Search results for: foreign language learning
1817 Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition
Authors: Ghazy M.R. Assassa, Mona F. M. Mursi, Hatim A. Aboalsamh
Abstract:
Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.Keywords: Candid covariance-free incremental principal components analysis (CCIPCA), face recognition, incremental principal components analysis (IPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18291816 Reducing Defects through Organizational Learning within a Housing Association Environment
Authors: T. Hopkin, S. Lu, P. Rogers, M. Sexton
Abstract:
Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.
Keywords: Defects, new homes, housing associations, organizational learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19041815 Integrating Generic Skills into Disciplinary Curricula
Authors: Sitalakshmi Venkatraman, Fiona Wahr, Anthony de Souza-Daw, Samuel Kaspi
Abstract:
There is a growing emphasis on generic skills in higher education to match the changing skill-set requirements of the labour market. However, researchers and policy makers have not arrived at a consensus on the generic skills that actually contribute towards workplace employability and performance that complement and/or underpin discipline-specific graduate attributes. In order to strengthen the qualifications framework, a range of ‘generic’ learning outcomes have been considered for students undergoing higher education programs and among them it is necessary to have the fundamental generic skills such as literacy and numeracy at a level appropriate to the qualification type. This warrants for curriculum design approaches to contextualise the form and scope of these fundamental generic skills for supporting both students’ learning engagement in the course, as well as the graduate attributes required for employability and to progress within their chosen profession. Little research is reported in integrating such generic skills into discipline-specific learning outcomes. This paper explores the literature of the generic skills required for graduates from the discipline of Information Technology (IT) in relation to an Australian higher education institution. The paper presents the rationale of a proposed Bachelor of IT curriculum designed to contextualize the learning of these generic skills within the students’ discipline studies.Keywords: Curriculum, employability, generic skills, graduate attributes, higher education, information technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451814 A Comprehensive and Integrated Framework for Formal Specification of Concurrent Systems
Authors: Sara Sharifi Rad, Hassan Haghighi
Abstract:
Due to important issues, such as deadlock, starvation, communication, non-deterministic behavior and synchronization, concurrent systems are very complex, sensitive, and error-prone. Thus ensuring reliability and accuracy of these systems is very essential. Therefore, there has been a big interest in the formal specification of concurrent programs in recent years. Nevertheless, some features of concurrent systems, such as dynamic process creation, scheduling and starvation have not been specified formally yet. Also, some other features have been specified partially and/or have been described using a combination of several different formalisms and methods whose integration needs too much effort. In other words, a comprehensive and integrated specification that could cover all aspects of concurrent systems has not been provided yet. Thus, this paper makes two major contributions: firstly, it provides a comprehensive formal framework to specify all well-known features of concurrent systems. Secondly, it provides an integrated specification of these features by using just a single formal notation, i.e., the Z language.Keywords: Concurrent systems, Formal methods, Formal specification, Z language
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13501813 Fairness in Tech-Driven Assessment: Strategies to Safeguard Academic Integrity and Security in Virtual Environment
Authors: B. Ferdousi, J. Bari
Abstract:
Advanced technology can provide vital tools to promote authentic, meaningful, and efficient assessments that measure students' achievement of learning objectives in higher education. However, it also brings several challenges in the learning process. This literature review-based paper describes the challenges in ensuring academic integrity and cybersecurity when students' knowledge and performance are assessed in a digital environment. The paper also reviews the strategies that can be implemented to address these challenges. Using students' authentication and authorship verification of their classwork, designing and developing e-assessments, technology accessibility and instructor training are probable solutions to address these challenges. Given the increasing adoption of digital technology in assessing students' effective learning achievement, this paper will help enhance knowledge and in-depth understanding of measures needed in using technology in academic assessment.
Keywords: Fairness, cybersecurity, e-authentication, academic integrity, e-assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911812 Methods for Case Maintenance in Case-Based Reasoning
Authors: A. Lawanna, J. Daengdej
Abstract:
Case-Based Reasoning (CBR) is one of machine learning algorithms for problem solving and learning that caught a lot of attention over the last few years. In general, CBR is composed of four main phases: retrieve the most similar case or cases, reuse the case to solve the problem, revise or adapt the proposed solution, and retain the learned cases before returning them to the case base for learning purpose. Unfortunately, in many cases, this retain process causes the uncontrolled case base growth. The problem affects competence and performance of CBR systems. This paper proposes competence-based maintenance method based on deletion policy strategy for CBR. There are three main steps in this method. Step 1, formulate problems. Step 2, determine coverage and reachability set based on coverage value. Step 3, reduce case base size. The results obtained show that this proposed method performs better than the existing methods currently discussed in literature.Keywords: Case-Based Reasoning, Case Base Maintenance, Coverage, Reachability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16671811 Nonlinear Multivariable Analysis of CO2 Emissions in China
Authors: Hsiao-Tien Pao, Yi-Ying Li, Hsin-Chia Fu
Abstract:
This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO2 emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model.
Keywords: Grey relational analysis, foreign direct investment, CO2 emissions, China.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12851810 Development of Innovative Islamic Web Applications
Authors: Farrukh Shahzad
Abstract:
The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13141809 An Investigation on the Variation of Software Development Productivity
Authors: Zhizhong Jiang, Peter Naudé, Craig Comstock
Abstract:
The productivity of software development is one of the major concerns for project managers. Given the increasing complexity of the software being developed and the concomitant rise in the typical project size, the productivity has not consistently improved. By analyzing the latest release of ISBSG data repository with 4106 projects ever developed, we report on the factors found to significantly influence productivity, and present an original model for the estimation of productivity during project design. We further illustrate that software development productivity has experienced irregular variations between the years 1995 and 2005. Considering the factors significant to productivity, we found its variations are primarily caused by the variations of average team size for the development and the unbalanced use of the less productive development language 3GL.
Keywords: Development Platform, Function Point, Language, Productivity, Software Engineering, Team Size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16841808 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children
Authors: Norah Alshahrani, Abdulaziz Almaleh
Abstract:
Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD: Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by SVM, achieving 0.98% in the toddler dataset and 0.99% in the children dataset.
Keywords: Autism Spectrum Disorder, ASD, Machine Learning, ML, Feature Selection, Support Vector Machine, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6121807 The Effect of Facial Expressions on Students in Virtual Educational Environments
Authors: G. Theonas, D. Hobbs, D. Rigas
Abstract:
The scope of this research was to study the relation between the facial expressions of three lecturers in a real academic lecture theatre and the reactions of the students to those expressions. The first experiment aimed to investigate the effectiveness of a virtual lecturer-s expressions on the students- learning outcome in a virtual pedagogical environment. The second experiment studied the effectiveness of a single facial expression, i.e. the smile, on the students- performance. Both experiments involved virtual lectures, with virtual lecturers teaching real students. The results suggest that the students performed better by 86%, in the lectures where the lecturer performed facial expressions compared to the results of the lectures that did not use facial expressions. However, when simple or basic information was used, the facial expressions of the virtual lecturer had no substantial effect on the students- learning outcome. Finally, the appropriate use of smiles increased the interest of the students and consequently their performance.
Keywords: emotion, facial expression, smile, virtual educational environment, virtual learning, virtual lecturer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20001806 Combining Bagging and Additive Regression
Authors: Sotiris B. Kotsiantis
Abstract:
Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.
Keywords: Regressors, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16511805 Assessment on Communication Students’ Internship Performances from the Employers’ Perspective
Authors: Yesuselvi Manickam, Tan Soon Chin
Abstract:
Internship is a supervised and structured learning experience related to one’s field of study or career goal. Internship allows students to obtain work experience and the opportunity to apply skills learned during university. Internship is a valuable learning experience for students; however, literature on employer assessment is scarce on Malaysian student’s internship experience. This study focuses on employer’s perspective on student’s performances during their three months of internship. The results are based on the descriptive analysis of 45 sets of question gathered from the on-site supervisors of the interns. The survey of 45 on-site supervisor’s feedback was collected through postal mail. It was found that, interns have not met their on-site supervisor’s expectations in many areas. The significance of this study is employer’s assessment on the internship shall be used as feedback to improve on ways how to prepare students for their internship and employments in future.
Keywords: Employers perspective, internship, structured learning, student’s performances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22821804 3D Rendering of American Sign Language Finger-Spelling: A Comparative Study of Two Animation Techniques
Authors: Nicoletta Adamo-Villani
Abstract:
In this paper we report a study aimed at determining the most effective animation technique for representing ASL (American Sign Language) finger-spelling. Specifically, in the study we compare two commonly used 3D computer animation methods (keyframe animation and motion capture) in order to ascertain which technique produces the most 'accurate', 'readable', and 'close to actual signing' (i.e. realistic) rendering of ASL finger-spelling. To accomplish this goal we have developed 20 animated clips of fingerspelled words and we have designed an experiment consisting of a web survey with rating questions. 71 subjects ages 19-45 participated in the study. Results showed that recognition of the words was correlated with the method used to animate the signs. In particular, keyframe technique produced the most accurate representation of the signs (i.e., participants were more likely to identify the words correctly in keyframed sequences rather than in motion captured ones). Further, findings showed that the animation method had an effect on the reported scores for readability and closeness to actual signing; the estimated marginal mean readability and closeness was greater for keyframed signs than for motion captured signs. To our knowledge, this is the first study aimed at measuring and comparing accuracy, readability and realism of ASL animations produced with different techniques.Keywords: 3D Animation, American Sign Language, DeafEducation, Motion Capture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20111803 Assamese Numeral Corpus for Speech Recognition using Cooperative ANN Architecture
Authors: Mousmita Sarma, Krishna Dutta, Kandarpa Kumar Sarma
Abstract:
Speech corpus is one of the major components in a Speech Processing System where one of the primary requirements is to recognize an input sample. The quality and details captured in speech corpus directly affects the precision of recognition. The current work proposes a platform for speech corpus generation using an adaptive LMS filter and LPC cepstrum, as a part of an ANN based Speech Recognition System which is exclusively designed to recognize isolated numerals of Assamese language- a major language in the North Eastern part of India. The work focuses on designing an optimal feature extraction block and a few ANN based cooperative architectures so that the performance of the Speech Recognition System can be improved.Keywords: Filter, Feature, LMS, LPC, Cepstrum, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23921802 Personnel Selection Based on Step-Wise Weight Assessment Ratio Analysis and Multi-Objective Optimization on the Basis of Ratio Analysis Methods
Authors: Emre Ipekci Cetin, Ebru Tarcan Icigen
Abstract:
Personnel selection process is considered as one of the most important and most difficult issues in human resources management. At the stage of personnel selection, the applicants are handled according to certain criteria, the candidates are dealt with, and efforts are made to select the most appropriate candidate. However, this process can be more complicated in terms of the managers who will carry out the staff selection process. Candidates should be evaluated according to different criteria such as work experience, education, foreign language level etc. It is crucial that a rational selection process is carried out by considering all the criteria in an integrated structure. In this study, the problem of choosing the front office manager of a 5 star accommodation enterprise operating in Antalya is addressed by using multi-criteria decision-making methods. In this context, SWARA (Step-wise weight assessment ratio analysis) and MOORA (Multi-Objective Optimization on the basis of ratio analysis) methods, which have relatively few applications when compared with other methods, have been used together. Firstly SWARA method was used to calculate the weights of the criteria and subcriteria that were determined by the business. After the weights of the criteria were obtained, the MOORA method was used to rank the candidates using the ratio system and the reference point approach. Recruitment processes differ from sector to sector, from operation to operation. There are a number of criteria that must be taken into consideration by businesses in accordance with the structure of each sector. It is of utmost importance that all candidates are evaluated objectively in the framework of these criteria, after these criteria have been carefully selected in the selection of suitable candidates for employment. In the study, staff selection process was handled by using SWARA and MOORA methods together.
Keywords: Accommodation establishments, human resource management, MOORA, multi criteria decision making, SWARA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12501801 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of acquiring new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used in this work is to analyze the dynamics of different brain areas during a cognitive activity to find the relationships between the other areas analyzed to understand the functioning of neural networks better. Also, the latest advances in neuroscience have revealed the exis-tence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neurodevelopmental difficulties for their subsequent assessment and therapy. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process, specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho-pedagogical plans that allow obtaining an optimal integral development of the affected people.
Keywords: dyscalculia, neurodevelopment, evoked potentials, learning disabilities, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6071800 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: Baby care system, internet of things, deep learning, machine vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19161799 Dynamic Measurement System Modeling with Machine Learning Algorithms
Authors: Changqiao Wu, Guoqing Ding, Xin Chen
Abstract:
In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7941798 Investment Trend Analysis of Dhaka Stock Exchange: A Comparative Study
Authors: Azaz Zaman, Mirazur Rahman
Abstract:
Capital market is a crucial financial market place where companies and the government can raise long-term funds and, at the same time, investors get the opportunity to invest in the listed companies. Capital markets play a vital role not only in shifting the funds from surplus entity to deficit for investment, but also in the overall economic development of any developing country like Bangladesh. Being the first and biggest capital market of Bangladesh, Dhaka Stock Exchange (DSE) is the prime bourse of the country. The differences in the investment preference— among three broad categories of investors in DSE including individual investors, institutional investors, and government— are easily observed. Authors of this article have used five categories of investors such as sponsors or directors of the company, institutional investors, foreign investors, government, and the general public in order to present a comparative analysis of their investment patterns. Obtaining data on the percentage of investment by these five types of investors in different sectors from the DSE website, this study aims to analyze the sector-wise investment preference of these investors using August 2018 data. The study has found that the sponsors or directors of the company have the highest percentage of investment in the textile industry which is close to 16%. The Bangladesh government, as an investor, has the highest percentage of investment in the fuel & power sector, approximately 32%. It has also found that the mutual funds' sector is mostly financed by institutional investors, nearly 28%. Foreign investors have their most investments in the banking sector, which is close to 22%. It has also revealed that the textile sector is mostly financed by the general public, close to 17%. Nevertheless, general public, surprisingly, has the lowest percentage of investment in the telecommunication sector, which is 0.10%.
Keywords: Stock market investment, Dhaka stock exchange, capital market, Bangladesh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9031797 Communicative Competence in Technical Oral Presentation: That “Magic“ Perceived by ESL Educators versus Content Experts
Authors: Ena Bhattacharyya, Zullina H. Shaari
Abstract:
Till date, English as a Second Language (ESL) educators involved in teaching language and communication to engineering students face an uphill task in developing graduate communicative competency. This challenge is accentuated by the apparent lack of English for Specific Purposes (ESP) materials for engineering students in the engineering curriculum. As such, most ESL educators are forced to play multiple roles. They don tasks such as curriculum designers, material writers and teachers with limited knowledge of the disciplinary content. Previous research indicates that prospective professional engineers should possess some sub-sets of competency: technical, linguistic oral immediacy, meta-cognitive and rhetorical explanatory competence. Another study revealed that engineering students need to be equipped with technical and linguistic oral immediacy competence. However, little is known whether these competency needs are in line with the educators- perceptions of communicative competence. This paper examines the best mix of communicative competence subsets that create the magic for engineering students in technical oral presentations. For the purpose of this study, two groups of educators were interviewed. These educators were language and communication lecturers involved in teaching a speaking course and content experts who assess students- technical oral presentations at tertiary level. The findings indicate that these two groups differ in their perceptions
Keywords: Communicative competence, Content experts, Educators, Technical Oral Presentations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20561796 An Integrated Natural Language Processing Approach for Conversation System
Authors: Zhi Teng, Ye Liu, Fuji Ren
Abstract:
The main aim of this research is to investigate a novel technique for implementing a more natural and intelligent conversation system. Conversation systems are designed to converse like a human as much as their intelligent allows. Sometimes, we can think that they are the embodiment of Turing-s vision. It usually to return a predetermined answer in a predetermined order, but conversations abound with uncertainties of various kinds. This research will focus on an integrated natural language processing approach. This approach includes an integrated knowledge-base construction module, a conversation understanding and generator module, and a state manager module. We discuss effectiveness of this approach based on an experiment.
Keywords: Conversation System, integrated knowledge-base construction, conversation understanding and generator, state manager
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361795 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.
Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4231794 Visualisation Techniques Connecting VRML and GENESIS Environments
Authors: Eduard Kuriščák, Jiří Chludil
Abstract:
We created the tool, which combines the powerful GENESIS (GEneral NEural SImulation System) simulation language with the up-to-date visualisation and internet techniques. Our solution resides in the connection between the simulation output from GENESIS, which is converted to the data-structure suitable for WWW browsers and VRML (Virtual Reality Modelling Language) viewers. The selected GENESIS simulations are once exported into the VRML code, and stored in our neurovisualisation portal (webserver). There, the loaded models, demonstrating mainly the spread of electrical signal (action potentials, postsynaptic potentials) along the neuronal membrane (axon, dendritic tree, neuron) could be displayed in the client-s VRML viewer, without interacting with original GENESIS environment. This enables the visualisation of basic neurophysiological phenomena designed for GENESIS simulator on the independent OS (operation system).Keywords: GENESIS, neurosimulation, VRML, Java3D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17971793 Teaching English to Engineers: Between English Language Teaching and Psychology
Authors: Irina-Ana Drobot
Abstract:
Teaching English to Engineers is part of English for Specific Purposes, a domain which is under the attention of English students especially under the current conditions of finding jobs and establishing partnerships outside Romania. The paper will analyse the existing textbooks together with the teaching strategies they adopt. Teaching English to Engineering students can intersect with domains such as psychology and cultural studies in order to teach them efficiently. Textbooks for students of ESP, ranging from those at the Faculty of Economics to those at the Faculty of Engineers, have shifted away from using specialized vocabulary, drills for grammar and reading comprehension questions and toward communicative methods and the practical use of language. At present, in Romania, grammar is neglected in favour of communicative methods. The current interest in translation studies may indicate a return to this type of method, since only translation specialists can distinguish among specialized terms and determine which are most suitable in a translation. Engineers are currently encouraged to learn English in order to do their own translations in their own field. This paper will analyse the issue of the extent to which it is useful to teach Engineering students to do translations in their field using cognitive psychology applied to language teaching, including issues such as motivation and social psychology. Teaching general English to engineering students can result in lack of interest, but they can be motivated by practical aspects which will help them in their field. This is why this paper needs to take into account an interdisciplinary approach to teaching English to Engineers.
Keywords: Cognition, ESP, motivation, psychology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31341792 Ethics, Identity and Organizational Learning –Challenges for South African Managers
Authors: Jacobus A. A. Lazenby
Abstract:
As a result of the ever-changing environment and the demands of rganisations- customers, it is important to recognise the importance of some important managerial challenges. It is the sincere belief that failure to meet these challenges, will ultimately contribute to inevitable problems for organisations. This recognition requires from managers and by implication organisations to be engaged in ethical behaviour, identity awareness and learning organisational behaviour. All these aspects actually reflect on the importance of intellectual capital as the competitive weapons for organisations in the future.Keywords: Ethical behaviour, identity awareness, learningbehaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18891791 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center
Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini
Abstract:
We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.
Keywords: Precision teaching, writing skills, CBM, Italian Learning Center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7941790 Reducing the Imbalance Penalty through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations, since the geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning and time series methods, the total generation of the power plants belonging to Zorlu Doğal Electricity Generation, which has a high installed capacity in terms of geothermal, was predicted for the first one-week and first two-weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.
Keywords: Machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201789 An Educational Data Mining System for Advising Higher Education Students
Authors: Heba Mohammed Nagy, Walid Mohamed Aly, Osama Fathy Hegazy
Abstract:
Educational data mining is a specific data mining field applied to data originating from educational environments, it relies on different approaches to discover hidden knowledge from the available data. Among these approaches are machine learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems.
In our research, we propose a “Student Advisory Framework” that utilizes classification and clustering to build an intelligent system. This system can be used to provide pieces of consultations to a first year university student to pursue a certain education track where he/she will likely succeed in, aiming to decrease the high rate of academic failure among these students. A real case study in Cairo Higher Institute for Engineering, Computer Science and Management is presented using real dataset collected from 2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.
Keywords: Classification, Clustering, Educational Data Mining (EDM), Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52221788 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components
Authors: M. Rodionov, Z. Dedovets
Abstract:
This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaningmaking characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.
Keywords: Learning activity, mathematics, motivation, student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960