Search results for: learning efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4426

Search results for: learning efficiency

3286 Stress Analysis of Turbine Blades of Turbocharger Using Structural Steel

Authors: Roman Kalvin, Anam Nadeem, Saba Arif

Abstract:

Turbocharger is a device that is driven by the turbine and increases efficiency and power output of the engine by forcing external air into the combustion chamber. This study focused on the distribution of stress on the turbine blades and total deformation that may occur during its working along with turbocharger to carry out its static structural analysis of turbine blades. Structural steel was selected as the material for turbocharger. Assembly of turbocharger and turbine blades was designed on PRO ENGINEER. Furthermore, the structural analysis is performed by using ANSYS. This research concluded that by using structural steel, the efficiency of engine is improved and by increasing number of turbine blades, more waste heat from combustion chamber is emitted.

Keywords: Turbocharger, turbine blades, structural steel, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
3285 Composite Relevance Feedback for Image Retrieval

Authors: Pushpa B. Patil, Manesh B. Kokare

Abstract:

This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.

Keywords: Image retrieval, relevance feedback, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
3284 In Cognitive Radio the Analysis of Bit-Error- Rate (BER) by using PSO Algorithm

Authors: Shrikrishan Yadav, Akhilesh Saini, Krishna Chandra Roy

Abstract:

The electromagnetic spectrum is a natural resource and hence well-organized usage of the limited natural resources is the necessities for better communication. The present static frequency allocation schemes cannot accommodate demands of the rapidly increasing number of higher data rate services. Therefore, dynamic usage of the spectrum must be distinguished from the static usage to increase the availability of frequency spectrum. Cognitive radio is not a single piece of apparatus but it is a technology that can incorporate components spread across a network. It offers great promise for improving system efficiency, spectrum utilization, more effective applications, reduction in interference and reduced complexity of usage for users. Cognitive radio is aware of its environmental, internal state, and location, and autonomously adjusts its operations to achieve designed objectives. It first senses its spectral environment over a wide frequency band, and then adapts the parameters to maximize spectrum efficiency with high performance. This paper only focuses on the analysis of Bit-Error-Rate in cognitive radio by using Particle Swarm Optimization Algorithm. It is theoretically as well as practically analyzed and interpreted in the sense of advantages and drawbacks and how BER affects the efficiency and performance of the communication system.

Keywords: BER, Cognitive Radio, Environmental Parameters, PSO, Radio spectrum, Transmission Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
3283 Concept Indexing using Ontology and Supervised Machine Learning

Authors: Rossitza M. Setchi, Qiao Tang

Abstract:

Nowadays, ontologies are the only widely accepted paradigm for the management of sharable and reusable knowledge in a way that allows its automatic interpretation. They are collaboratively created across the Web and used to index, search and annotate documents. The vast majority of the ontology based approaches, however, focus on indexing texts at document level. Recently, with the advances in ontological engineering, it became clear that information indexing can largely benefit from the use of general purpose ontologies which aid the indexing of documents at word level. This paper presents a concept indexing algorithm, which adds ontology information to words and phrases and allows full text to be searched, browsed and analyzed at different levels of abstraction. This algorithm uses a general purpose ontology, OntoRo, and an ontologically tagged corpus, OntoCorp, both developed for the purpose of this research. OntoRo and OntoCorp are used in a two-stage supervised machine learning process aimed at generating ontology tagging rules. The first experimental tests show a tagging accuracy of 78.91% which is encouraging in terms of the further improvement of the algorithm.

Keywords: Concepts, indexing, machine learning, ontology, tagging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
3282 Balancing of Quad Tree using Point Pattern Analysis

Authors: Amitava Chakraborty, Sudip Kumar De, Ranjan Dasgupta

Abstract:

Point quad tree is considered as one of the most common data organizations to deal with spatial data & can be used to increase the efficiency for searching the point features. As the efficiency of the searching technique depends on the height of the tree, arbitrary insertion of the point features may make the tree unbalanced and lead to higher time of searching. This paper attempts to design an algorithm to make a nearly balanced quad tree. Point pattern analysis technique has been applied for this purpose which shows a significant enhancement of the performance and the results are also included in the paper for the sake of completeness.

Keywords: Algorithm, Height balanced tree, Point patternanalysis, Point quad tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
3281 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: Classification, classifier fusion, CNN, Deep Learning, prediction, SNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
3280 Studying the Effect of Shading by Rooftop PV Panels on Dwellings’ Thermal Performance

Authors: Saad Odeh

Abstract:

Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the rooftop solar PV power generators. The application of this type of technology has expanded vastly during the last five years in many countries. This paper studies the effect of roof shading developed by the solar PV panels on dwellings’ thermal performance. The analysis in this work is performed by using two types of packages: “AccuRate Sustainability” for rating the energy efficiency of residential building design, and “PVSYST” for the solar PV power system design. The former package is used to calculate the annual heating and cooling load, and the later package is used to evaluate the power production from the roof top PV system. The analysis correlates the electrical energy generated from the PV panels to the change in the heating and cooling load due to roof shading. Different roof orientation, roof inclination, roof insulation, as well as PV panel area are considered in this study. The analysis shows that the drop in energy efficiency due to the shaded area of the roof by PV panels is negligible compared to the energy generated by these panels.

Keywords: Energy efficiency, roof shading, thermal performance, PV panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
3279 A Cognitive Model of Character Recognition Using Support Vector Machines

Authors: K. Freedman

Abstract:

In the present study, a support vector machine (SVM) learning approach to character recognition is proposed. Simple feature detectors, similar to those found in the human visual system, were used in the SVM classifier. Alphabetic characters were rotated to 8 different angles and using the proposed cognitive model, all characters were recognized with 100% accuracy and specificity. These same results were found in psychiatric studies of human character recognition.

Keywords: Character recognition, cognitive model, support vector machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
3278 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
3277 Self-efficacy, Self-reliance, and Motivation inan Asynchronous Learning Environment

Authors: Linda H. Meyer, Carol S. Sternberger

Abstract:

Self-efficacy, self-reliance, and motivation were examined in a quasi-experimental study with 178 sophomore university students. Participants used an interactive cardiovascular anatomy and physiology CD-ROM, and completed a 15-item questionnaire. Reliability of the questionnaire was established using Cronbach-s alpha. Post-tests and course grades were examined using a t-test, demonstrating no significance. Results of an item-to-item analysis of the questionnaire showed overall satisfaction with the teaching methodology and varied results for self-efficacy, selfreliance, and motivation. Kendall-s Tau was calculated for all items in the questionnaire.

Keywords: Asynchronous learning environments, motivation, self-efficacy, self-reliance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3658
3276 Analysis of Investment in Knowledge inside OECD Countries

Authors: JunSeok Hwang, Mohsen Gerami

Abstract:

Knowledge is the foundation for growth and development. Investment in knowledge improves new method for originate knowledge society and knowledge economy. Investment in knowledge embraces expenditure on education and R&D and software. Measuring of investment in knowledge is characteristically complicated. We examine the influence of investment in knowledge in multifactor productivity growth and numbers of patent. We analyze the annual growth of investment in knowledge and we estimate portion of each country intended for produce total investment in knowledge on the whole OECD. We determine the relative efficiency of average patent numbers with average investment in knowledge and we compare GDP growth rates and growth of knowledge investment. The main purpose in this paper is to study to evaluate different aspect, influence and output of investment in knowledge in OECD countries.

Keywords: Knowledge, GDP, Multifactor productivity, Investment, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
3275 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: Human Motion Recognition, Motion representation, Laban Movement Analysis, Discrete Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
3274 Quality Based Approach for Efficient Biologics Manufacturing

Authors: Takashi Kaminagayoshi, Shigeyuki Haruyama

Abstract:

To improve the manufacturing efficiency of biologics, such as antibody drugs, a quality engineering framework was designed. Within this framework, critical steps and parameters in the manufacturing process were studied. Identification of these critical steps and critical parameters allows a deeper understanding of manufacturing capabilities, and suggests to process development department process control standards based on actual manufacturing capabilities as part of a PDCA (plan-do-check-act) cycle. This cycle can be applied to each manufacturing process so that it can be standardized, reducing the time needed to establish each new process.

Keywords: Antibody drugs, biologics, manufacturing efficiency, PDCA cycle, quality engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
3273 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract:

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
3272 Energy Retrofitting Application Research to Achieve Energy Efficiency in Hot-Arid Climates in Residential Buildings: A Case Study of Saudi Arabia

Authors: A. Felimban, A. Prieto, U. Knaack, T. Klein

Abstract:

This study aims to present an overview of recent research in building energy-retrofitting strategy applications and analyzing them within the context of hot arid climate regions which is in this case study represented by the Kingdom of Saudi Arabia. The main goal of this research is to do an analytical study of recent research approaches to show where the primary gap in knowledge exists and outline which possible strategies are available that can be applied in future research. Also, the paper focuses on energy retrofitting strategies at a building envelop level. The study is limited to specific measures within the hot arid climate region. Scientific articles were carefully chosen as they met the expression criteria, such as retrofitting, energy-retrofitting, hot-arid, energy efficiency, residential buildings, which helped narrow the research scope. Then the papers were explored through descriptive analysis and justified results within the Saudi context in order to draw an overview of future opportunities from the field of study for the last two decades. The conclusions of the analysis of the recent research confirmed that the field of study had a research shortage on investigating actual applications and testing of newly introduced energy efficiency applications, lack of energy cost feasibility studies and there was also a lack of public awareness. In terms of research methods, it was found that simulation software was a major instrument used in energy retrofitting application research. The main knowledge gaps that were identified included the need for certain research regarding actual application testing; energy retrofitting strategies application feasibility; the lack of research on the importance of how strategies apply first followed by the user acceptance of developed scenarios.

Keywords: Energy efficiency, energy retrofitting, hot arid climate, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
3271 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is a subset of the Deep Reinforcement Learning (DRL) combines Deep Neural Networks (DNN) with Reinforcement Learning (RL). This approach finds the optimal policy of robot movement, based on the experience it gains from interaction with its environment. Unlike previous policy gradient algorithms, which were unable to handle the two types of error variance and bias introduced by the DNN model due to over- or underestimation, this algorithm is capable of handling both types of error variance and bias. This article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: Deep neural networks, deep reinforcement learning, Proximal Policy Optimization, state-of-the-art, trust region policy optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184
3270 Awareness of Reading Strategies among EFL Learners at Bangkok University

Authors: Nuttanuch Munsakorn

Abstract:

This questionnaire-based study, aimed to measure and compare the awareness of English reading strategies among EFL learners at Bangkok University (BU) classified by their gender, field of study, and English learning experience. Proportional stratified random sampling was employed to formulate a sample of 380 BU students. The data were statistically analyzed in terms of the mean and standard deviation. t-Test analysis was used to find differences in awareness of reading strategies between two groups (-male and female- /-science and social-science students). In addition, one-way analysis of variance (ANOVA) was used to compare reading strategy awareness among BU students with different lengths of English learning experience. The results of this study indicated that the overall awareness of reading strategies of EFL learners at BU was at a high level (ðÑ = 3.60) and that there was no statistically significant difference between males and females, and among students who have different lengths of English learning experience at the significance level of 0.05. However, significant differences among students coming from different fields of study were found at the same level of significance.

Keywords: EFL learners, higher education, reading comprehension, reading strategies

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3938
3269 Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations

Authors: N. M. Kamoh, D. G. Gyemang, M. C. Soomiyol

Abstract:

This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.

Keywords: Collocation shifted Legendre polynomials, Simpson’s rule and Volterra integro-differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
3268 Combination of Different Classifiers for Cardiac Arrhythmia Recognition

Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari

Abstract:

This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.

Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
3267 Analyzing and Comparing the Architectural Specifications and the Urban Role of Scientific– Technological Parks in Iran and the World

Authors: Shahryar Shaghaghi G., Mojtaba H. Ghoshouni, Bahareh S. Ghabel

Abstract:

The issue of scientific – technological parks has been proposed in several countries of the world especially in western countries since a few decades ago and its efficiency is under examination. In our county Iran, some scientific – technological parks have been established or are being established. This design would evaluate the urban role and method of architecture of these parks in order to criticize its efficiency and offer some suggestions, as much as possible to improve its building methods in Iran. The main problem of this design is that how much these parks in Iran do meet the international measurements. So for this reason, one scientific park in Iran and one from western countries would be studied and compared with each other.

Keywords: Applicability, Architectural pattern, Scientific _technological park , Urban role

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
3266 Performance Evaluation of A Stratified Chilled- Water Thermal Storage System

Authors: M. A. Karim

Abstract:

In countries with hot climates, air-conditioning forms a large proportion of annual peak electrical demand, requiring expansion of power plants to meet the peak demand, which goes unused most of the time. Use of well-designed cool storage can offset the peak demand to a large extent. In this study, an air conditioning system with naturally stratified storage tank was designed, constructed and tested. A new type of diffuser was designed and used in this study. Factors that influence the performance of chilled water storage tanks were investigated. The results indicated that stratified storage tank consistently stratified well without any physical barrier. Investigation also showed that storage efficiency decreased with increasing flow rate due to increased mixing of warm and chilled water. Diffuser design and layout primarily affected the mixing near the inlet diffuser and the extent of this mixing had primary influence on the shape of the thermocline. The heat conduction through tank walls and through the thermocline caused widening of mixed volume. Thermal efficiency of stratified storage tanks was as high as 90 percent, which indicates that stratified tanks can effectively be used as a load management technique.

Keywords: Cool Thermal Storage, Diffuser, Natural Stratification, Efficiency Improvement, Load management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3620
3265 Benchmarking Cleaner Production Performance of Coal-fired Power Plants Using Two-stage Super-efficiency Data Envelopment Analysis

Authors: Shao-lun Zeng, Yu-long Ren

Abstract:

Benchmarking cleaner production performance is an effective way of pollution control and emission reduction in coal-fired power industry. A benchmarking method using two-stage super-efficiency data envelopment analysis for coal-fired power plants is proposed – firstly, to improve the cleaner production performance of DEA-inefficient or weakly DEA-efficient plants, then to select the benchmark from performance-improved power plants. An empirical study is carried out with the survey data of 24 coal-fired power plants. The result shows that in the first stage the performance of 16 plants is DEA-efficient and that of 8 plants is relatively inefficient. The target values for improving DEA-inefficient plants are acquired by projection analysis. The efficient performance of 24 power plants and the benchmarking plant is achieved in the second stage. The two-stage benchmarking method is practical to select the optimal benchmark in the cleaner production of coal-fired power industry and will continuously improve plants- cleaner production performance.

Keywords: benchmarking, cleaner production performance, coal-fired power plant, super-efficiency data envelopment analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
3264 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments

Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis

Abstract:

In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.

Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
3263 Ratio Type Estimators of the Population Mean Based on Ranked Set Sampling

Authors: Said Ali Al-Hadhrami

Abstract:

Ranked set sampling (RSS) was first suggested to increase the efficiency of the population mean. It has been shown that this method is highly beneficial to the estimation based on simple random sampling (SRS). There has been considerable development and many modifications were done on this method. When a concomitant variable is available, ratio estimation based on ranked set sampling was proposed. This ratio estimator is more efficient than that based on SRS. In this paper some ratio type estimators of the population mean based on RSS are suggested. These estimators are found to be more efficient than the estimators of similar form using simple random sample.

Keywords: Bias, Efficiency, Ranked Set Sampling, Ratio Type Estimator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
3262 NSBS: Design of a Network Storage Backup System

Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan

Abstract:

The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and the snapshot and hierarchical index are used in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.

Keywords: Agent, network backup system, three architecture model, NSBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
3261 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
3260 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser

Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua

Abstract:

In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.

Keywords: Energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
3259 Development of Mobile Application for Energy Consumption Assessment of University Buildings

Authors: M. H. Chung, B. Y. Lee, Y. Kim, E. K. Rhee

Abstract:

With an increase in the interest in the energy conservation for buildings, and the emergence of many methods and easily-understandable approaches to it, energy conservation has now become the public’s main interest, as compared to in the past when it was only focused upon by experts. This study aims to help the occupants of a building to understand the energy efficiency and consumption of the building by providing them information on the building’s energy efficiency through a mobile application. The energy performance assessment models are proposed on the basis of the actual energy usage and building characteristics such as the architectural scheme and the building equipment. The university buildings in Korea are used as a case to demonstrate the mobile application.

Keywords: Energy consumption, energy performance assessment, mobile application, university buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
3258 Methods for Analyzing the Energy Efficiencyand Cost Effectiveness of Evaporative Cooling Air Conditioning

Authors: A Fouda, Z. Melikyan

Abstract:

Air conditioning systems of houses consume large quantity of electricity. To reducing energy consumption for air conditioning purposes it is becoming attractive the use of evaporative cooling air conditioning which is less energy consuming compared to air chillers. But, it is obvious that higher energy efficiency of evaporative cooling is not enough to judge whether evaporative cooling economically is competitive with other types of cooling systems. To proving the higher energy efficiency and cost effectiveness of the evaporative cooling competitive analysis of various types of cooling system should be accomplished. For noted purpose optimization mathematical model for each system should be composed based on system approach analysis. In this paper different types of evaporative cooling-heating systems are discussed and methods for increasing their energy efficiency and as well as determining of their design parameters are developed. The optimization mathematical models for each of them are composed with help of which least specific costs for each of them are reviled. The comparison of specific costs proved that the most efficient and cost effective is considered the “direct evaporating" system if it is applicable for given climatic conditions. Next more universal and applicable for many climatic conditions system providing least cost of heating and cooling is considered the “direct evaporating" system.

Keywords: air, conditioning, system, evaporative cooling, mathematical model, optimization, thermoeconomic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
3257 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach

Authors: Hamed Rahmani, Wim Groot

Abstract:

The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Center of Iran and the Ministry of Cooperatives Labor and Social Welfare that are taken from the labor force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of 6 years in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education, years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.

Keywords: NEET youth, probit, CART, machine learning, unemployment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 349