Search results for: Technology Based Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13706

Search results for: Technology Based Learning

12596 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls

Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract:

Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.

Keywords: Android, permissions combination, API calls, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
12595 Applying Theory of Perceived Risk and Technology Acceptance Model in the Online Shopping Channel

Authors: Yong-Hui Li, Jing-Wen Huang

Abstract:

As the advancement of technology, online shopping channel develops rapidly in recent years. According to the report of Taiwan Network Information Center, there are almost eighty percents of internet population shopping in online channel. Synthesizing insights from the previous research, this study develops the conceptual model to integrate Theory of Perceived Risk (TPR) and Technology Acceptance Model (TAM) to apply in online shopping. Using data collected from 637 respondents from online survey website, we use structural equation modeling to test measurement and structural models. The results suggest the need for consideration of perceived risk as an antecedent in the Technology Acceptance Model. The limitations and implications are discussed.

Keywords: perceived risk, perceived usefulness, perceived ease of use, behavioral intention, actual purchase behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6442
12594 Blind Image Deconvolution by Neural Recursive Function Approximation

Authors: Jiann-Ming Wu, Hsiao-Chang Chen, Chun-Chang Wu, Pei-Hsun Hsu

Abstract:

This work explores blind image deconvolution by recursive function approximation based on supervised learning of neural networks, under the assumption that a degraded image is linear convolution of an original source image through a linear shift-invariant (LSI) blurring matrix. Supervised learning of neural networks of radial basis functions (RBF) is employed to construct an embedded recursive function within a blurring image, try to extract non-deterministic component of an original source image, and use them to estimate hyper parameters of a linear image degradation model. Based on the estimated blurring matrix, reconstruction of an original source image from a blurred image is further resolved by an annealed Hopfield neural network. By numerical simulations, the proposed novel method is shown effective for faithful estimation of an unknown blurring matrix and restoration of an original source image.

Keywords: Blind image deconvolution, linear shift-invariant(LSI), linear image degradation model, radial basis functions (rbf), recursive function, annealed Hopfield neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
12593 Migrant Women English Instructors’ Transformative Workplace Learning Experiences in Post-Secondary English Language Programs in Ontario, Canada

Authors: Justine Jun

Abstract:

This study aims to reveal migrant women English instructors' workplace learning experiences in Canadian post-secondary institutions in Ontario. Migrant women English instructors in higher education are an understudied group of teachers. This study employs a qualitative research paradigm. Mezirow’s Transformative Learning Theory is an essential lens for the researcher to explain, analyze, and interpret the research data. It is a collaborative research project. The researcher and participants cooperatively create photographic or other artwork data responding to the research questions. Photovoice and arts-informed data collection methodology are the main methods. Research participants engage in the study as co-researchers and inquire about their own workplace learning experiences, actively utilizing their critical self-reflective and dialogic skills. Co-researchers individually select the forms of artwork they prefer to engage with to represent their transformative workplace learning experiences about the Canadian workplace cultures that they underwent while working with colleagues and administrators in the workplace. Once the co-researchers generate their cultural artifacts as research data, they collaboratively interpret their artworks with the researcher and other volunteer co-researchers. Co-researchers jointly investigate the themes emerging from the artworks. They also interpret the meanings of their own and others’ workplace learning experiences embedded in the artworks through interactive one-on-one or group interviews. The following are the research questions that the migrant women English instructor participants examine and answer: (1) What have they learned about their workplace culture and how do they explain their learning experiences? (2) How transformative have their learning experiences been at work? (3) How have their colleagues and administrators influenced their transformative learning? (4) What kind of support have they received? What supports have been valuable to them and what changes would they like to see? (5) What have their learning experiences transformed? (6) What has this arts-informed research process transformed? The study findings implicate English language instructor support currently practiced in post-secondary English language programs in Ontario, Canada, especially for migrant women English instructors. This research is a doctoral empirical study in progress. This study has the urgency to address the research problem that few studies have investigated migrant English instructors’ professional learning and support issues in the workplace, precisely that of English instructors working with adult learners in Canada. While appropriate social and professional support for migrant English instructors is required throughout the country, the present workplace realities in Ontario's English language programs need to be heard soon. For that purpose, the conceptualization of this study is crucial. It makes the investigation of under-represented instructors’ under-researched social phenomena, workplace learning and support, viable and rigorous. This paper demonstrates the robust theorization of English instructors’ workplace experiences using Mezirow’s Transformative Learning Theory in the English language teacher education field. 

Keywords: English teacher education, professional learning, transformative learning theory, workplace learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635
12592 The Effects of Consumer Inertia and Emotions on New Technology Acceptance

Authors: Chyi Jaw

Abstract:

Prior literature on innovation diffusion or acceptance has almost exclusively concentrated on consumers’ positive attitudes and behaviors for new products/services. Consumers’ negative attitudes or behaviors to innovations have received relatively little marketing attention, but it happens frequently in practice. This study discusses consumer psychological factors when they try to learn or use new technologies. According to recent research, technological innovation acceptance has been considered as a dynamic or mediated process. This research argues that consumers can experience inertia and emotions in the initial use of new technologies. However, given such consumer psychology, the argument can be made as to whether the inclusion of consumer inertia (routine seeking and cognitive rigidity) and emotions increases the predictive power of new technology acceptance model. As data from the empirical study find, the process is potentially consumer emotion changing (independent of performance benefits) because of technology complexity and consumer inertia, and impact innovative technology use significantly. Finally, the study presents the superior predictability of the hypothesized model, which let managers can better predict and influence the successful diffusion of complex technological innovations.

Keywords: Cognitive rigidity, consumer emotions, new technology acceptance, routine seeking, technology complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
12591 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
12590 The Role of Gender and Age on Students- Perceptions towards Online Education Case Study: Sakarya University, Vocational High School

Authors: Fahme Dabaj, Havva Başak

Abstract:

The aim of this study is to find out and analyze the role of gender and age on the perceptions of students to the distant online program offered by Vocational High School in Sakarya University. The research is based on a questionnaire as a mean of data collection method to find out the role of age and gender on the student-s perceptions toward online education, and the study progressed through finding relationships between the variables used in the data collection instrument. The findings of the analysis revealed that although the students registered to the online program by will, they preferred the traditional face-to-face education due to the difficulty of the nonverbal communication, their incompetence of using the technology required, and their belief in traditional face-toface learning more than online education. Regarding gender, the results showed that the female students have a better perception of the online education as opposed to the male students. Regarding age, the results showed that the older the students are the more is their preference towards attending face-toface classes.

Keywords: Distance education, online education, interneteducation, student perceptions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
12589 Change Management in Business Process Modeling Based on Object Oriented Petri Net

Authors: Bassam Atieh Rajabi, Sai Peck Lee

Abstract:

Business Process Modeling (BPM) is the first and most important step in business process management lifecycle. Graph based formalism and rule based formalism are the two most predominant formalisms on which process modeling languages are developed. BPM technology continues to face challenges in coping with dynamic business environments where requirements and goals are constantly changing at the execution time. Graph based formalisms incur problems to react to dynamic changes in Business Process (BP) at the runtime instances. In this research, an adaptive and flexible framework based on the integration between Object Oriented diagramming technique and Petri Net modeling language is proposed in order to support change management techniques for BPM and increase the representation capability for Object Oriented modeling for the dynamic changes in the runtime instances. The proposed framework is applied in a higher education environment to achieve flexible, updatable and dynamic BP.

Keywords: Business Process Modeling, Change Management, Graph Based Modeling, Rule Based Modeling, Object Oriented PetriNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
12588 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281
12587 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map

Authors: Alexandros Leontitsis, Archana P. Sangole

Abstract:

This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.

Keywords: Parameter estimation, self-organizing feature maps, spherical topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
12586 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts

Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi

Abstract:

The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.

Keywords: Biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
12585 Factors Influencing Rote Student's Intention to Use WBL: Thailand Study

Authors: Watcharawalee Lertlum, Borworn Papasratorn

Abstract:

Conventional WBL is effective for meaningful student, because rote student learn by repeating without thinking or trying to understand. It is impossible to have full benefit from conventional WBL. Understanding of rote student-s intention and what influences it becomes important. Poorly designed user interface will discourage rote student-s cultivation and intention to use WBL. Thus, user interface design is an important factor especially when WBL is used as comprehensive replacement of conventional teaching. This research proposes the influencing factors that can enhance student-s intention to use the system. The enhanced TAM is used for evaluating the proposed factors. The research result points out that factors influencing rote student-s intention are Perceived Usefulness of Homepage Content Structure, Perceived User Friendly Interface, Perceived Hedonic Component, and Perceived (homepage) Visual Attractiveness.

Keywords: E-learning, Web-Based learning, Intention to use, Rote student, Influencing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
12584 The Effect of an Al Andalus Fused Curriculum Model on the Learning Outcomes of Elementary School Students

Authors: Sobhy Fathy A. Hashesh

Abstract:

The study was carried out in the Elementary Classes of Andalus Private Schools, girls section using control and experimental groups formed by Random Assignment Strategy. The study aimed at investigating the effect of Al-Andalus Fused Curriculum (AFC) model of learning and the effect of separate subjects’ approach on the development of students’ conceptual learning and skills acquiring. The society of the study composed of Al-Andalus Private Schools, elementary school students, Girls Section (N=240), while the sample of the study composed of two randomly assigned groups (N=28) with one experimental group and one control group. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences between students’ conceptual learning and skills acquiring for the favor of the experimental group. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.

Keywords: AFC, Lego Education, mechatronics, STEAM, Al-Andalus Fused Curriculum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
12583 Electricity Consumption Prediction Model using Neuro-Fuzzy System

Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil

Abstract:

In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
12582 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.

The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: Short-Term Load Forecasting, Artificial Neural Networks, Back propagation learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
12581 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education

Authors: Yong W. Foo, Lai M. Tang

Abstract:

Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.

Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32
12580 Design and Implementation of a Memory Safety Isolation Method Based on the Xen Cloud Environment

Authors: Dengpan Wu, Dan Liu

Abstract:

In view of the present cloud security problem has increasingly become one of the major obstacles hindering the development of the cloud computing, put forward a kind of memory based on Xen cloud environment security isolation technology implementation. And based on Xen virtual machine monitor system, analysis of the model of memory virtualization is implemented, using Xen memory virtualization system mechanism of super calls and grant table, based on the virtual machine manager internal implementation of access control module (ACM) to design the security isolation system memory. Experiments show that, the system can effectively isolate different customer domain OS between illegal access to memory data.

Keywords: Cloud security, memory isolation, Xen, virtual machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
12579 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
12578 Image Modeling Using Gibbs-Markov Random Field and Support Vector Machines Algorithm

Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag

Abstract:

This paper introduces a novel approach to estimate the clique potentials of Gibbs Markov random field (GMRF) models using the Support Vector Machines (SVM) algorithm and the Mean Field (MF) theory. The proposed approach is based on modeling the potential function associated with each clique shape of the GMRF model as a Gaussian-shaped kernel. In turn, the energy function of the GMRF will be in the form of a weighted sum of Gaussian kernels. This formulation of the GMRF model urges the use of the SVM with the Mean Field theory applied for its learning for estimating the energy function. The approach has been tested on synthetic texture images and is shown to provide satisfactory results in retrieving the synthesizing parameters.

Keywords: Image Modeling, MRF, Parameters Estimation, SVM Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
12577 Predictive Analytics of Student Performance Determinants in Education

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 549
12576 A Hybrid Technology for a Multiagent Consultation System in Obesity Domain

Authors: Rohana Mahmud, Hairul Aysa Abdul Halim Sithiq, Haryuna Mohd Taharim

Abstract:

In this paper, the authors present architecture of a multi agent consultation system for obesity related problems, which hybrid the technology of an expert system (ES) and an intelligent agent (IA). The strength of the ES which is capable of pulling the expert knowledge is consulted and presented to the end user via the autonomous and friendly pushing environment of the intelligent agent.

Keywords: Expert System, Hybrid Technology, Intelligent Agent, Medical Informatics, Multi Agent Consultation System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
12575 The Effect of Motor Learning Based Computer-Assisted Practice for Children with Handwriting Deficit – Comparing with the Effect of Traditional Sensorimotor Approach

Authors: Shao-Hsia Chang, Nan-Ying Yu

Abstract:

The objective of this study was to test how advanced digital technology enables a more effective training on the handwriting of children with handwriting deficit. This study implemented the graphomotor apparatuses to a computer-assisted instruction system. In a randomized controlled trial, the experiments for verifying the intervention effect were conducted. Forty two children with handwriting deficit were assigned to computer-assisted instruction, sensorimotor training or control (no intervention) group. Handwriting performance was measured using the Elementary reading/writing test and computerized handwriting evaluation before and after 6 weeks of intervention. Analysis of variance of change scores were conducted to show whether statistically significant difference across the three groups. Significant difference was found among three groups. Computer group shows significant difference from the other two groups. Significance was denoted in near-point, far-point copy, dictation test, and writing from phonetic symbols. Writing speed and mean stroke velocity in near-, far-point and short paragraph copy were found significantly difference among three groups. Computer group shows significant improvement from the other groups. For clinicians and school teachers, the results of this study provide a motor control based insight for the improvement of handwriting difficulties.

Keywords: Dysgraphia, computerized handwriting evaluation, sensorimotor program, computer assisted program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
12574 Design of Open Framework Based Smart ESS Profile for PV-ESS and UPS-ESS

Authors: Young-Su Ryu, Won-Gi Jeon, Byoung-Chul Song, Jae-Hong Park, Ki-Won Kwon

Abstract:

In this paper, an open framework based smart energy storage system (ESS) profile for photovoltaic (PV)-ESS and uninterruptible power supply (UPS)-ESS is proposed and designed. An open framework based smart ESS is designed and developed for unifying the different interfaces among manufacturers. The smart ESS operates under the profile which provides the specifications of peripheral devices such as different interfaces and to the open framework. The profile requires well systemicity and expandability for addible peripheral devices. Especially, the smart ESS should provide the expansion with existing systems such as UPS and the linkage with new renewable energy technology such as PV. This paper proposes and designs an open framework based smart ESS profile for PV-ESS and UPS-ESS. The designed profile provides the existing smart ESS and also the expandability of additional peripheral devices on smart ESS such as PV and UPS.

Keywords: ESS, open framework, profile, PV, UPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
12573 Learning Human-Like Color Categorization through Interaction

Authors: Rinaldo Christian Tanumara, Ming Xie, Chi Kit Au

Abstract:

Human perceives color in categories, which may be identified using color name such as red, blue, etc. The categorization is unique for each human being. However despite the individual differences, the categorization is shared among members in society. This allows communication among them, especially when using color name. Sociable robot, to live coexist with human and become part of human society, must also have the shared color categorization, which can be achieved through learning. Many works have been done to enable computer, as brain of robot, to learn color categorization. Most of them rely on modeling of human color perception and mathematical complexities. Differently, in this work, the computer learns color categorization through interaction with humans. This work aims at developing the innate ability of the computer to learn the human-like color categorization. It focuses on the representation of color categorization and how it is built and developed without much mathematical complexity.

Keywords: Color categorization, color learning, machinelearning, color naming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
12572 A Formative Assessment Tool for Effective Feedback

Authors: Rami Rashkovits, Ilana Lavy

Abstract:

In this study we present our developed formative assessment tool for students' assignments. The tool enables lecturers to define assignments for the course and assign each problem in each assignment a list of criteria and weights by which the students' work is evaluated. During assessment, the lecturers feed the scores for each criterion with justifications. When the scores of the current assignment are completely fed in, the tool automatically generates reports for both students and lecturers. The students receive a report by email including detailed description of their assessed work, their relative score and their progress across the criteria along the course timeline. This information is presented via charts generated automatically by the tool based on the scores fed in. The lecturers receive a report that includes summative (e.g., averages, standard deviations) and detailed (e.g., histogram) data of the current assignment. This information enables the lecturers to follow the class achievements and adjust the learning process accordingly. The tool was examined on two pilot groups of college students that study a course in (1) Object-Oriented Programming (2) Plane Geometry. Results reveal that most of the students were satisfied with the assessment process and the reports produced by the tool. The lecturers who used the tool were also satisfied with the reports and their contribution to the learning process.

Keywords: Computer-based formative assessment tool, science education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
12571 A 1.8 V RF CMOS Active Inductor with 0.18 um CMOS Technology

Authors: Siavash Heydarzadeh, Massoud Dousti

Abstract:

A active inductor in CMOS techonology with a supply voltage of 1.8V is presented. The value of the inductance L can be in the range from 0.12nH to 0.25nH in high frequency(HF). The proposed active inductor is designed in TSMC 0.18-um CMOS technology. The power dissipation of this inductor can retain constant at all operating frequency bands and consume around 20mW from 1.8V power supply. Inductors designed by integrated circuit occupy much smaller area, for this reason,attracted researchers attention for more than decade. In this design we used Advanced Designed System (ADS) for simulating cicuit.

Keywords: CMOS active inductor , 0.18um CMOS technology , ADS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3335
12570 Secure Distance Bounding Protocol on Ultra-WideBand Based Mapping Code

Authors: Jamel Miri, Bechir Nsiri, Ridha Bouallegue

Abstract:

Ultra WidBand-IR physical layer technology has seen a great development during the last decade which makes it a promising candidate for short range wireless communications, as they bring considerable benefits in terms of connectivity and mobility. However, like all wireless communication they suffer from vulnerabilities in terms of security because of the open nature of the radio channel. To face these attacks, distance bounding protocols are the most popular counter measures. In this paper, we presented a protocol based on distance bounding to thread the most popular attacks: Distance Fraud, Mafia Fraud and Terrorist fraud. In our work, we study the way to adapt the best secure distance bounding protocols to mapping code of ultra-wideband (TH-UWB) radios. Indeed, to ameliorate the performances of the protocol in terms of security communication in TH-UWB, we combine the modified protocol to ultra-wideband impulse radio technology (IR-UWB). The security and the different merits of the protocols are analyzed.

Keywords: Distance bounding, mapping code ultra-wideband, Terrorist Fraud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
12569 Alignment between Understanding and Assessment Practice among Secondary School Teachers

Authors: Eftah Bte. Moh @ Hj Abdullah, Izazol Binti Idris, Abd Aziz Bin Abd Shukor

Abstract:

This study aimed to identify the alignment of understanding and assessment practices among secondary school teachers. The study was carried out using quantitative descriptive study. The sample consisted of 164 teachers who taught Form 1 and 2 from 11 secondary schools in the district of North Kinta, Perak, Malaysia. Data were obtained from 164 respondents who answered Expectation Alignment Understanding and Practices of School Assessment (PEKDAPS) questionnaire. The data were analysed using SPSS 17.0+. The Cronbach’s alpha value obtained through PEKDAPS questionnaire pilot study was 0.86. The results showed that teachers' performance in PEKDAPS based on the mean value was less than 3, which means that perfect alignment does not occur between the understanding and practices of school assessment. Two major PEKDAPS sub-constructs of articulation across grade and age and usability of the system were higher than the moderate alignment of the understanding and practices of school assessment (Min=2.0). The content focused of PEKDAPs sub-constructs which showed lower than the moderate alignment of the understanding and practices of school assessment (Min=2.0). Another two PEKDAPS subconstructs of transparency and fairness and the pedagogical implications showed moderate alignment (2.0). The implications of the study is that teachers need to fully understand the importance of alignment among components of assessment, learning and teaching and learning objectives as strategies to achieve quality assessment process.

Keywords: Alignment, assessment practices, School Based Assessment, understanding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
12568 Productivity Effect of Urea Deep Placement Technology: An Empirical Analysis from Irrigation Rice Farmers in the Northern Region of Ghana

Authors: Shaibu Baanni Azumah, Ignatius Tindjina, Stella Obanyi, Tara N. Wood

Abstract:

This study examined the effect of Urea Deep Placement (UDP) technology on the output of irrigated rice farmers in the northern region of Ghana. Multi-stage sampling technique was used to select 142 rice farmers from the Golinga and Bontanga irrigation schemes, around Tamale. A treatment effect model was estimated at two stages; firstly, to determine the factors that influenced farmers’ decision to adopt the UDP technology and secondly, to determine the effect of the adoption of the UDP technology on the output of rice farmers. The significant variables that influenced rice farmers’ adoption of the UPD technology were sex of the farmer, land ownership, off-farm activity, extension service, farmer group participation and training. The results also revealed that farm size and the adoption of UDP technology significantly influenced the output of rice farmers in the northern region of Ghana. In addition to the potential of the technology to improve yields, it also presents an employment opportunity for women and youth, who are engaged in the deep placement of Urea Super Granules (USG), as well as in the transplantation of rice. It is recommended that the government of Ghana work closely with the IFDC to embed the UDP technology in the national agricultural programmes and policies. The study also recommends an effective collaboration between the government, through the Ministry of Food and Agriculture (MoFA) and the International Fertilizer Development Center (IFDC) to train agricultural extension agents on UDP technology in the rice producing areas of the country.

Keywords: Northern Ghana, output, irrigation rice farmers, treatment effect model, urea deep placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
12567 Closing the Achievement Gap Within Reading and Mathematics Classrooms by Fostering Hispanic Students- Educational Resilience

Authors: Hersh C. Waxman, Yolanda N. Padrón, Jee-Young Shin, Héctor H. Rivera

Abstract:

While many studies have conducted the achievement gap between groups of students in school districts, few studies have utilized resilience research to investigate achievement gaps within classrooms. This paper aims to summarize and discuss some recent studies Waxman, Padr├│n, and their colleagues conducted, in which they examined learning environment differences between resilient and nonresilient students in reading and mathematics classrooms. The classes consist of predominantly Hispanic elementary school students from low-income families. These studies all incorporated learning environment questionnaires and systematic observation methods. Significant differences were found between resilient and nonresilient students on their classroom learning environments and classroom behaviors. The observation results indicate that the amount and quality of teacher and student academic interaction are two of the most influential variables that promote student outcomes. This paper concludes by suggesting the following teacher practices to promote resiliency in schools: (a) using feedback from classroom observation and learning environment measures, (b) employing explicit teaching practices; and (c) understanding students on a social and personal level.

Keywords: achievement gap, classroom learning environments, educational resilience, systematic classroom observation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984