Search results for: Fuzzy random variables
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2617

Search results for: Fuzzy random variables

1477 Principal Component Analysis using Singular Value Decomposition of Microarray Data

Authors: Dong Hoon Lim

Abstract:

A series of microarray experiments produces observations of differential expression for thousands of genes across multiple conditions. Principal component analysis(PCA) has been widely used in multivariate data analysis to reduce the dimensionality of the data in order to simplify subsequent analysis and allow for summarization of the data in a parsimonious manner. PCA, which can be implemented via a singular value decomposition(SVD), is useful for analysis of microarray data. For application of PCA using SVD we use the DNA microarray data for the small round blue cell tumors(SRBCT) of childhood by Khan et al.(2001). To decide the number of components which account for sufficient amount of information we draw scree plot. Biplot, a graphic display associated with PCA, reveals important features that exhibit relationship between variables and also the relationship of variables with observations.

Keywords: Principal component analysis, singular value decomposition, microarray data, SRBCT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3250
1476 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
1475 Modelling Dengue Fever (DF) and Dengue Haemorrhagic Fever (DHF) Outbreak Using Poisson and Negative Binomial Model

Authors: W. Y. Wan Fairos, W. H. Wan Azaki, L. Mohamad Alias, Y. Bee Wah

Abstract:

Dengue fever has become a major concern for health authorities all over the world particularly in the tropical countries. These countries, in particular are experiencing the most worrying outbreak of dengue fever (DF) and dengue haemorrhagic fever (DHF). The DF and DHF epidemics, thus, have become the main causes of hospital admissions and deaths in Malaysia. This paper, therefore, attempts to examine the environmental factors that may influence the recent dengue outbreak. The aim of this study is twofold, firstly is to establish a statistical model to describe the relationship between the number of dengue cases and a range of explanatory variables and secondly, to identify the lag operator for explanatory variables which affect the dengue incidence the most. The explanatory variables involved include the level of cloud cover, percentage of relative humidity, amount of rainfall, maximum temperature, minimum temperature and wind speed. The Poisson and Negative Binomial regression analyses were used in this study. The results of the analyses on the 915 observations (daily data taken from July 2006 to Dec 2008), reveal that the climatic factors comprising of daily temperature and wind speed were found to significantly influence the incidence of dengue fever after 2 and 3 weeks of their occurrences. The effect of humidity, on the other hand, appears to be significant only after 2 weeks.

Keywords: Dengue Fever, Dengue Hemorrhagic Fever, Negative Binomial Regression model, Poisson Regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2815
1474 On Generalizing Rough Set Theory via using a Filter

Authors: Serkan Narlı, Ahmet Z. Ozcelik

Abstract:

The theory of rough sets is generalized by using a filter. The filter is induced by binary relations and it is used to generalize the basic rough set concepts. The knowledge representations and processing of binary relations in the style of rough set theory are investigated.

Keywords: Rough set, fuzzy set, membership function, knowledge representation and processing, information theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
1473 Effect of Ambient Oxygen Content and Lifting Frequency on the Participant’s Lifting Capabilities, Muscle Activities, and Perceived Exertion

Authors: Atef M. Ghaleb, Mohamed Z. Ramadan, Khalid Saad Aljaloud

Abstract:

The aim of this study is to assesses the lifting capabilities of persons experiencing hypoxia. It also examines the behavior of the physiological response induced through the lifting process related to changing in the hypoxia and lifting frequency variables. For this purpose, the study performed two consecutive tests by using; (1) training and acclimatization; and (2) an actual collection of data. A total of 10 male students from King Saud University, Kingdom of Saudi Arabia, were recruited in the study. A two-way repeated measures design, with two independent variables (ambient oxygen (15%, 18% and 21%)) and lifting frequency (1 lift/min and 4 lifts/min) and four dependent variables i.e., maximum acceptable weight of lift (MAWL), Electromyography (EMG) of four muscle groups (anterior deltoid, trapezius, biceps brachii, and erector spinae), rating of perceived exertion (RPE), and rating of oxygen feeling (ROF) were used in this study. The results show that lifting frequency has significantly impacted the MAWL and muscles’ activities. The oxygen content had a significant effect on the RPE and ROE. The study has revealed that acclimatization and training sessions significantly reduce the effect of the hypoxia on the human physiological parameters during the manual materials handling tasks.

Keywords: Lifting capabilities, muscle activities (sEMG), oxygen content, perceived exertion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
1472 The Role of Personality Characteristics and Psychological Harassment Behaviors Which Employees Are Exposed on Work Alienation

Authors: H. Serdar Öge, Esra Çiftçi, Kazım Karaboğa

Abstract:

The main purpose of the research is to address the role of psychological harassment behaviors (mobbing) to which employees are exposed and personality characteristics over work alienation. Research population was composed of the employees of Provincial Special Administration. A survey with four sections was created to measure variables and reach out the basic goals of the research. Correlation and step-wise regression analyses were performed to investigate the separate and overall effects of sub-dimensions of psychological harassment behaviors and personality characteristic on work alienation of employees. Correlation analysis revealed significant but weak relationships between work alienation and psychological harassment and personality characteristics. Step-wise regression analysis revealed also significant relationships between work alienation variable and assault to personality, direct negative behaviors (sub dimensions of mobbing) and openness (sub-dimension of personality characteristics). Each variable was introduced into the model step by step to investigate the effects of significant variables in explaining the variations in work alienation. While the explanation ratio of the first model was 13%, the last model including three variables had an explanation ratio of 24%.

Keywords: Alienation, Five-Factor Personality Characteristics, Mobbing, Psychological Harassment, Work Alienation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
1471 Valuing Environmental Impact of Air Pollution in Moscow with Hedonic Prices

Authors: V. Komarova

Abstract:

The main purpose of this research is the calculation of implicit prices of the environmental level of air quality in the city of Moscow on the basis of housing property prices. The database used contains records of approximately 20 thousand apartments and has been provided by a leading real estate agency operating in Russia. The explanatory variables include physical characteristics of the houses, environmental (industry emissions), neighbourhood sociodemographic and geographic data: GPS coordinates of each house. The hedonic regression results for ecological variables show «negative» prices while increasing the level of air contamination from such substances as carbon monoxide, nitrogen dioxide, sulphur dioxide, and particles (CO, NO2, SO2, TSP). The marginal willingness to pay for higher environmental quality is presented for linear and log-log models.

Keywords: Air pollution, environment, hedonic prices, real estate, willingness to pay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
1470 An Authentic Algorithm for Ciphering and Deciphering Called Latin Djokovic

Authors: Diogen Babuc

Abstract:

The question that is a motivation of writing is how many devote themselves to discovering something in the world of science where much is discerned and revealed, but at the same time, much is unknown. The insightful elements of this algorithm are the ciphering and deciphering algorithms of Playfair, Caesar, and Vigen`ere. Only a few of their main properties are taken and modified, with the aim of forming a specific functionality of the algorithm called Latin Djokovic. Specifically, a string is entered as input data. A key k is given, with a random value between the values a and b = a+3. The obtained value is stored in a variable with the aim of being constant during the run of the algorithm. In correlation to the given key, the string is divided into several groups of substrings, and each substring has a length of k characters. The next step involves encoding each substring from the list of existing substrings. Encoding is performed using the basis of Caesar algorithm, i.e. shifting with k characters. However, that k is incremented by 1 when moving to the next substring in that list. When the value of k becomes greater than b + 1, it will return to its initial value. The algorithm is executed, following the same procedure, until the last substring in the list is traversed. Using this polyalphabetic method, ciphering and deciphering of strings are achieved. The algorithm also works for a 100-character string. The x character is not used when the number of characters in a substring is incompatible with the expected length. The algorithm is simple to implement, but it is questionable if it works better than the other methods, from the point of view of execution time and storage space.

Keywords: Ciphering and deciphering, Authentic Algorithm, Polyalphabetic Cipher, Random Key, methods comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196
1469 High Speed Rail vs. Other Factors Affecting the Tourism Market in Italy

Authors: F. Pagliara, F. Mauriello

Abstract:

The objective of this paper is to investigate the relationship between the increase of accessibility brought by high speed rail (HSR) systems and the tourism market in Italy. The impacts of HSR projects on tourism can be quantified in different ways. In this manuscript, an empirical analysis has been carried out with the aid of a dataset containing information both on tourism and transport for 99 Italian provinces during the 2006-2016 period. Panel data regression models have been considered, since they allow modelling a wide variety of correlation patterns. Results show that HSR has an impact on the choice of a given destination for Italian tourists while the presence of a second level hub mainly affects foreign tourists. Attraction variables are also significant for both categories and the variables concerning security, such as number of crimes registered in a given destination, have a negative impact on the choice of a destination.

Keywords: Tourists, overnights, high speed rail, attractions, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712
1468 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio

Abstract:

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.

Keywords: Contour orientation histogram, meteors, night sky, RSC neural classifier, stars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407
1467 Environmental Impact of Trade Sector Growth: Evidence from Tanzania

Authors: Mosses E. Lufuke

Abstract:

This paper attempted to investigate whether there is Granger-causality running from trade to environment as evidenced in the changing climatic condition and land degradation. Using Tanzania as the reference, VAR-Granger-causality test was employed to rationalize the conundrum of causal-effect relationship between trade and environment. The changing climatic condition, as the proxy of both nitrous oxide emissions (in thousand metric tons of CO2 equivalent) and land degradation measured by the size of arable land were tested against trade using both exports and imports variables. The result indicated that neither of the trade variables Granger-cause the variability on gas emissions and arable land size. This suggests the possibility that all trade concerns in relation to environment to have been internalized in domestic policies to offset any likely negative consequence.

Keywords: Trade, growth, impact, environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205
1466 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing

Authors: Carolina Gouveia, José Vieira, Pedro Pinho

Abstract:

The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.

Keywords: Bio-signals, DC Component, Doppler Effect, ellipse fitting, radar, SDR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
1465 Quality Fed-Batch Bioprocess Control A Case Study

Authors: Mihai Caramihai, Irina Severin

Abstract:

Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.

Keywords: Fed batch bioprocess, mass-balance model, fuzzy control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
1464 Principal Component Analysis for the Characterization in the Application of Some Soil Properties

Authors: Kamolchanok Panishkan, Kanokporn Swangjang, Natdhera Sanmanee, Daoroong Sungthong

Abstract:

The objective of this research is to study principal component analysis for classification of 67 soil samples collected from different agricultural areas in the western part of Thailand. Six soil properties were measured on the soil samples and are used as original variables. Principal component analysis is applied to reduce the number of original variables. A model based on the first two principal components accounts for 72.24% of total variance. Score plots of first two principal components were used to map with agricultural areas divided into horticulture, field crops and wetland. The results showed some relationships between soil properties and agricultural areas. PCA was shown to be a useful tool for agricultural areas classification based on soil properties.

Keywords: soil organic matter, soil properties, classification, principal components

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4114
1463 Some Properties of IF Rough Relational Algebraic Operators in Medical Databases

Authors: Chhaya Gangwal, R. N. Bhaumik, Shishir Kumar

Abstract:

Some properties of Intuitionistic Fuzzy (IF) rough relational algebraic operators under an IF rough relational data model are investigated and illustrated using diabetes and heart disease databases. These properties are important and desirable for processing queries in an effective and efficient manner.

 

Keywords: IF Set, Rough Set, IF Rough Relational Database, IF rough Relational Operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1462 Extraction Condition of Phaseolus vulgaris

Authors: Ratchadaporn Oonsivilai, Jutarat Manatwiyangkool, Anant Oonsivilai

Abstract:

Theoptimal extraction condition of dried Phaseolus vulgaris powderwas studied. The three independent variables are raw material concentration, shaking and centrifugaltime. The dependent variables are both yield percentage of crude extract and alphaamylase enzyme inhibition activity. The experimental design was based on box-behnkendesign. Highest yield percentage of crude extract could get from extraction condition at concentration of 1, 0,1, concentration of 0.15 M ,extraction time for 2hour, and separationtime for60 min. Moreover, the crude extract with highest alpha-amylase enzyme inhibition activityoccurred by extraction condition at concentration of 0.10 M, extraction time for 2 min, and separation time for 45 min

Keywords: Extraction time, Optimal condition, Alpha-amylase enzymeinhibition activity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
1461 Analysis of Differences between Public and Experts’ Views Regarding Sustainable Development of Developing Cities: A Case Study in the Iraqi Capital Baghdad

Authors: Marwah Mohsin, Thomas Beach, Alan Kwan, Mahdi Ismail

Abstract:

This paper describes the differences in views on sustainable development between the general public and experts in a developing country, Iraq. This paper will answer the question: How do the views of the public differ from the generally accepted view of experts in the context of sustainable urban development in Iraq? In order to answer this question, the views of both the public and the experts will be analysed. These results are taken from a public survey and a Delphi questionnaire. These will be analysed using statistical methods in order to identify the significant differences. This will enable investigation of the different perceptions between the public perceptions and the experts’ views towards urban sustainable development factors. This is important due to the fact that different viewpoints between policy-makers and the public will impact on the acceptance by the public of any future sustainable development work that is undertaken. The brief findings of the statistical analysis show that the views of both the public and the experts are considered different in most of the variables except six variables show no differences. Those variables are ‘The importance of establishing sustainable cities in Iraq’, ‘Mitigate traffic congestion’, ‘Waste recycling and separating’, ‘Use wastewater recycling’, ‘Parks and green spaces’, and ‘Promote investment’.

Keywords: Urban sustainable development, experts’ views, public views, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
1460 The Perception of Customer Satisfaction in Textile Industry According to Genders in Turkey

Authors: Ikilem Gocek, Senem Kursun, Yesim Iridag Beceren

Abstract:

The customer satisfaction for textile sector carries great importance like the customer satisfaction for other sectors carry. Especially, if it is considered that gaining new customers create four times more costs than protecting existing customers from leaving, it can be seen that the customer satisfaction plays a great role for the firms. In this study the affecting independent variables of customer satisfaction are chosen as brand image, perceived service quality and perceived product quality. By these independent variables, it is investigated that if any differences exist in perception of customer satisfaction according to the Turkish textile consumers in the view of gender. In data analysis of this research the SPSS program is used.

Keywords: Customer satisfaction, textile industry, brand image, service quality, product quality, gender.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4477
1459 Categorical Data Modeling: Logistic Regression Software

Authors: Abdellatif Tchantchane

Abstract:

A Matlab based software for logistic regression is developed to enhance the process of teaching quantitative topics and assist researchers with analyzing wide area of applications where categorical data is involved. The software offers an option of performing stepwise logistic regression to select the most significant predictors. The software includes a feature to detect influential observations in data, and investigates the effect of dropping or misclassifying an observation on a predictor variable. The input data may consist either as a set of individual responses (yes/no) with the predictor variables or as grouped records summarizing various categories for each unique set of predictor variables' values. Graphical displays are used to output various statistical results and to assess the goodness of fit of the logistic regression model. The software recognizes possible convergence constraints when present in data, and the user is notified accordingly.

Keywords: Logistic regression, Matlab, Categorical data, Influential observation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
1458 Hidden State Probabilistic Modeling for Complex Wavelet Based Image Registration

Authors: F. C. Calnegru

Abstract:

This article presents a computationally tractable probabilistic model for the relation between the complex wavelet coefficients of two images of the same scene. The two images are acquisitioned at distinct moments of times, or from distinct viewpoints, or by distinct sensors. By means of the introduced probabilistic model, we argue that the similarity between the two images is controlled not by the values of the wavelet coefficients, which can be altered by many factors, but by the nature of the wavelet coefficients, that we model with the help of hidden state variables. We integrate this probabilistic framework in the construction of a new image registration algorithm. This algorithm has sub-pixel accuracy and is robust to noise and to other variations like local illumination changes. We present the performance of our algorithm on various image types.

Keywords: Complex wavelet transform, image registration, modeling using hidden state variables, probabilistic similaritymeasure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
1457 Detecting Email Forgery using Random Forests and Naïve Bayes Classifiers

Authors: Emad E Abdallah, A.F. Otoom, ArwaSaqer, Ola Abu-Aisheh, Diana Omari, Ghadeer Salem

Abstract:

As emails communications have no consistent authentication procedure to ensure the authenticity, we present an investigation analysis approach for detecting forged emails based on Random Forests and Naïve Bays classifiers. Instead of investigating the email headers, we use the body content to extract a unique writing style for all the possible suspects. Our approach consists of four main steps: (1) The cybercrime investigator extract different effective features including structural, lexical, linguistic, and syntactic evidence from previous emails for all the possible suspects, (2) The extracted features vectors are normalized to increase the accuracy rate. (3) The normalized features are then used to train the learning engine, (4) upon receiving the anonymous email (M); we apply the feature extraction process to produce a feature vector. Finally, using the machine learning classifiers the email is assigned to one of the suspects- whose writing style closely matches M. Experimental results on real data sets show the improved performance of the proposed method and the ability of identifying the authors with a very limited number of features.

Keywords: Digital investigation, cybercrimes, emails forensics, anonymous emails, writing style, and authorship analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5254
1456 Discrete Time Optimal Solution for the Connection Admission Control Problem

Authors: C. Bruni, F. Delli Priscoli, G. Koch, I. Marchetti

Abstract:

The Connection Admission Control (CAC) problem is formulated in this paper as a discrete time optimal control problem. The control variables account for the acceptance/ rejection of new connections and forced dropping of in-progress connections. These variables are constrained to meet suitable conditions which account for the QoS requirements (Link Availability, Blocking Probability, Dropping Probability). The performance index evaluates the total throughput. At each discrete time, the problem is solved as an integer-valued linear programming one. The proposed procedure was successfully tested against suitably simulated data.

Keywords: Connection Admission Control, Optimal Control, Integer valued Linear Programming, Quality of Service Requirements, Robust Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
1455 Bioprocess Intelligent Control: A Case Study

Authors: Mihai Caramihai Ana A Chirvase, Irina Severin

Abstract:

Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.

Keywords: Fed batch bioprocess, mass-balance model, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
1454 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: Dam, failure, limit-state, Monte Carlo simulation, reliability, probability, simulation, sliding, Taylor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
1453 Newton-Raphson State Estimation Solution Employing Systematically Constructed Jacobian Matrix

Authors: Nursyarizal Mohd Nor, Ramiah Jegatheesan, Perumal Nallagownden

Abstract:

Newton-Raphson State Estimation method using bus admittance matrix remains as an efficient and most popular method to estimate the state variables. Elements of Jacobian matrix are computed from standard expressions which lack physical significance. In this paper, elements of the state estimation Jacobian matrix are obtained considering the power flow measurements in the network elements. These elements are processed one-by-one and the Jacobian matrix H is updated suitably in a simple manner. The constructed Jacobian matrix H is integrated with Weight Least Square method to estimate the state variables. The suggested procedure is successfully tested on IEEE standard systems.

Keywords: State Estimation (SE), Weight Least Square (WLS), Newton-Raphson State Estimation (NRSE), Jacobian matrix H.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
1452 A Meta-Analytic Path Analysis of e-Learning Acceptance Model

Authors: David W.S. Tai, Ren-Cheng Zhang, Sheng-Hung Chang, Chin-Pin Chen, Jia-Ling Chen

Abstract:

This study reports results of a meta-analytic path analysis e-learning Acceptance Model with k = 27 studies, Databases searched included Information Sciences Institute (ISI) website. Variables recorded included perceived usefulness, perceived ease of use, attitude toward behavior, and behavioral intention to use e-learning. A correlation matrix of these variables was derived from meta-analytic data and then analyzed by using structural path analysis to test the fitness of the e-learning acceptance model to the observed aggregated data. Results showed the revised hypothesized model to be a reasonable, good fit to aggregated data. Furthermore, discussions and implications are given in this article.

Keywords: E-learning, Meta Analytic Path Analysis, Technology Acceptance Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
1451 Ensemble Learning with Decision Tree for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.

Keywords: Ensemble learning, decision tree, remote sensingclassification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
1450 The Measurement of Endogenous Higher-Order Formative Composite Variables in PLS-SEM: An Empirical Application from CRM System Development

Authors: Samppa Suoniemi, Harri Terho, Rami Olkkonen

Abstract:

In recent methodological articles related to structural equation modeling (SEM), the question of how to measure endogenous formative variables has been raised as an urgent, unresolved issue. This research presents an empirical application from the CRM system development context to test a recently developed technique, which makes it possible to measure endogenous formative constructs in structural models. PLS path modeling is used to demonstrate the feasibility of measuring antecedent relationships at the formative indicator level, not the formative construct level. Empirical results show that this technique is a promising approach to measure antecedent relationships of formative constructs in SEM.

Keywords: CRM system development, formative measures, PLS path modeling, research methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
1449 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
1448 Developing the Methods for the Study of Static and Dynamic Balance

Authors: K. Abuzayan, H. Alabed, J. Ezarrugh, M. Agila

Abstract:

Static and dynamic balance are essential in daily and sports life. Many factors have been identified as influencing static balance control. Therefore, the aim of this study was to apply the (XCoM) method and other relevant variables (CoP, CoM, Fh, KE, P, Q, and, AI) to investigate sport related activities such as hopping and jumping. Many studies have represented the CoP data without mentioning its accuracy so several experiments were done to establish the agreement between the CoP and the projected CoM in a static condition. 5 healthy male were participated in this study (Mean ± SD:- age 24.6 years ±4.5, height 177cm ± 6.3, body mass 72.8kg ± 6.6).Results found that the implementation of the XCoM method was found to be practical for evaluating both static and dynamic balance. The general findings were that the CoP, the CoM, the XCoM, Fh, and Q were more informative than the other variables (e.g. KE, P, and AI) during static and dynamic balance. The XCoM method was found to be applicable to dynamic balance as well as static balance.

Keywords: Centre of Mass, static balance, Dynamic balance, extrapolated Centre of Mass

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005