual 3D city modeling. Mobile laser scanning (MLS) produces dense point clouds from huge areas efficiently from which the road and its environment can be modeled in detail. Objects such as buildings, cars and trees are an important part of road environments. Different methods have been developed for detection of above such objects, but still there is a lack of accuracy due to the problems of illumination, environmental changes, and multiple objects with same features. In this work the comparison between different classifiers such as Multiclass SVM, kNN and Multiclass LDA for the road environment detection is analyzed. Finally the classification accuracy for kNN with LBP feature improved the classification accuracy as 93.3% than the other classifiers.Keywords: Classifiers, feature extraction, mobile-based laser scanning, object location estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7782558 A Design-Based Cohesion Metric for Object-Oriented Classes
Authors: Jehad Al Dallal
Abstract:
Class cohesion is an important object-oriented software quality attribute. It indicates how much the members in a class are related. Assessing the class cohesion and improving the class quality accordingly during the object-oriented design phase allows for cheaper management of the later phases. In this paper, the notion of distance between pairs of methods and pairs of attribute types in a class is introduced and used as a basis for introducing a novel class cohesion metric. The metric considers the methodmethod, attribute-attribute, and attribute-method direct interactions. It is shown that the metric gives more sensitive values than other well-known design-based class cohesion metrics.Keywords: Object-oriented software quality, object-orienteddesign, class cohesion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22712557 A Step-wise Zoom Technique for Exploring Image-based Virtual Reality Applications
Authors: D. R. Awang Rambli, S. Sulaiman, M.Y. Nayan, A.R. Asoruddin
Abstract:
Existing image-based virtual reality applications allow users to view image-based 3D virtual environment in a more interactive manner. User could “walkthrough"; looks left, right, up and down and even zoom into objects in these virtual worlds of images. However what the user sees during a “zoom in" is just a close-up view of the same image which was taken from a distant. Thus, this does not give the user an accurate view of the object from the actual distance. In this paper, a simple technique for zooming in an object in a virtual scene is presented. The technique is based on the 'hotspot' concept in existing application. Instead of navigation between two different locations, the hotspots are used to focus into an object in the scene. For each object, several hotspots are created. A different picture is taken for each hotspot. Each consecutive hotspot created will take the user closer to the object. This will provide the user with a correct of view of the object based on his proximity to the object. Implementation issues and the relevance of this technique in potential application areas are highlighted.Keywords: Hotspots, image-based VR, camera zooms, virtualreality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15342556 Integrating Low and High Level Object Recognition Steps by Probabilistic Networks
Authors: András Barta, István Vajk
Abstract:
In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.
Keywords: Object recognition, Bayesian network, Wavelets, Document processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16722555 Separating Permanent and Induced Magnetic Signature: A Simple Approach
Authors: O. J. G. Somsen, G. P. M. Wagemakers
Abstract:
Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.
Keywords: Magnetic signature, data analysis, magnetization, deperming techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10812554 Performance Comparison and Evaluation of AdaBoost and SoftBoost Algorithms on Generic Object Recognition
Authors: Doaa Hegazy, Joachim Denzler
Abstract:
SoftBoost is a recently presented boosting algorithm, which trades off the size of achieved classification margin and generalization performance. This paper presents a performance evaluation of SoftBoost algorithm on the generic object recognition problem. An appearance-based generic object recognition model is used. The evaluation experiments are performed using a difficult object recognition benchmark. An assessment with respect to different degrees of label noise as well as a comparison to the well known AdaBoost algorithm is performed. The obtained results reveal that SoftBoost is encouraged to be used in cases when the training data is known to have a high degree of noise. Otherwise, using Adaboost can achieve better performance.Keywords: SoftBoost algorithm, AdaBoost algorithm, Generic object recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18322553 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System
Authors: Jason Chien-Hsun Tseng
Abstract:
This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063