Search results for: Feedback controller
1091 Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter
Authors: H. Mansor, S. B. Mohd-Noor, T. S. Gunawan, S. Khan, N. I. Othman, N. Tazali, R. B. Islam
Abstract:
This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however, its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (poleplacement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle.
Keywords: Adaptive control, bench-top helicopter, deadbeat, pole-placement, self-tuning control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33101090 Implementation Issues of Industrial PID Controller and Their Remedies
Authors: C. B. Vishwakarma
Abstract:
We elaborated the parallel and series Proportional, Integral and Derivative (PID) controllers, which are being used in industries. Various issues, which are very often faced by control engineers while designing the PID controllers for industrial systems are described. The effect of measurement noise on the actuator due to derivative term of a PID controller has been explained in detail. Similarly, proportional kick, derivative kick, saturation tendency of the actuator and reverse phenomena of an industrial process have been summarized. Moreover, we meticulously explained the remedies of the all issues of the parallel industrial PID controller.
Keywords: Band-width limited derivative control, derivative kick, proportional kick, reverse acting controller, series PID controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191089 Robust Fractional-Order PI Controller with Ziegler-Nichols Rules
Authors: Mazidah Tajjudin, Mohd Hezri Fazalul Rahiman, Norhashim Mohd Arshad, Ramli Adnan
Abstract:
In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.
Keywords: PID controller, fractional-order PID controller, PI control tuning, steam temperature control, Ziegler-Nichols tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34701088 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modeled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.
Keywords: Ride comfort, air spring, bus, fuzzy logic controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18781087 Design of a Sliding Controller for Optical Disk Drives
Authors: Yu-Sheng Lu, Chung-Hsin Cheng, Shuen-Shing Jan
Abstract:
This paper presents the design and implementation of a sliding-mod controller for tracking servo of optical disk drives. The tracking servo is majorly subject to two disturbance sources: radial run-out and shock. The lateral run-out disturbance is mostly repeatable, and a model of such disturbance is incorporated into the controller design to effectively compensate for it. Meanwhile, as a shock disturbance is usually non-repeatable and unpredictable, the sliding-mode controller is employed for its robustness to abrupt perturbations. As a result, a sliding-mode controller design based on the internal model principle is tailored for tracking servo of optical disk drives in order to deal with these two major disturbances. Experimental comparative studies are conducted to investigate the effectiveness of the specially designed controller.
Keywords: Mechatronics, optical disk drive, sliding-mode control, servo systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19691086 A PWM Controller with Multiple-Access Table Look-up for DC-DC Buck Conversion
Authors: Steve Hung-Lung Tu, Chu-Tse Lee
Abstract:
A new power regulator controller with multiple-access PID compensator is proposed, which can achieve a minimum memory requirement for fully table look-up. The proposed regulator controller employs hysteresis comparators, an error process unit (EPU) for voltage regulation, a multiple-access PID compensator and a lowpower- consumption digital PWM (DPWM). Based on the multipleaccess mechanism, the proposed controller can alleviate the penalty of large amount of memory employed for fully table look-up based PID compensator in the applications of power regulation. The proposed controller has been validated with simulation results.Keywords: Multiple access, PID compensator, PWM, Buck conversion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14401085 A PSO-based SSSC Controller for Improvement of Transient Stability Performance
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.
Keywords: Particle swarm optimization, transient stability, power system oscillations, SSSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26901084 PI Controller for Automatic Generation Control Based on Performance Indices
Authors: Kalyan Chatterjee
Abstract:
The optimal design of PI controller for Automatic Generation Control in two area is presented in this paper. The concept of Dual mode control is applied in the PI controller, such that the proportional mode is made active when the rate of change of the error is sufficiently larger than a specified limit otherwise switched to the integral mode. A digital simulation is used in conjunction with the Hooke-Jeeve’s optimization technique to determine the optimum parameters (individual gain of proportional and integral controller) of the PI controller. Integrated Square of the Error (ISE), Integrated Time multiplied by Absolute Error(ITAE) , and Integrated Absolute Error(IAE) performance indices are considered to measure the appropriateness of the designed controller. The proposed controller are tested for a two area single nonreheat thermal system considering the practical aspect of the problem such as Deadband and Generation Rate Constraint(GRC). Simulation results show that dual mode with optimized values of the gains improved the control performance than the commonly used Variable Structure .
Keywords: Load Frequency Control, Area Control Error(ACE), Dual Mode PI Controller, Performance Index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21151083 Maximum Power Point Tracking Using FLC Tuned with GA
Authors: Mohamed Amine Haraoubia, Abdelaziz Hamzaoui, Najib Essounbouli
Abstract:
The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.
Keywords: Fuzzy logic controller (FLC), fuzzy logic (FL), genetic algorithm (GA), maximum power point (MPP), maximum power point tracking (MPPT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26251082 Sensorless PM Motor with Multi Degree of Freedom Fuzzy Control
Authors: Faeka M. H. Khater, Farouk I. Ahmed, Mohamed I. Abu El- Sebah
Abstract:
This paper introduces application of multi degree of freedom fuzzy(MDOFF) controller in permanent magnet (PM)drive system. The drive system model is developed for FO control. Simulation of the system is carried out to predict the performance at NL and under load,. The results indicate that application of MDOFF controller is effective for sensorless PM drive system.
Keywords: Sensorless FO controller, PM drives system, MDOFF controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16871081 System Identification and Control the Azimuth Angle of the Platform of MLRS by PID Controller
Authors: Parkpoom Ch., Narongkorn D.
Abstract:
This paper presents the system identification by physical-s law method and designs the controller for the Azimuth Angle Control of the Platform of the Multi-Launcher Rocket System (MLRS) by Root Locus technique. The plant mathematical model was approximated using MATLAB for simulation and analyze the system. The controller proposes the implementation of PID Controller using Programmable Logic Control (PLC) for control the plant. PID Controllers are widely applicable in industrial sectors and can be set up easily and operate optimally for enhanced productivity, improved quality and reduce maintenance requirement. The results from simulation and experiments show that the proposed a PID Controller to control the elevation angle that has superior control performance by the setting time less than 12 sec, the rise time less than 1.6 sec., and zero steady state. Furthermore, the system has a high over shoot that will be continue development.Keywords: Azimuth angle control, PID Controller, The platform of Multi-Launcher Rocket System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24891080 Adaptive Impedance Control for Unknown Non-Flat Environment
Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura
Abstract:
This paper presents a new adaptive impedance control strategy, based on Function Approximation Technique (FAT) to compensate for unknown non-flat environment shape or time-varying environment location. The target impedance in the force controllable direction is modified by incorporating adaptive compensators and the uncertainties are represented by FAT, allowing the update law to be derived easily. The force error feedback is utilized in the estimation and the accurate knowledge of the environment parameters are not required by the algorithm. It is shown mathematically that the stability of the controller is guaranteed based on Lyapunov theory. Simulation results presented to demonstrate the validity of the proposed controller.Keywords: Adaptive impedance control, Function Approximation Technique (FAT), impedance control, unknown environment position.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15821079 Hybrid Markov Game Controller Design Algorithms for Nonlinear Systems
Abstract:
Markov games can be effectively used to design controllers for nonlinear systems. The paper presents two novel controller design algorithms by incorporating ideas from gametheory literature that address safety and consistency issues of the 'learned' control strategy. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. We generate an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed approaches aim to achieve 'safe-consistent' and 'safe-universally consistent' controller behavior by hybridizing 'min-max', 'fictitious play' and 'cautious fictitious play' approaches drawn from game theory. We empirically evaluate the approaches on a simulated Inverted Pendulum swing-up task and compare its performance against standard Q learning.Keywords: Fictitious Play, Cautious Fictitious Play, InvertedPendulum, Controller, Markov Games, Mobile Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14311078 PID Controller Design for Following Control of Hard Disk Drive by Characteristic Ratio Assignment Method
Authors: Chaoraingern J., Trisuwannawat T., Numsomran A.
Abstract:
The author present PID controller design for following control of hard disk drive by characteristic ratio assignment method. The study in this paper concerns design of a PID controller which sufficiently robust to the disturbances and plant perturbations on following control of hard disk drive. Characteristic Ratio Assignment (CRA) is shown to be an efficient control technique to serve this requirement. The controller design by CRA is based on the choice of the coefficients of the characteristic polynomial of the closed loop system according to the convenient performance criteria such as equivalent time constant and ration of characteristic coefficient. Hence, in this study, CRA method is applied in PID controller design for following control of hard disk drive. Matlab simulation results shown that CRA design is fairly stable and robust whilst giving the convenience in controller-s parameters adjustment.Keywords: Following Control, Hard Disk Drive, PID, CRA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19671077 Combined Model Predictive Controller Technique for Enhancing NAO Gait Stabilization
Authors: Brahim Brahmi, Mohammed Hamza Laraki, Mohammad Habibur Rahman, Islam M. Rasedul, M. Assad Uz-Zaman
Abstract:
The humanoid robot, specifically the NAO robot must be able to provide a highly dynamic performance on the soccer field. Maintaining the balance of the humanoid robot during the required motion is considered as one of a challenging problems especially when the robot is subject to external disturbances, as contact with other robots. In this paper, a dynamic controller is proposed in order to ensure a robust walking (stabilization) and to improve the dynamic balance of the robot during its contact with the environment (external disturbances). The generation of the trajectory of the center of mass (CoM) is done by a model predictive controller (MPC) conjoined with zero moment point (ZMP) technique. Taking into account the properties of the rotational dynamics of the whole-body system, a modified previous control mixed with feedback control is employed to manage the angular momentum and the CoM’s acceleration, respectively. This latter is dedicated to provide a robust gait of the robot in the presence of the external disturbances. Simulation results are presented to show the feasibility of the proposed strategy.Keywords: Preview control, walking, stabilization, humanoid robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5911076 A Novel Fuzzy Logic Based Controller to Adjust the Brightness of the Television Screen with Respect to Surrounding Light
Authors: A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj
Abstract:
One of the major cause of eye strain and other problems caused while watching television is the relative illumination between the screen and its surrounding. This can be overcome by adjusting the brightness of the screen with respect to the surrounding light. A controller based on fuzzy logic is proposed in this paper. The fuzzy controller takes in the intensity of light surrounding the screen and the present brightness of the screen as input. The output of the fuzzy controller is the grid voltage corresponding to the required brightness. This voltage is given to CRT and brightness is controller dynamically. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.Keywords: Fuzzy controller, Grid voltage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27851075 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization
Authors: Martha C. Orazulume, Jibril D. Jiya
Abstract:
Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.
Keywords: Attitude control, flexible satellite, particle swarm optimization, PID controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12751074 Robust H State-Feedback Control for Uncertain Fuzzy Markovian Jump Systems: LMI-Based Design
Authors: Wudhichai Assawinchaichote, Sing Kiong Nguang
Abstract:
This paper investigates the problem of designing a robust state-feedback controller for a class of uncertain Markovian jump nonlinear systems that guarantees the L2-gain from an exogenous input to a regulated output is less than or equal to a prescribed value. First, we approximate this class of uncertain Markovian jump nonlinear systems by a class of uncertain Takagi-Sugeno fuzzy models with Markovian jumps. Then, based on an LMI approach, LMI-based sufficient conditions for the uncertain Markovian jump nonlinear systems to have an H performance are derived. An illustrative example is used to illustrate the effectiveness of the proposed design techniques.
Keywords: Robust H, Fuzzy Control, Markovian Jump Systems, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14771073 Microwave Drying System with High-Tech Phase Controller: A Modified Applicator
Authors: A. S. Jambhale, B. V. Barbadekar
Abstract:
Microwave energy can be used for drying purpose. It is unique process. It is distinctly different from conventional drying process. It is advantageous over conventional drying / heating processes. When microwave energy is used for drying purpose, the process can be accelerated with a better control to achieve uniform heating, more conversion efficiency, selective drying and ultimately improved product quality of the output. Also, less floor space and compact system are the added advantages. Existing low power microwave drying system is to be modified with suitable applicator. Appropriate sensors are to be used to measure parameters like moisture, temperature, weight of sample. Suitable high tech controller is to be used to control microwave power continuously from minimum to maximum. Phase - controller, cycle - controller and PWM - controller are some of the advanced power control techniques. It has been proposed to work on turmeric using high-tech phase controller to control the microwave power conveniently. The drying of turmeric with microwave energy employing phase controller gives better results as formulated in this paper and hence new approach of processing turmeric will open future doors of profit making to allied industries and the farmers.
Keywords: Applicator, microwave drying, phase controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19031072 Low-MAC FEC Controller for JPEG2000 Image Transmission Over IEEE 802.15.4
Authors: Kyu-Yeul Wang, Sang-Seol Lee, Jea-Yeon Song, Jea-Young Choi, Seong-Seob Shin, Dong-Sun Kim, Duck-Jin Chung
Abstract:
In this paper, we propose the low-MAC FEC controller for practical implementation of JPEG2000 image transmission using IEEE 802.15.4. The proposed low-MAC FEC controller has very small HW size and spends little computation to estimate channel state. Because of this advantage, it is acceptable to apply IEEE 802.15.4 which has to operate more than 1 year with battery. For the image transmission, we integrate the low-MAC FEC controller and RCPC coder in sensor node of LR-WPAN. The modified sensor node has increase of 3% hardware size than conventional zigbee sensor node.
Keywords: FEC, IEEE 802.15.4, JPEG2000, low-MAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19431071 Optimal Supplementary Damping Controller Design for TCSC Employing RCGA
Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, C. Ardil
Abstract:
Optimal supplementary damping controller design for Thyristor Controlled Series Compensator (TCSC) is presented in this paper. For the proposed controller design, a multi-objective fitness function consisting of both damping factors and real part of system electromachanical eigenvalue is used and Real- Coded Genetic Algorithm (RCGA) is employed for the optimal supplementary controller parameters. The performance of the designed supplementary TCSC-based damping controller is tested on a weakly connected power system with different disturbances and loading conditions with parameter variations. Simulation results are presented and compared with a conventional power system stabilizer and also with the TCSC-based supplementary controller when the controller parameters are not optimized to show the effectiveness and robustness of the proposed approach over a wide range of loading conditions and disturbances.
Keywords: Power System Oscillations, Real-Coded Genetic Algorithm (RCGA), Thyristor Controlled Series Compensator (TCSC), Damping Controller, Power System Stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241070 Fuzzy Logic Controller Based Shunt Active Filter with Different MFs for Current Harmonics Elimination
Authors: Shreyash Sinai Kunde, Siddhang Tendulkar, Shiv Prakash Gupta, Gaurav Kumar, Suresh Mikkili
Abstract:
One of the major power quality concerns in modern times is the problem of current harmonics. The current harmonics is caused due to the increase in non-linear loads which is largely dominated by power electronics devices. The Shunt active filtering is one of the best solutions for mitigating current harmonics. This paper describes a fuzzy logic controller based (FLC) based three Phase Shunt active Filter to achieve low current harmonic distortion (THD) and Reactive power compensation. The performance of fuzzy logic controller is analysed under both balanced sinusoidal and unbalanced sinusoidal source condition. The above controller serves the purpose of maintaining DC Capacitor Voltage constant. The proposed shunt active filter uses hysteresis current controller for current control of IGBT based PWM inverter. The simulation results of model in Simulink MATLAB reveals satisfying results.
Keywords: Shunt active filter, Current harmonics, Fuzzy logic controller, Hysteresis current controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27241069 Design and Implementation of a Fan Coil Unit Controller Based on the Duty Ratio Fuzzy Method
Authors: Liang Zhao, Jili Zhang, Kai Li
Abstract:
A microcontroller-based fan coil unit (FCU) fuzzy controller is designed and implemented in this paper. The controller employs the concept of duty ratio on the electric valve control, which could make full use of the cooling and dehumidifying capacity of the FCU when the valve is off. The traditional control method and its limitations are analyzed. The hardware and software design processes are introduced in detail. The experimental results show that the proposed method is more energy efficient compared to the traditional controlling strategy. Furthermore, a more comfortable room condition could be achieved by the proposed method. The proposed low-cost FCU fuzzy controller deserves to be widely used in engineering applications.Keywords: Fan coil unit, duty ratio, fuzzy controller, experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18031068 Effects of Recognition of Customer Feedback on Relationships between Emotional Labor and Job Satisfaction: Focusing on a Call Center that Offers Professional Services
Authors: Kiyoko Yoshimura, Yasunobu Kino
Abstract:
Focusing on professional call centers where workers with expertise perform services, this study aims to clarify the relationships between emotional labor and job satisfaction and the effects of recognition of customer feedback. Since the professional call center operators consist of professional license holders (qualification holders) and those who do not (non-holders), the following three points are analyzed in the two groups by using covariance structure analysis and simultaneous multi-population analysis: 1) The relationship between emotional labor and job satisfaction, 2) customer feedback and job satisfaction, and 3) the intermediation effect between the emotional labor of customer feedback and job satisfaction. The following results are obtained: i) No direct effect is found between job satisfaction and emotional labor for qualification holders and non-holders, ii) for qualification holders and non-holders, recognition of positive feedback and recognition of negative feedback had positive and negative effects on job satisfaction, respectively, iii) for qualification and non-holders, “consideration for colleagues” influences job satisfaction by recognizing positive feedback, and iv) only for qualification holders, the factors “customer-oriented emotional expression” and “emotional disharmony” have a positive and negative effect on job satisfaction, respectively, through recognition of positive feedback and recognition of negative feedback.
Keywords: Call center, emotional labor, professional service, job satisfaction, customer feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731067 A Genetic Algorithm for Optimum Design of PID Controller in Load Frequency Control
Authors: T. Hussein
Abstract:
In this paper, determining the optimal proportionalintegral- derivative (PID) controller gains of an single-area load frequency control (LFC) system using genetic algorithm (GA) is presented. The LFC is notoriously difficult to control optimally using conventionally tuning a PID controller because the system parameters are constantly changing. It is for this reason the GA as tuning strategy was applied. The simulation has been conducted in MATLAB Simulink package for single area power system. the simulation results shows the effectiveness performance of under various disturbance.Keywords: Load Frequency Control (LFC), PID controller and Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37391066 Optimal Based Damping Controllers of Unified Power Flow Controller Using Adaptive Tabu Search
Authors: Rungnapa Taithai, Anant Oonsivilai
Abstract:
This paper presents optimal based damping controllers of Unified Power Flow Controller (UPFC) for improving the damping power system oscillations. The design problem of UPFC damping controller and system configurations is formulated as an optimization with time domain-based objective function by means of Adaptive Tabu Search (ATS) technique. The UPFC is installed in Single Machine Infinite Bus (SMIB) for the performance analysis of the power system and simulated using MATLAB-s simulink. The simulation results of these studies showed that designed controller has an tremendous capability in damping power system oscillations.
Keywords: Adaptive Tabu Search (ATS), damping controller, Single Machine Infinite Bus (SMIB), Unified Power Flow Controller (UPFC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24831065 Sloshing Control in Tilting Phases of the Pouring Process
Authors: Maria P. Tzamtzi, Fotis N. Koumboulis
Abstract:
We propose a control design scheme that aims to prevent undesirable liquid outpouring and suppress sloshing during the forward and backward tilting phases of the pouring process, for the case of liquid containers carried by manipulators. The proposed scheme combines a partial inverse dynamics controller with a PID controller, tuned with the use of a “metaheuristic" search algorithm. The “metaheuristic" search algorithm tunes the PID controller based on simulation results of the plant-s linearization around the operating point corresponding to the critical tilting angle, where outpouring initiates. Liquid motion is modeled using the well-known pendulumtype model. However, the proposed controller does not require measurements of the liquid-s motion within the tank.Keywords: Robotic systems, Controller design, Sloshingsuppression, Metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571064 Design of Local Interconnect Network Controller for Automotive Applications
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.
Keywords: Local interconnect network, controller, transceiver, processor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15871063 Sliding Mode Control of an Internet Teleoperated PUMA 600 Robot
Authors: Abdallah Ghoul, Bachir Ouamri, Ismail Khalil Bousserhane
Abstract:
In this paper, we have developed a sliding mode controller for PUMA 600 manipulator robot, to control the remote robot a teleoperation system was developed. This system includes two sites, local and remote. The sliding mode controller is installed at the remote site. The client asks for a position through an interface and receives the real positions after running of the task by the remote robot. Both sites are interconnected via the Internet. In order to verify the effectiveness of the sliding mode controller, that is compared with a classic PID controller. The developed approach is tested on a virtual robot. The results confirmed the high performance of this approach.Keywords: Internet, manipulator robot, PID controller, remote control, sliding mode, teleoperation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9621062 Stabilization and Control of a UAV Flight Attitude Angles using the Backstepping Method
Authors: Mihai Lungu
Abstract:
The paper presents the design of a mini-UAV attitude controller using the backstepping method. Starting from the nonlinear dynamic equations of the mini-UAV, by using the backstepping method, the author of this paper obtained the expressions of the elevator, rudder and aileron deflections, which stabilize the UAV, at each moment, to the desired values of the attitude angles. The attitude controller controls the attitude angles, the angular rates, the angular accelerations and other variables that describe the UAV longitudinal and lateral motions. To design the nonlinear controller, by using the backstepping technique, the nonlinear equations and the Lyapunov analysis have been directly used. The designed controller has been implemented in Matlab/Simulink environment and its effectiveness has been tested with a campaign of numerical simulations using data from the UAV flight tests. The obtained results are very good and they are better than the ones found in previous works.Keywords: Attitude angles, Backstepping, Controller, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407