Search results for: radar detection.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1594

Search results for: radar detection.

514 Analysis of Image Segmentation Techniques for Diagnosis of Dental Caries in X-ray Images

Authors: V. Geetha, K. S. Aprameya

Abstract:

Early diagnosis of dental caries is essential for maintaining dental health. In this paper, method for diagnosis of dental caries is proposed using Laplacian filter, adaptive thresholding, texture analysis and Support Vector Machine (SVM) classifier. Analysis of the proposed method is compared with Otsu thresholding, watershed segmentation and active contouring method. Adaptive thresholding has comparatively better performance with 96.9% accuracy and 96.1% precision. The results are validated using statistical method, two-way ANOVA, at significant level of 5%, that shows the interaction of proposed method on performance parameter measures are significant. Hence the proposed technique could be used for detection of dental caries in automated computer assisted diagnosis system.

Keywords: Computer assisted diagnosis, dental caries, dental radiography, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
513 Wavelet-Based ECG Signal Analysis and Classification

Authors: Madina Hamiane, May Hashim Ali

Abstract:

This paper presents the processing and analysis of ECG signals. The study is based on wavelet transform and uses exclusively the MATLAB environment. This study includes removing Baseline wander and further de-noising through wavelet transform and metrics such as signal-to noise ratio (SNR), Peak signal-to-noise ratio (PSNR) and the mean squared error (MSE) are used to assess the efficiency of the de-noising techniques. Feature extraction is subsequently performed whereby signal features such as heart rate, rise and fall levels are extracted and the QRS complex was detected which helped in classifying the ECG signal. The classification is the last step in the analysis of the ECG signals and it is shown that these are successfully classified as Normal rhythm or Abnormal rhythm.  The final result proved the adequacy of using wavelet transform for the analysis of ECG signals.

Keywords: ECG Signal, QRS detection, thresholding, wavelet decomposition, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
512 An Amalgam Approach for DICOM Image Classification and Recognition

Authors: J. Umamaheswari, G. Radhamani

Abstract:

This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.

Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
511 Multiple Crack Identification Using Frequency Measurement

Authors: J.W. Xiang, M. Liang

Abstract:

This paper presents a method to detect multiple cracks based on frequency information. When a structure is subjected to dynamic or static loads, cracks may develop and the modal frequencies of the cracked structure may change. To detect cracks in a structure, we construct a high precision wavelet finite element (EF) model of a certain structure using the B-spline wavelet on the interval (BSWI). Cracks can be modeled by rotational springs and added to the FE model. The crack detection database will be obtained by solving that model. Then the crack locations and depths can be determined based on the frequency information from the database. The performance of the proposed method has been numerically verified by a rotor example.

Keywords: Rotor, frequency measurement, multiple cracks, wavelet finite element method, identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
510 Determination of Volatile Organic Compounds in Human Breath by Optical Fiber Sensing

Authors: C. I. L. Justino, L. I. B. Silva, K. Duarte, A. C. Freitas, T. A. P. Rocha-Santos, A. C. Duarte

Abstract:

This work proposes an optical fiber system (OF) for sensing various volatile organic compounds (VOCs) in human breath for the diagnosis of some metabolic disorders as a non-invasive methodology. The analyzed VOCs are alkanes (i.e., ethane, pentane, heptane, octane, and decane), and aromatic compounds (i.e., benzene, toluene, and styrene). The OF displays high analytical performance since it provides near real-time responses, rapid analysis, and low instrumentation costs, as well as it exhibits useful linear range and detection limits; the developed OF sensor is also comparable to a reference methodology (gas chromatography-mass spectrometry) for the eight tested VOCs.

Keywords: Breath analysis, gas chromatography-mass spectrometry, optical fiber sensor, volatile organic compounds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
509 A Novel Approach to Optimal Cutting Tool Replacement

Authors: Cem Karacal, Sohyung Cho, William Yu

Abstract:

In metal cutting industries, mathematical/statistical models are typically used to predict tool replacement time. These off-line methods usually result in less than optimum replacement time thereby either wasting resources or causing quality problems. The few online real-time methods proposed use indirect measurement techniques and are prone to similar errors. Our idea is based on identifying the optimal replacement time using an electronic nose to detect the airborne compounds released when the tool wear reaches to a chemical substrate doped into tool material during the fabrication. The study investigates the feasibility of the idea, possible doping materials and methods along with data stream mining techniques for detection and monitoring different phases of tool wear.

Keywords: Tool condition monitoring, cutting tool replacement, data stream mining, e-Nose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
508 A Comparison between Reagents Extracted from Tree Leaves for Spectrophotometric Determination of Hafnium(IV)

Authors: A. Boveiri Monji, H. Yousefnia, S. Zolghadri, B. Salimi

Abstract:

The main goal of this paper was to make use of green reagents as a substitute of perilous synthetic reagents and organic solvents for spectrophotometric determination of hafnium(IV). The extracts taken from six different kinds of tree leaves including Acer negundo, Ficus carica, Cerasus avium, Chimonanthus, Salix babylonica and Pinus brutia, were applied as green reagents for the experiments. In 6-M hydrochloric acid, hafnium reacted with the reagent to form a yellow product and showed maximum absorbance at 421 nm. Among tree leaves, Chimonanthus showed satisfactory results with a molar absorptivity value of 0.61 × 104 l mol-1 cm-1 and the method was linear in the 0.3-9 µg mL -1 concentration range. The detection limit value was 0.064 µg mL-1. The proposed method was simple, low cost, clean, and selective.

Keywords: Spectrophotometric determination, tree leaves, synthetic reagents, hafnium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787
507 Fast Wavelength Calibration Algorithm for Optical Spectrum Analyzers

Authors: Thomas Fuhrmann

Abstract:

In this paper an algorithm for fast wavelength calibration of Optical Spectrum Analyzers (OSAs) using low power reference gas spectra is proposed. In existing OSAs a reference spectrum with low noise for precise detection of the reference extreme values is needed. To generate this spectrum costly hardware with high optical power is necessary. With this new wavelength calibration algorithm it is possible to use a noisy reference spectrum and therefore hardware costs can be cut. With this algorithm the reference spectrum is filtered and the key information is extracted by segmenting and finding the local minima and maxima. Afterwards slope and offset of a linear correction function for best matching the measured and theoretical spectra are found by correlating the measured with the stored minima. With this algorithm a reliable wavelength referencing of an OSA can be implemented on a microcontroller with a calculation time of less than one second.

Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
506 Neural Networks Learning Improvement using the K-Means Clustering Algorithm to Detect Network Intrusions

Authors: K. M. Faraoun, A. Boukelif

Abstract:

In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a back propagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset.

Keywords: Neural networks, Intrusion detection, learningenhancement, K-means clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3609
505 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences

Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui

Abstract:

The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.

Keywords: Recognition of shape, generalized hough transformation, histogram, Spatiogram, learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615
504 Indoor Mobile Robot Positioning Based on Wireless Fingerprint Matching

Authors: Xu Huang, Jing Fan, Maonian Wu, Yonggen Gu

Abstract:

This paper discusses the design of an indoor mobile robot positioning system. The problem of indoor positioning is solved through Wi-Fi fingerprint positioning to implement a low cost deployment. A wireless fingerprint matching algorithm based on the similarity of unequal length sequences is presented. Candidate sequences selection is defined as a set of mappings, and detection errors caused by wireless hotspot stability and the change of interior pattern can be corrected by transforming the unequal length sequences into equal length sequences. The presented scheme was verified experimentally to achieve the accuracy requirements for an indoor positioning system with low deployment cost.

Keywords: Fingerprint match, indoor positioning, mobile robot positioning system, Wi-Fi, wireless fingerprint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
503 Defining of the Shape of the Spine Using Moiré Method in Case of Patients with Scheuermann Disease

Authors: Petra Balla, Gabor Manhertz, Akos Antal

Abstract:

Nowadays spinal deformities are very frequent problems among teenagers. Scheuermann disease is a one dimensional deformity of the spine, but it has prevalence over 11% of the children. A traditional technology, the moiré method was used by us for screening and diagnosing this type of spinal deformity. A LabVIEW program has been developed to evaluate the moiré pictures of patients with Scheuermann disease. Two different solutions were tested in this computer program, the extreme and the inflexion point calculation methods. Effects using these methods were compared and according to the results both solutions seemed to be appropriate. Statistical results showed better efficiency in case of the extreme search method where the average difference was only 6,09⁰.

Keywords: Spinal deformity, picture evaluation, moiré method, Scheuermann disease, curve detection, moiré topography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3575
502 A Method of Protecting Relational Databases Copyright with Cloud Watermark

Authors: Yong ZHANG, Xiamu NIU, Dongning ZHAO

Abstract:

With the development of Internet and databases application techniques, the demand that lots of databases in the Internet are permitted to remote query and access for authorized users becomes common, and the problem that how to protect the copyright of relational databases arises. This paper simply introduces the knowledge of cloud model firstly, includes cloud generators and similar cloud. And then combined with the property of the cloud, a method of protecting relational databases copyright with cloud watermark is proposed according to the idea of digital watermark and the property of relational databases. Meanwhile, the corresponding watermark algorithms such as cloud watermark embedding algorithm and detection algorithm are proposed. Then, some experiments are run and the results are analyzed to validate the correctness and feasibility of the watermark scheme. In the end, the foreground of watermarking relational database and its research direction are prospected.

Keywords: cloud watermark, copyright protection, digitalwatermark, relational database

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
501 Estimating 3D-Position of A Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals

Authors: Katsumi Hirata

Abstract:

To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.

Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
500 High Temperature Hydrogen Sensors Based On Pd/Ta2O5/SiC MOS Capacitor

Authors: J. H. Choi, S. J. Kim, M. S. Jung, S. J. Kim, S. J. Joo, S. C. Kim

Abstract:

There are a many of needs for the development of SiC-based hydrogen sensor for harsh environment applications. We fabricated and investigated Pd/Ta2O5/SiC-based hydrogen sensors with MOS capacitor structure for high temperature process monitoring and leak detection applications in such automotive, chemical and petroleum industries as well as direct monitoring of combustion processes. In this work, we used silicon carbide (SiC) as a substrate to replace silicon which operating temperatures are limited to below 200°C. Tantalum oxide was investigated as dielectric layer which has high permeability for hydrogen gas and high dielectric permittivity, compared with silicon dioxide or silicon nitride. Then, electrical response properties, such as I-V curve and dependence of capacitance on hydrogen concentrations were analyzed in the temperature ranges of room temperature to 500°C for performance evaluation of the sensor.

Keywords: High temperature, hydrogen sensor, SiC, Ta2O5 dielectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
499 Video Quality Assessment using Visual Attention Approach for Sign Language

Authors: Julia Kucerova, Jaroslav Polec, Darina Tarcsiova

Abstract:

Visual information is very important in human perception of surrounding world. Video is one of the most common ways to capture visual information. The video capability has many benefits and can be used in various applications. For the most part, the video information is used to bring entertainment and help to relax, moreover, it can improve the quality of life of deaf people. Visual information is crucial for hearing impaired people, it allows them to communicate personally, using the sign language; some parts of the person being spoken to, are more important than others (e.g. hands, face). Therefore, the information about visually relevant parts of the image, allows us to design objective metric for this specific case. In this paper, we present an example of an objective metric based on human visual attention and detection of salient object in the observed scene.

Keywords: sign language, objective video quality, visual attention, saliency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
498 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
497 Real-Time Image Analysis of Capsule Endoscopy for Bleeding Discrimination in Embedded System Platform

Authors: Yong-Gyu Lee, Gilwon Yoon

Abstract:

Image processing for capsule endoscopy requires large memory and it takes hours for diagnosis since operation time is normally more than 8 hours. A real-time analysis algorithm of capsule images can be clinically very useful. It can differentiate abnormal tissue from health structure and provide with correlation information among the images. Bleeding is our interest in this regard and we propose a method of detecting frames with potential bleeding in real-time. Our detection algorithm is based on statistical analysis and the shapes of bleeding spots. We tested our algorithm with 30 cases of capsule endoscopy in the digestive track. Results were excellent where a sensitivity of 99% and a specificity of 97% were achieved in detecting the image frames with bleeding spots.

Keywords: bleeding, capsule endoscopy, image processing, real time analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
496 Binary Phase-Only Filter Watermarking with Quantized Embedding

Authors: Hu Haibo, Liu Yi, He Ming

Abstract:

The binary phase-only filter digital watermarking embeds the phase information of the discrete Fourier transform of the image into the corresponding magnitudes for better image authentication. The paper proposed an approach of how to implement watermark embedding by quantizing the magnitude, with discussing how to regulate the quantization steps based on the frequencies of the magnitude coefficients of the embedded watermark, and how to embed the watermark at low frequency quantization. The theoretical analysis and simulation results show that algorithm flexibility, security, watermark imperceptibility and detection performance of the binary phase-only filter digital watermarking can be effectively improved with quantization based watermark embedding, and the robustness against JPEG compression will also be increased to some extent.

Keywords: binary phase-only filter, discrete Fourier transform, digital watermarking, image authentication, quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
495 Efficient Sensors Selection Algorithm in Cyber Physical System

Authors: Ma-Wubin, Deng-Su, Huang Hongbin, Chen-Jian, Wu-Yahun, Li-zhuo

Abstract:

Cyber physical system (CPS) for target tracking, military surveillance, human health monitoring, and vehicle detection all require maximizing the utility and saving the energy. Sensor selection is one of the most important parts of CPS. Sensor selection problem (SSP) is concentrating to balance the tradeoff between the number of sensors which we used and the utility which we will get. In this paper, we propose a performance constrained slide windows (PCSW) based algorithm for SSP in CPS. we present results of extensive simulations that we have carried out to test and validate the PCSW algorithms when we track a target, Experiment shows that the PCSW based algorithm improved the performance including selecting time and communication times for selecting.

Keywords: Cyber physical system, sensor selection problem, PCSW based algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
494 Segmentation of Cardiac Images by the Force Field Driven Speed Term

Authors: Renato Dedic, Madjid Allili, Roger Lecomte, Adbelhamid Benchakroun

Abstract:

The class of geometric deformable models, so-called level sets, has brought tremendous impact to medical imagery. In this paper we present yet another application of level sets to medical imaging. The method we give here will in a way modify the speed term in the standard level sets equation of motion. To do so we build a potential based on the distance and the gradient of the image we study. In turn the potential gives rise to the force field: F~F(x, y) = P ∀(p,q)∈I ((x, y) - (p, q)) |ÔêçI(p,q)| |(x,y)-(p,q)| 2 . The direction and intensity of the force field at each point will determine the direction of the contour-s evolution. The images we used to test our method were produced by the Univesit'e de Sherbrooke-s PET scanners.

Keywords: PET, Cardiac, Heart, Mouse, Geodesic, Geometric, Level Sets, Deformable Models, Edge Detection, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
493 Tongue Diagnosis System Based on PCA and SVM

Authors: Jin-Woong Park, Sun-Kyung Kang, Sung-Tae Jung

Abstract:

In this study, we propose a tongue diagnosis method which detects the tongue from face image and divides the tongue area into six areas, and finally generates tongue coating ratio of each area. To detect the tongue area from face image, we use ASM as one of the active shape models. Detected tongue area is divided into six areas widely used in the Korean traditional medicine and the distribution of tongue coating of the six areas is examined by SVM(Support Vector Machine). For SVM, we use a 3-dimensional vector calculated by PCA(Principal Component Analysis) from a 12-dimentional vector consisting of RGB, HIS, Lab, and Luv. As a result, we detected the tongue area stably using ASM and found that PCA and SVM helped raise the ratio of tongue coating detection.

Keywords: Active Shape Model, Principal Component Analysis, Support Vector Machine, Tongue diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
492 Detection of Airborne Bacteria and Mildew in the Shanghai Metro System

Authors: Feng Zhou, Yuyan Wang

Abstract:

This study aimed to detect and to identify the main strains of airborne microorganisms present in the Shanghai Metro system. Samples were collected using agar plates exposed to the air and microorganisms were identified using catalase, plasma coagulase and hymolytic analysis. The results show that the concentration of mildew present within a newly opened metro line was significantly higher than for other lines. Differences among underground and elevated stations can be attributed to differences in passenger flow and the environment surrounding the stations. Additionally, the investigation indicated that bacteria reached maximum levels at different times on weekdays and weekends. The bacteria in the Metro stations were identified as primarily Gram positive, consisting mainly of coagulase-negative staphylococcus strains (CNS).

Keywords: Bacteria, environment, Metro system, mildew, passenger flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
491 Blind Source Separation based on the Estimation for the Number of the Blind Sources under a Dynamic Acoustic Environment

Authors: Takaaki Ishibashi

Abstract:

Independent component analysis can estimate unknown source signals from their mixtures under the assumption that the source signals are statistically independent. However, in a real environment, the separation performance is often deteriorated because the number of the source signals is different from that of the sensors. In this paper, we propose an estimation method for the number of the sources based on the joint distribution of the observed signals under two-sensor configuration. From several simulation results, it is found that the number of the sources is coincident to that of peaks in the histogram of the distribution. The proposed method can estimate the number of the sources even if it is larger than that of the observed signals. The proposed methods have been verified by several experiments.

Keywords: blind source separation, independent component analysys, estimation for the number of the blind sources, voice activity detection, target extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
490 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio

Authors: O. S. Omorogiuwa, E. J. Omozusi

Abstract:

The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.

Keywords: Spectrum, interference, telecommunication, cognitive radio, frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861
489 Determination of Penicillins Residues in Livestock and Marine Products by LC/MS/MS

Authors: Ji Young Song, Soo Jung Hu, Hyunjin Joo, Joung Boon Hwang, Mi Ok Kim, Shin Jung Kang, Dae Hyun Cho

Abstract:

Multi-residue analysis method for penicillins was developed and validated in bovine muscle, chicken, milk, and flatfish. Detection was based on liquid chromatography tandem mass spectrometry (LC/MS/MS). The developed method was validated for specificity, precision, recovery, and linearity. The analytes were extracted with 80% acetonitrile and clean-up by a single reversed-phase solid-phase extraction step. Six penicillins presented recoveries higher than 76% with the exception of Amoxicillin (59.7%). Relative standard deviations (RSDs) were not more than 10%. LOQs values ranged from 0.1 and to 4.5 ug/kg. The method was applied to 128 real samples. Benzylpenicillin was detected in 15 samples and Cloxacillin was detected in 7 samples. Oxacillin was detected in 2 samples. But the detected levels were under the MRL levels for penicillins in samples.

Keywords: Penicillins, livestock product, Multi-residue analysis, LC/MS/MS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3417
488 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: Biometrics, identity verification, genetic data, k-nearest neighbor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
487 Recursive Least Squares Adaptive Filter a better ISI Compensator

Authors: O. P. Sharma, V. Janyani, S. Sancheti

Abstract:

Inter-symbol interference if not taken care off may cause severe error at the receiver and the detection of signal becomes difficult. An adaptive equalizer employing Recursive Least Squares algorithm can be a good compensation for the ISI problem. In this paper performance of communication link in presence of Least Mean Square and Recursive Least Squares equalizer algorithm is analyzed. A Model of communication system having Quadrature amplitude modulation and Rician fading channel is implemented using MATLAB communication block set. Bit error rate and number of errors is evaluated for RLS and LMS equalizer algorithm, due to change in Signal to Noise Ratio (SNR) and fading component gain in Rician fading Channel.

Keywords: Least mean square (LMS), Recursive least squares(RLS), Adaptive equalization, Bit error rate (BER), Rician fading channel, Quadrature Amplitude Modulation (QAM), Signal to noiseratio (SNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3075
486 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: Complementary and alternative medicine, Iridology, iris, feature extraction, classification, disease prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
485 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods

Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis

Abstract:

An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.

Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765