Search results for: data association.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7617

Search results for: data association.

6477 Distributed Splay Suffix Arrays: A New Structure for Distributed String Search

Authors: Tu Kun, Gu Nai-jie, Bi Kun, Liu Gang, Dong Wan-li

Abstract:

As a structure for processing string problem, suffix array is certainly widely-known and extensively-studied. But if the string access pattern follows the “90/10" rule, suffix array can not take advantage of the fact that we often find something that we have just found. Although the splay tree is an efficient data structure for small documents when the access pattern follows the “90/10" rule, it requires many structures and an excessive amount of pointer manipulations for efficiently processing and searching large documents. In this paper, we propose a new and conceptually powerful data structure, called splay suffix arrays (SSA), for string search. This data structure combines the features of splay tree and suffix arrays into a new approach which is suitable to implementation on both conventional and clustered computers.

Keywords: suffix arrays, splay tree, string search, distributedalgorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
6476 The Diet Adherence in Cardiovascular Disease Risk Factors Patients in the North of Iran Based on the Mediterranean Diet Adherence

Authors: Marjan Mahdavi-Roshan, Arsalan Salari, Mahboobeh Gholipour, Moona Naghshbandi

Abstract:

Background and objectives: Before any nutritional intervention, it is necessary to have the prospect of eating habits of people with cardiovascular risk factors. In this study, we assessed the adherence of healthy diet based on Mediterranean dietary pattern and related factors in adults in the north of Iran. Methods: This study was conducted on 550 men and women with cardiovascular risk factors that referred to Heshmat hospital in Rasht, northern Iran. Information was collected by interview and reading medical history and measuring anthropometric indexes. The Mediterranean Diet Adherence Screener was used for assessing dietary adherence, this screener was modified according to religious beliefs and culture of Iran. Results: The mean age of participants was 58±0.38 years. The mean of body mass index was 27±0.01 kg/m2, and the mean of waist circumference was 98±0.2 cm. The mean of dietary adherence was 5.76±0.07. 45% of participants had low adherence, and just 4% had suitable adherence. The mean of dietary adherence in men was significantly higher than women (p=0. 07). Participants in rural area and high educational participants insignificantly had an unsuitable dietary Adherence. There was no significant association between some cardiovascular disease risk factors and dietary adherence. Conclusion: Education to different group about dietary intake correction and using a Mediterranean dietary pattern that is similar to dietary intake in the north of Iran, for controlling cardiovascular disease is necessary.

Keywords: Dietary adherence, Mediterranean dietary pattern, cardiovascular disease, north of Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
6475 Dimension Free Rigid Point Set Registration in Linear Time

Authors: Jianqin Qu

Abstract:

This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.

Keywords: Covariant point, point matching, dimension free, rigid registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
6474 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison

Authors: Laurent Thiry, Michel Hassenforder

Abstract:

This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.

Keywords: Data transformation, functional programming, information server, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
6473 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things

Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker

Abstract:

Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.

Keywords: CUSUM, evidence theory, KL divergence, quickest change detection, time series data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
6472 A Secure Proxy Signature Scheme with Fault Tolerance Based on RSA System

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Due to the rapid growth in modern communication systems, fault tolerance and data security are two important issues in a secure transaction. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a secure proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.

Keywords: Proxy signature, fault tolerance, RSA, key agreement protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
6471 Hybrid Intelligent Intrusion Detection System

Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed

Abstract:

Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.

Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
6470 Investigation of Learning Challenges in Building Measurement Unit

Authors: Argaw T. Gurmu, Muhammad N. Mahmood

Abstract:

The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units.

Keywords: Building measurement, construction management, learning challenges, evaluate survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
6469 An Efficient and Generic Hybrid Framework for High Dimensional Data Clustering

Authors: Dharmveer Singh Rajput , P. K. Singh, Mahua Bhattacharya

Abstract:

Clustering in high dimensional space is a difficult problem which is recurrent in many fields of science and engineering, e.g., bioinformatics, image processing, pattern reorganization and data mining. In high dimensional space some of the dimensions are likely to be irrelevant, thus hiding the possible clustering. In very high dimensions it is common for all the objects in a dataset to be nearly equidistant from each other, completely masking the clusters. Hence, performance of the clustering algorithm decreases. In this paper, we propose an algorithmic framework which combines the (reduct) concept of rough set theory with the k-means algorithm to remove the irrelevant dimensions in a high dimensional space and obtain appropriate clusters. Our experiment on test data shows that this framework increases efficiency of the clustering process and accuracy of the results.

Keywords: High dimensional clustering, sub-space, k-means, rough set, discernibility matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
6468 A Model to Study the Effect of Excess Buffers and Na+ Ions on Ca2+ Diffusion in Neuron Cell

Authors: Vikas Tewari, Shivendra Tewari, K. R. Pardasani

Abstract:

Calcium is a vital second messenger used in signal transduction. Calcium controls secretion, cell movement, muscular contraction, cell differentiation, ciliary beating and so on. Two theories have been used to simplify the system of reaction-diffusion equations of calcium into a single equation. One is excess buffer approximation (EBA) which assumes that mobile buffer is present in excess and cannot be saturated. The other is rapid buffer approximation (RBA), which assumes that calcium binding to buffer is rapid compared to calcium diffusion rate. In the present work, attempt has been made to develop a model for calcium diffusion under excess buffer approximation in neuron cells. This model incorporates the effect of [Na+] influx on [Ca2+] diffusion,variable calcium and sodium sources, sodium-calcium exchange protein, Sarcolemmal Calcium ATPase pump, sodium and calcium channels. The proposed mathematical model leads to a system of partial differential equations which have been solved numerically using Forward Time Centered Space (FTCS) approach. The numerical results have been used to study the relationships among different types of parameters such as buffer concentration, association rate, calcium permeability.

Keywords: Excess buffer approximation, Na+ influx, sodium calcium exchange protein, sarcolemmal calcium atpase pump, forward time centred space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
6467 A Rule-based Approach for Anomaly Detection in Subscriber Usage Pattern

Authors: Rupesh K. Gopal, Saroj K. Meher

Abstract:

In this report we present a rule-based approach to detect anomalous telephone calls. The method described here uses subscriber usage CDR (call detail record) data sampled over two observation periods: study period and test period. The study period contains call records of customers- non-anomalous behaviour. Customers are first grouped according to their similar usage behaviour (like, average number of local calls per week, etc). For customers in each group, we develop a probabilistic model to describe their usage. Next, we use maximum likelihood estimation (MLE) to estimate the parameters of the calling behaviour. Then we determine thresholds by calculating acceptable change within a group. MLE is used on the data in the test period to estimate the parameters of the calling behaviour. These parameters are compared against thresholds. Any deviation beyond the threshold is used to raise an alarm. This method has the advantage of identifying local anomalies as compared to techniques which identify global anomalies. The method is tested for 90 days of study data and 10 days of test data of telecom customers. For medium to large deviations in the data in test window, the method is able to identify 90% of anomalous usage with less than 1% false alarm rate.

Keywords: Subscription fraud, fraud detection, anomalydetection, maximum likelihood estimation, rule based systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813
6466 The Effect of the Hourly Compensation on the Unemployment Rate: Comparative Analysis of United States, Canada and the United Kingdom Using Panel Data Regression Analysis

Authors: Ashiquer Rahman, Hares Mohammad, Ummey Salma

Abstract:

A country’s hourly compensation and unemployment rates are two of its most crucial components. They are not merely statistics but they have profound effects on individual, families, country, and the economy. They are inversely related to one another. The increased hourly compensation in the manufacturing sector can have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, in order to determine the effect of hourly compensation on unemployment rate, we use the panel data regression models and evaluate the expected link between hourly compensation and unemployment rate. We estimate the fixed effects model (FEM), evaluate the error components model (ECM), and determine which model (the FEM or ECM) is better through pooling all 60 observations. We then analyze and review the data by comparing countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of this extensive research on how the hourly compensation affects unemployment rate. Additionally, this paper offers relevant and useful guideline for the government and academic community to use an econometrics and social approach for the hourly compensation on unemployment rate to eliminate the problem.

Keywords: Hourly compensation, unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70
6465 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: Metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
6464 An Analysis of Compression Methods and Implementation of Medical Images in Wireless Network

Authors: C. Rajan, K. Geetha, S. Geetha

Abstract:

The motivation of image compression technique is to reduce the irrelevance and redundancy of the image data in order to store or pass data in an efficient way from one place to another place. There are several types of compression methods available. Without the help of compression technique, the file size is knowingly larger, usually several megabytes, but by doing the compression technique, it is possible to reduce file size up to 10% as of the original without noticeable loss in quality. Image compression can be lossless or lossy. The compression technique can be applied to images, audio, video and text data. This research work mainly concentrates on methods of encoding, DCT, compression methods, security, etc. Different methodologies and network simulations have been analyzed here. Various methods of compression methodologies and its performance metrics has been investigated and presented in a table manner.

Keywords: Image compression techniques, encoding, DCT, lossy compression, lossless compression, JPEG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188
6463 A Meta-Analytic Path Analysis of e-Learning Acceptance Model

Authors: David W.S. Tai, Ren-Cheng Zhang, Sheng-Hung Chang, Chin-Pin Chen, Jia-Ling Chen

Abstract:

This study reports results of a meta-analytic path analysis e-learning Acceptance Model with k = 27 studies, Databases searched included Information Sciences Institute (ISI) website. Variables recorded included perceived usefulness, perceived ease of use, attitude toward behavior, and behavioral intention to use e-learning. A correlation matrix of these variables was derived from meta-analytic data and then analyzed by using structural path analysis to test the fitness of the e-learning acceptance model to the observed aggregated data. Results showed the revised hypothesized model to be a reasonable, good fit to aggregated data. Furthermore, discussions and implications are given in this article.

Keywords: E-learning, Meta Analytic Path Analysis, Technology Acceptance Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
6462 The Integration of Patient Health Record Generated from Wearable and Internet of Things Devices into Health Information Exchanges

Authors: Dalvin D. Hill, Hector M. Castro Garcia

Abstract:

A growing number of individuals utilize wearable devices on a daily basis. The usage and functionality of these wearable devices vary from user to user. One popular usage of said devices is to track health-related activities that are typically stored on a device’s memory or uploaded to an account in the cloud; based on the current trend, the data accumulated from the wearable device are stored in a standalone location. In many of these cases, this health related datum is not a factor when considering the holistic view of a user’s health lifestyle or record. This health-related data generated from wearable and Internet of Things (IoT) devices can serve as empirical information to a medical provider, as the standalone data can add value to the holistic health record of a patient. This paper proposes a solution to incorporate the data gathered from these wearable and IoT devices, with that a patient’s Personal Health Record (PHR) stored within the confines of a Health Information Exchange (HIE).

Keywords: Electronic health record, health information exchanges, Internet of Things, personal health records, wearable devices, wearables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
6461 Cooperative Data Caching in WSN

Authors: Narottam Chand

Abstract:

Wireless sensor networks (WSNs) have gained tremendous attention in recent years due to their numerous applications. Due to the limited energy resource, energy efficient operation of sensor nodes is a key issue in wireless sensor networks. Cooperative caching which ensures sharing of data among various nodes reduces the number of communications over the wireless channels and thus enhances the overall lifetime of a wireless sensor network. In this paper, we propose a cooperative caching scheme called ZCS (Zone Cooperation at Sensors) for wireless sensor networks. In ZCS scheme, one-hop neighbors of a sensor node form a cooperative cache zone and share the cached data with each other. Simulation experiments show that the ZCS caching scheme achieves significant improvements in byte hit ratio and average query latency in comparison with other caching strategies.

Keywords: Admission control, cache replacement, cooperative caching, WSN, zone cooperation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2758
6460 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks

Authors: L. Parisi

Abstract:

Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.

Keywords: Kinetics, kinematics, cyclograms, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
6459 The Automated Selective Acquisition System

Authors: Atisthan Wuttimanop, Suchada Rianmora

Abstract:

To support design process for launching the product on time, reverse engineering (RE) process has been introduced for quickly generating 3D CAD model from its physical object. The accuracy of the 3D CAD model depends upon the data acquisition technique selected, contact or non-contact methods. In order to reduce times used for acquiring surface and eliminating noises, the automated selective acquisition system has been developed and presented in this research as the alternative channel for non-contact acquisition technique where the data is selectively and locally scanned contour by contour without performing data reduction process. The results present as the organized contour points which are directly used to generate 3D virtual model. The comparison between the proposed technique and another non-contact scanning technique has been presented and discussed.

Keywords: Automated selective acquisition system, Non-contact acquisition, Reverse engineering, 3D scanners.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
6458 Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface

Authors: Srijanani Anurag Prasad

Abstract:

The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprise a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS.

Keywords: Fractal, interpolation, iterated function system, coalescence, node insertion, knot insertion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341
6457 Comparative Study on Swarm Intelligence Techniques for Biclustering of Microarray Gene Expression Data

Authors: R. Balamurugan, A. M. Natarajan, K. Premalatha

Abstract:

Microarray gene expression data play a vital in biological processes, gene regulation and disease mechanism. Biclustering in gene expression data is a subset of the genes indicating consistent patterns under the subset of the conditions. Finding a biclustering is an optimization problem. In recent years, swarm intelligence techniques are popular due to the fact that many real-world problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to find an optimization technique whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. In this paper, the algorithmic concepts of the Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo Search (CS) algorithms have been analyzed for the four benchmark gene expression dataset. The experiment results show that CS outperforms PSO and SFL for 3 datasets and SFL give better performance in one dataset. Also this work determines the biological relevance of the biclusters with Gene Ontology in terms of function, process and component.

Keywords: Particle swarm optimization, Shuffled frog leaping, Cuckoo search, biclustering, gene expression data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
6456 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank

Authors: Jalal Haghighat Monfared, Zahra Akbari

Abstract:

Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.

Keywords: Business intelligence, business intelligence capability, decision making, decision quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
6455 Producing Outdoor Design Conditions Based on the Dependency between Meteorological Elements: Copula Approach

Authors: Zhichao Jiao, Craig Farnham, Jihui Yuan, Kazuo Emura

Abstract:

It is common to use the outdoor design weather data to select the air-conditioning capacity in the building design stage. The meteorological elements of outdoor design weather data are usually selected based on their excess frequency separately while the dependency between the elements is not well considered. It means that the simultaneous occurrence probability of these elements is smaller than the original excess frequency which may cause an overestimation of selecting air-conditioning capacity. Therefore, the copula approach which can capture the dependency between multivariate data was used to model the joint distributions of the meteorological elements, like air temperature and global solar radiation. We suggest a method based on the specific simultaneous occurrence probability of these two elements of selecting more credible outdoor design conditions. The hourly weather data at 12 noon from 2001 to 2010 in Tokyo, Japan are used to analyze the dependency structure and joint distribution, the Gaussian copula represents the dependence of data best. According to calculating the air temperature and global solar radiation in specific simultaneous occurrence probability and the common exceeding, the results show that both the air temperature and global solar radiation based on simultaneous occurrence probability are lower than these based on the conventional method in the same probability.

Keywords: Copula approach, Design weather database, energy conservation, HVAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 361
6454 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution

Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani S. Alghamdi

Abstract:

Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.

Keywords: Binary segmentation, change point, exponential Lomax distribution, information criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341
6453 Two-Phase Optimization for Selecting Materialized Views in a Data Warehouse

Authors: Jiratta Phuboon-ob, Raweewan Auepanwiriyakul

Abstract:

A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance. Therefore, in this paper, we introduce a new approach aimed to solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that 2PO outperform the original algorithms in terms of query processing cost and view maintenance cost.

Keywords: Data warehouse, materialized views, view selectionproblem, two-phase optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
6452 Stakeholder Analysis of Agricultural Drone Policy: A Case Study of the Agricultural Drone Ecosystem of Thailand

Authors: Thanomsin Chakreeves, Atichat Preittigun, Ajchara Phu-ang

Abstract:

This paper presents a stakeholder analysis of agricultural drone policies that meet the government's goal of building an agricultural drone ecosystem in Thailand. Firstly, case studies from other countries are reviewed. The stakeholder analysis method and qualitative data from the interviews are then presented including data from the Institute of Innovation and Management, the Office of National Higher Education Science Research and Innovation Policy Council, agricultural entrepreneurs and farmers. Study and interview data are then employed to describe the current ecosystem and to guide the implementation of agricultural drone policies that are suitable for the ecosystem of Thailand. Finally, policy recommendations are then made that the Thai government should adopt in the future.

Keywords: Drone public policy, drone ecosystem, policy development, agricultural drone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
6451 Study and Analysis of Optical Intersatellite Links

Authors: Boudene Maamar, Xu Mai

Abstract:

Optical Intersatellite Links (OISLs) are wireless communications using optical signals to interconnect satellites. It is expected to be the next generation wireless communication technology according to its inherent characteristics like: an increased bandwidth, a high data rate, a data transmission security, an immunity to interference, and an unregulated spectrum etc. Optical space links are the best choice for the classical communication schemes due to its distinctive properties; high frequency, small antenna diameter and lowest transmitted power, which are critical factors to define a space communication. This paper discusses the development of free space technology and analyses the parameters and factors to establish a reliable intersatellite links using an optical signal to exchange data between satellites.

Keywords: Optical intersatellite links, optical wireless communications, free space optical communications, next generation wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3034
6450 Ranking Genes from DNA Microarray Data of Cervical Cancer by a local Tree Comparison

Authors: Frank Emmert-Streib, Matthias Dehmer, Jing Liu, Max Muhlhauser

Abstract:

The major objective of this paper is to introduce a new method to select genes from DNA microarray data. As criterion to select genes we suggest to measure the local changes in the correlation graph of each gene and to select those genes whose local changes are largest. More precisely, we calculate the correlation networks from DNA microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to tumor progression. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth. This indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Keywords: Graph similarity, generalized trees, graph alignment, DNA microarray data, cervical cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
6449 Parallelization of Ensemble Kalman Filter (EnKF) for Oil Reservoirs with Time-lapse Seismic Data

Authors: Md Khairullah, Hai-Xiang Lin, Remus G. Hanea, Arnold W. Heemink

Abstract:

In this paper we describe the design and implementation of a parallel algorithm for data assimilation with ensemble Kalman filter (EnKF) for oil reservoir history matching problem. The use of large number of observations from time-lapse seismic leads to a large turnaround time for the analysis step, in addition to the time consuming simulations of the realizations. For efficient parallelization it is important to consider parallel computation at the analysis step. Our experiments show that parallelization of the analysis step in addition to the forecast step has good scalability, exploiting the same set of resources with some additional efforts.

Keywords: EnKF, Data assimilation, Parallel computing, Parallel efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
6448 Bandwidth Allocation for ABR Service in Cellular Networks

Authors: Khaja Kamaluddin, Muhammed Yousoof

Abstract:

Available Bit Rate Service (ABR) is the lower priority service and the better service for the transmission of data. On wireline ATM networks ABR source is always getting the feedback from switches about increase or decrease of bandwidth according to the changing network conditions and minimum bandwidth is guaranteed. In wireless networks guaranteeing the minimum bandwidth is really a challenging task as the source is always in mobile and traveling from one cell to another cell. Re establishment of virtual circuits from start to end every time causes the delay in transmission. In our proposed solution we proposed the mechanism to provide more available bandwidth to the ABR source by re-usage of part of old Virtual Channels and establishing the new ones. We want the ABR source to transmit the data continuously (non-stop) inorderto avoid the delay. In worst case scenario at least minimum bandwidth is to be allocated. In order to keep the data flow continuously, priority is given to the handoff ABR call against new ABR call.

Keywords: Bandwidth allocation, Virtual Channel (VC), CBR, ABR, MCR and QOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600