Search results for: machine learning methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6364

Search results for: machine learning methods

5284 Basic Science Medical Students’ Perception of a Formative Peer Assessment Model for Reinforcing the Learning of Physical Examination Skills During the COVID-19 Pandemic Online Learning Period

Authors: Neilal A. Isaac, Madison Edwards, Kirthana Sugunathevan, Mohan Kumar

Abstract:

The COVID-19 pandemic challenged the education system and forced medical schools to transition to online learning. With this transition, one of the major concerns for students and educators was to ensure that Physical Examination (PE) skills were still being mastered. Thus, the formative peer assessment model was designed to enhance the learning of PE skills during the COVID-19 pandemic in the online learning landscape. Year 1 and year 2 students enrolled in clinical skills courses at the University of Medicine and Health Sciences, St. Kitts were asked to record themselves demonstrating PE skills with a healthy patient volunteer after every skills class. Each student was assigned to exchange feedback with one peer in the course. At the end of the first two semesters of this learning activity, a cross-sectional survey was conducted for the two cohorts of year-1 and year-2 students. The year-1 cohorts most frequently rated the peer assessment exercise as 4 on a 5-point Likert scale, with a mean score of 3.317 [2.759, 3.875]. The year-2 cohorts most frequently rated the peer assessment exercise as 4 on a 5-point Likert scale, with a mean score of 3.597 [2.978, 4.180]. Students indicated that guidance from faculty, flexible deadlines, and detailed and timely feedback from peers were areas for improvement in this process.

Keywords: COVID-19 pandemic, distant learning, online medical education, peer assessment, physical examination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 390
5283 Virtual Reality Classrooms Strategies for Creating a Social Presence

Authors: Elizabeth M. Hodge, M.H.N. Tabrizi, Mary A. Farwell, Karl L. Wuensch

Abstract:

Delivering course material via a virtual environment is beneficial to today-s students because it offers the interactivity, real-time interaction and social presence that students of all ages have come to accept in our gaming rich community. It is essential that the Net Generation also known as Generation Why, have exposure to learning communities that encompass interactivity to form social and educational connections. As student and professor become interconnected through collaboration and interaction in a virtual learning space, relationships develop and students begin to take on an individual identity. With this in mind the research project was developed to investigate the use of virtual environments on student satisfaction and the effectiveness of course delivery. Furthermore, the project was designed to integrate both interactive (real-time) classes conducted in the Virtual Reality (VR) environment while also creating archived VR sessions for student use in retaining and reviewing course content.

Keywords: Virtual Reality, Social Presence, Virtual Environments, Course Delivery Methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
5282 Conditions for Fault Recovery of Interconnected Asynchronous Sequential Machines with State Feedback

Authors: Jung–Min Yang

Abstract:

In this paper, fault recovery for parallel interconnected asynchronous sequential machines is studied. An adversarial input can infiltrate into one of two submachines comprising parallel composition of the considered asynchronous sequential machine, causing an unauthorized state transition. The control objective is to elucidate the condition for the existence of a corrective controller that makes the closed-loop system immune against any occurrence of adversarial inputs. In particular, an efficient existence condition is presented that does not need the complete modeling of the interconnected asynchronous sequential machine.

Keywords: Asynchronous sequential machines, parallel composition, corrective control, fault tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
5281 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality

Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang

Abstract:

The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.

Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
5280 Design and Manufacturing of a Propeller for Axial-Flow Fan

Authors: D. Almazo, M. Toledo, C. Rodríguez

Abstract:

This work presents a methodology for the design and manufacture of propellers oriented to the experimental verification of theoretical results based on the combined model. The design process begins by using algorithms in Matlab which output data contain the coordinates of the points that define the blade airfoils, in this case the NACA 6512 airfoil was used. The modeling for the propeller blade was made in NX7, through the imported files in Matlab and with the help of surfaces. Later, the hub and the clamps were also modeled. Finally, NX 7 also made possible to create post-processed files to the required machine. It is possible to find the block of numbers with G & M codes about the type of driver on the machine. The file extension is .ptp. These files made possible to manufacture the blade, and the hub of the propeller.

Keywords: Airfoil, CAM, manufacturing, mathematical algorithm, numeric control, propeller design, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3871
5279 Improving the Reusability and Interoperability of E-Learning Material

Authors: D. Del Corso, A. Tartaglia, E. Tresso, M. Cambiolo, L. Forno, G. Morrone

Abstract:

A key requirement for e-learning materials is reusability and interoperability, that is the possibility to use at least part of the contents in different courses, and to deliver them trough different platforms. These features make possible to limit the cost of new packages, but require the development of material according to proper specifications. SCORM (Sharable Content Object Reference Model) is a set of guidelines suitable for this purpose. A specific adaptation project has been started to make possible to reuse existing materials. The paper describes the main characteristics of SCORM specification, and the procedure used to modify the existing material.

Keywords: SCORM, e-learning, standard, educational effectiveness, assessment, methodology, open access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
5278 iSEA: A Mobile Based Learning Application for History and Culture Knowledge Enhancement for the ASEAN Region

Authors: Maria Visitacion N. Gumabay, Byron Joseph A. Hallar, Annjeannette Alain D. Galang

Abstract:

This study was intended to provide a more efficient and convenient way for mobile users to enhance their knowledge about ASEAN countries. The researchers evaluated the utility of the developed crossword puzzle application and assessed the general usability of its user interface for its intended purpose and audience of users. The descriptive qualitative research method for the research design and the Mobile-D methodology was employed for the development of the software application output. With a generally favorable reception from its users, the researchers concluded that the iSEA Mobile Based Learning Application can be considered ready for general deployment and use. It was also concluded that additional studies can also be done to make a more complete assessment of the knowledge gained by its users before and after using the application.

Keywords: Mobile learning, e-learning, crossword, ASEAN, iSEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
5277 TanSSe-L System PIM Manual Transformation to Moodle as a TanSSe-L System Specific PIM

Authors: Kalinga Ellen A., Bagile Burchard B.

Abstract:

Tanzania Secondary Schools e-Learning (TanSSe-L) system is a customized learning management system (LMS) developed to enable ICT support in teaching and learning functions. Methodologies involved in the development of TanSSe-L system are Object oriented system analysis and design with UML to create and model TanSSe-L system database structure in the form of a design class diagram, Model Driven Architecture (MDA) to provide a well defined process in TanSSe-L system development, where MDA conceptual layers were integrated with system development life cycle and customization of open source learning management system which was used during implementation stage to create a timely functional TanSSe-L system. Before customization, a base for customization was prepared. This was the manual transformation from TanSSe-L system platform independent models (PIM) to TanSSe-L system specific PIM. This paper presents how Moodle open source LMS was analyzed and prepared to be the TanSSe-L system specific PIM as applied by MDA.

Keywords: Customization, e-Learning, MDA Transformation, Moodle, Secondary Schools, Tanzania.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
5276 400 kW Six Analytical High Speed Generator Designs for Smart Grid Systems

Authors: A. El Shahat, A. Keyhani, H. El Shewy

Abstract:

High Speed PM Generators driven by micro-turbines are widely used in Smart Grid System. So, this paper proposes comparative study among six classical, optimized and genetic analytical design cases for 400 kW output power at tip speed 200 m/s. These six design trials of High Speed Permanent Magnet Synchronous Generators (HSPMSGs) are: Classical Sizing; Unconstrained optimization for total losses and its minimization; Constrained optimized total mass with bounded constraints are introduced in the problem formulation. Then a genetic algorithm is formulated for obtaining maximum efficiency and minimizing machine size. In the second genetic problem formulation, we attempt to obtain minimum mass, the machine sizing that is constrained by the non-linear constraint function of machine losses. Finally, an optimum torque per ampere genetic sizing is predicted. All results are simulated with MATLAB, Optimization Toolbox and its Genetic Algorithm. Finally, six analytical design examples comparisons are introduced with study of machines waveforms, THD and rotor losses.

Keywords: High Speed, Micro - Turbines, Optimization, PM Generators, Smart Grid, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
5275 Scalable Deployment and Configuration of High-Performance Virtual Clusters

Authors: Kyrre M Begnum, Matthew Disney

Abstract:

Virtualization and high performance computing have been discussed from a performance perspective in recent publications. We present and discuss a flexible and efficient approach to the management of virtual clusters. A virtual machine management tool is extended to function as a fabric for cluster deployment and management. We show how features such as saving the state of a running cluster can be used to avoid disruption. We also compare our approach to the traditional methods of cluster deployment and present benchmarks which illustrate the efficiency of our approach.

Keywords: Cluster management, clusters, high-performance, virtual machines, Xen

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
5274 Individual Learning and Collaborative Knowledge Building with Shared Digital Artifacts

Authors: Joachim Kimmerle, Johannes Moskaliuk, Ulrike Cress

Abstract:

The development of Internet technology in recent years has led to a more active role of users in creating Web content. This has significant effects both on individual learning and collaborative knowledge building. This paper will present an integrative framework model to describe and explain learning and knowledge building with shared digital artifacts on the basis of Luhmann-s systems theory and Piaget-s model of equilibration. In this model, knowledge progress is based on cognitive conflicts resulting from incongruities between an individual-s prior knowledge and the information which is contained in a digital artifact. Empirical support for the model will be provided by 1) applying it descriptively to texts from Wikipedia, 2) examining knowledge-building processes using a social network analysis, and 3) presenting a survey of a series of experimental laboratory studies.

Keywords: Individual learning, collaborative knowledge building, systems theory, equilibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
5273 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the leading causes of death among prisoners, both in Canada and internationally. In recent years, rates of attempts of suicide and self-harm suicide have increased, with hangings being the most frequently used method. The objective of this article is to propose a method to automatically detect suicidal behaviors in real time. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Tests show that the proposed system gives satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: Suicide detection, Kinect Azure, RGB-D camera, SVM, gesture recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449
5272 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems

Authors: Ali Reza Mehrabian, Caro Lucas

Abstract:

In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.

Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
5271 Offline Signature Recognition using Radon Transform

Authors: M.Radmehr, S.M.Anisheh, I.Yousefian

Abstract:

In this work a new offline signature recognition system based on Radon Transform, Fractal Dimension (FD) and Support Vector Machine (SVM) is presented. In the first step, projections of original signatures along four specified directions have been performed using radon transform. Then, FDs of four obtained vectors are calculated to construct a feature vector for each signature. These vectors are then fed into SVM classifier for recognition of signatures. In order to evaluate the effectiveness of the system several experiments are carried out. Offline signature database from signature verification competition (SVC) 2004 is used during all of the tests. Experimental result indicates that the proposed method achieved high accuracy rate in signature recognition.

Keywords: Fractal Dimension, Offline Signature Recognition, Radon Transform, Support Vector Machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
5270 Cultivating Individuality and Equality in Education: Ideas on Respecting Dimensions of Diversity within the Classroom

Authors: Melissa C. LaDuke

Abstract:

This systematic literature review sought to explore the dimensions of diversity that can affect classroom learning. This review is significant as it can aid educators in reaching more of their diverse student population and creating supportive classrooms for teachers and students. For this study, peer-reviewed articles were found and compiled using Google Scholar. Key terms used in the search include student individuality, classroom equality, student development, teacher development, and teacher individuality. Relevant educational standards such as Common Core and Partnership for the 21st Century were also included as part of this review. Student and teacher individuality and equality is discussed as well as methods to grow both within educational settings. Embracing student and teacher individuality was found to be key as it may affect how each person interacts with given information. One method to grow individuality and equality in educational settings included drafting and employing revised teaching standards which include various Common Core and US State standards. Another was to use educational theories such as constructivism, cognitive learning, and Experiential Learning Theory. However, barriers to growing individuality, such as not acknowledging differences in a population’s dimensions of diversity, still exist. Studies found preserving the dimensions of diversity owned by both teachers and students yielded more positive and beneficial classroom experiences.

Keywords: Classroom equality, student development, student individuality, teacher development, teacher individuality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
5269 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: Auto-encoder, Behavior model simulation, Digital hardware design, Pre-route simulation, Unsupervised feature learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
5268 Condition Monitoring in the Management of Maintenance in a Large Scale Precision CNC Machining Manufacturing Facility

Authors: N. Ahmed, A.J. Day, J.L. Victory L. Zeall, B. Young

Abstract:

The manufacture of large-scale precision aerospace components using CNC requires a highly effective maintenance strategy to ensure that the required accuracy can be achieved over many hours of production. This paper reviews a strategy for a maintenance management system based on Failure Mode Avoidance, which uses advanced techniques and technologies to underpin a predictive maintenance strategy. It is shown how condition monitoring (CM) is important to predict potential failures in high precision machining facilities and achieve intelligent and integrated maintenance management. There are two distinct ways in which CM can be applied. One is to monitor key process parameters and observe trends which may indicate a gradual deterioration of accuracy in the product. The other is the use of CM techniques to monitor high status machine parameters enables trends to be observed which can be corrected before machine failure and downtime occurs. It is concluded that the key to developing a flexible and intelligent maintenance framework in any precision manufacturing operation is the ability to evaluate reliably and routinely machine tool condition using condition monitoring techniques within a framework of Failure Mode Avoidance.

Keywords: Maintenance, Condition Monitoring, CNC, Machining, Accuracy, Capability, Key Process Parameters, Critical Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
5267 Using Scrum in an Online Smart Classroom Environment: A Case Study

Authors: Ye Wei, Sitalakshmi Venkatraman, Fahri Benli, Fiona Wahr

Abstract:

The present digital world poses many challenges to various stakeholders in the education sector. In particular, lecturers of higher education (HE) are faced with the problem of ensuring that students are able to achieve the required learning outcomes despite rapid changes taking place worldwide. Different strategies are adopted to retain student engagement and commitment in classrooms to address the differences in learning habits, preferences and styles of the digital generation of students recently. Further, with the onset of coronavirus disease (COVID-19) pandemic, online classroom has become the most suitable alternate mode of teaching environment to cope with lockdown restrictions. These changes have compounded the problems in the learning engagement and short attention span of HE students. New Agile methodologies that have been successfully employed to manage projects in different fields are gaining prominence in the education domain. In this paper, we present the application of Scrum as an agile methodology to enhance student learning and engagement in an online smart classroom environment. We demonstrate the use of our proposed approach using a case study to teach key topics in information technology that require students to gain technical and business-related data analytics skills.

Keywords: Agile methodology, Scrum, online learning, smart classroom environment, student engagement, active learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396
5266 Performance Analysis of Learning Automata-Based Routing Algorithms in Sparse Graphs

Authors: Z.Farhadpour, Mohammad.R.Meybodi

Abstract:

A number of routing algorithms based on learning automata technique have been proposed for communication networks. How ever, there has been little work on the effects of variation of graph scarcity on the performance of these algorithms. In this paper, a comprehensive study is launched to investigate the performance of LASPA, the first learning automata based solution to the dynamic shortest path routing, across different graph structures with varying scarcities. The sensitivity of three main performance parameters of the algorithm, being average number of processed nodes, scanned edges and average time per update, to variation in graph scarcity is reported. Simulation results indicate that the LASPA algorithm can adapt well to the scarcity variation in graph structure and gives much better outputs than the existing dynamic and fixed algorithms in terms of performance criteria.

Keywords: Learning automata, routing, algorithm, sparse graph

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
5265 The Effectiveness of Video Clips to Enhance Students’ Achievement and Motivation on History Learning and Facilitation

Authors: L. Bih Ni, D. Norizah Ag Kiflee, T. Choon Keong, R. Talip, S. Singh Bikar Singh, M. Noor Mad Japuni, R. Talin

Abstract:

The purpose of this study is to determine the effectiveness of video clips to enhance students' achievement and motivation towards learning and facilitating of history. We use narrative literature studies to illustrate the current state of the two art and science in focused areas of inquiry. We used experimental method. The experimental method is a systematic scientific research method in which the researchers manipulate one or more variables to control and measure any changes in other variables. For this purpose, two experimental groups have been designed: one experimental and one groups consisting of 30 lower secondary students. The session is given to the first batch using a computer presentation program that uses video clips to be considered as experimental group, while the second group is assigned as the same class using traditional methods using dialogue and discussion techniques that are considered a control group. Both groups are subject to pre and post-trial in matters that are handled by the class. The findings show that the results of the pre-test analysis did not show statistically significant differences, which in turn proved the equality of the two groups. Meanwhile, post-test analysis results show that there was a statistically significant difference between the experimental group and the control group at an importance level of 0.05 for the benefit of the experimental group.

Keywords: Video clips, Historical Learning and Facilitation, Achievement, Motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
5264 Evaluating the Performance of Offensive Lineman in the NFL

Authors: Nikhil Byanna, Abdolghani Ebrahimi, Diego Klabjan

Abstract:

In this paper we objectively measure the performance of an individual offensive lineman in the NFL. The existing literature proposes various measures that rely on subjective assessments of game film, but has yet to develop an objective methodology to evaluate performance. Using a variety of statistics related to an offensive lineman’s performance, we develop a framework to objectively analyze the overall performance of an individual offensive lineman and determine specific linemen who are overvalued or undervalued relative to their salary. We identify eight players across the 2013-2014 and 2014-2015 NFL seasons that are considered to be overvalued or undervalued and corroborate the results with existing metrics that are based on subjective evaluation. To the best of our knowledge, the techniques set forth in this work have not been utilized in previous works to evaluate the performance of NFL players at any position, including offensive linemen.

Keywords: offensive lineman, player performance, NFL, machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 534
5263 Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning

Authors: Indiramma M., K. R. Anandakumar

Abstract:

Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.

Keywords: Collaborative Decision making, Trust, Multi Agent System (MAS), Bayesian Network, Reinforcement Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
5262 Advanced Neural Network Learning Applied to Pulping Modeling

Authors: Z. Zainuddin, W. D. Wan Rosli, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of pulping problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified odified problem M-1 Ax= M-1b where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, pulping modeling, neural networks, preconditioned conjugate gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
5261 Examining the Perceived Usefulness of ICTs for Learning about Indigenous Foods

Authors: K. M. Ngcobo, S. D. Eyono Obono

Abstract:

Science and technology has a major impact on many societal domains such as communication, medicine, food, transportation, etc. However, this dominance of modern technology can have a negative unintended impact on indigenous systems, and in particular on indigenous foods. This problem serves as a motivation to this study whose aim is to examine the perceptions of learners on the usefulness of Information and Communication Technologies (ICTs) for learning about indigenous foods. This aim will be subdivided into two types of research objectives. The design and identification of theories and models will be achieved using literature content analysis. The objective on the empirical testing of such theories and models will be achieved through the survey of Hospitality studies learners from different schools in the iLembe and Umgungundlovu Districts of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyze the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after the assessment of the validity and the reliability of the data. The main hypothesis behind this study is that there is a connection between the demographics of learners, their perceptions on the usefulness of ICTs for learning about indigenous foods, and the following personality and eLearning related theories constructs: Computer self-efficacy, Trust in ICT systems, and Conscientiousness; as suggested by existing studies on learning theories. This hypothesis was fully confirmed by the survey conducted by this study except for the demographic factors where gender and age were not found to be determinant factors of learners’ perceptions on the usefulness of ICTs for learning about indigenous foods.

Keywords: E-learning, Indigenous Foods, Information and Communication Technologies, Learning Theories, Personality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
5260 Stereotype Student Model for an Adaptive e-Learning System

Authors: Ani Grubišić, Slavomir Stankov, Branko Žitko

Abstract:

This paper describes a concept of stereotype student model in adaptive knowledge acquisition e-learning system. Defined knowledge stereotypes are based on student's proficiency level and on Bloom's knowledge taxonomy. The teacher module is responsible for the whole adaptivity process: the automatic generation of courseware elements, their dynamic selection and sorting, as well as their adaptive presentation using templates for statements and questions. The adaptation of courseware is realized according to student-s knowledge stereotype.

Keywords: Adaptive e-learning systems, adaptive courseware, stereotypes, Bloom's knowledge taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2900
5259 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features

Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli

Abstract:

Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.

Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
5258 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features

Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli

Abstract:

Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.

Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
5257 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
5256 How Learning Efficiency Affects Job Performance Effectiveness

Authors: Prateep Wajeetongratana

Abstract:

The purpose of this research was to study the influence of learning efficiency on local accountants’ job performance effectiveness. This paper drew upon the survey data collected from 335 local accountants survey conducted at Nakhon Ratchasima province, Thailand. The statistics utilized in this paper included percentage, mean, standard deviation, and regression analysis. The findings revealed that the majority of samples were between 31-40 years old, married, held an undergraduate degree, and had an average income between 10,000-15,000 baht. The majority of respondents had less than five years of accounting experience and worked for local administrations. The overall learning efficiency score was in the highest level while the local accountants’ job performance effectiveness score was also in the high level. The hypothesis testing’s result disclosed that learning efficiency factors which were knowledge, Skill, and Attitude had an influence on local accountants’ job the performance effectiveness.

Keywords: Accountants, Leaning Efficiency, Performance Effectiveness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
5255 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098