Search results for: mobile game based learning
11820 Software Model for a Computer Based Training for an HVDC Control Desk Simulator
Authors: José R. G. Braga, Joice B. Mendes, Guilherme H. Caponetto, Alexandre C. B. Ramos
Abstract:
With major technological advances and to reduce the cost of training apprentices for real-time critical systems, it was necessary the development of Intelligent Tutoring Systems for training apprentices in these systems. These systems, in general, have interactive features so that the learning is actually more efficient, making the learner more familiar with the mechanism in question. In the home stage of learning, tests are performed to obtain the student's income, a measure on their use. The aim of this paper is to present a framework to model an Intelligent Tutoring Systems using the UML language. The various steps of the analysis are considered the diagrams required to build a general model, whose purpose is to present the different perspectives of its development.Keywords: Computer based training, Hypermedia, Software modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161111819 Human Resources and Business Result: An Empirical Approach Based On RBV Theory
Authors: XhevrieMamaqi
Abstract:
Organization capacity learning is a process referring to the sum total of individual and collective learning through training programs, experience and experimentation, among others. Today, in-business ongoing training is one of the most important strategies for human capital development and it is crucial to sustain and improve workers’ knowledge and skills. Many organizations, firms and business are adopting a strategy of continuous learning, encouraging employees to learn new skills continually to be innovative and to try new processes and work in order to achieve a competitive advantage and superior business results. This paper uses the Resource Based View and Capacities (RBV) approach to construct a hypothetical relationships model between training and business results. The test of the model is applied on transversal data. A sample of 266 business of Spanish sector service has been selected. A Structural Equation Model (SEM) is used to estimate the relationship between ongoing training, represented by two latent dimension denominated Human and Social Capital resources and economic business results. The coefficients estimated have shown the efficient of some training aspectsexplaining the variation in business results.
Keywords: Business results, Human and Social Capital resources, training, RBV Theory, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186111818 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: Web log data, web user profile, user interest, noise web data learning, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173611817 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119911816 Achieving Business and IT Alignment from Organisational Learning Perspectives
Authors: Hamad Hussain Balhareth, Kecheng Liu, Sharm Manwani
Abstract:
Business and IT alignment has continued as a top concern for business and IT executives for almost three decades. Many researchers have conducted empirical studies on the relationship between business-IT alignment and performance. Yet, these approaches, lacking a social perspective, have had little impact on sustaining performance and competitive advantage. In addition to the limited alignment literature that explores organisational learning that is represented in shared understanding, communication, cognitive maps and experiences. Hence, this paper proposes an integrated process that enables social and intellectual dimensions through the concept of organisational learning. In particular, the feedback and feedforward process which provide a value creation across dynamic multilevel of learning. This mechanism enables on-going effectiveness through development of individuals, groups and organisations, which improves the quality of business and IT strategies and drives to performance.Keywords: business-IT alignment, social dimension, intellectual dimension, organisational learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174311815 Using a Semantic Self-Organising Web Page-Ranking Mechanism for Public Administration and Education
Authors: Marios Poulos, Sozon Papavlasopoulos, V. S. Belesiotis
Abstract:
In the proposed method for Web page-ranking, a novel theoretic model is introduced and tested by examples of order relationships among IP addresses. Ranking is induced using a convexity feature, which is learned according to these examples using a self-organizing procedure. We consider the problem of selforganizing learning from IP data to be represented by a semi-random convex polygon procedure, in which the vertices correspond to IP addresses. Based on recent developments in our regularization theory for convex polygons and corresponding Euclidean distance based methods for classification, we develop an algorithmic framework for learning ranking functions based on a Computational Geometric Theory. We show that our algorithm is generic, and present experimental results explaining the potential of our approach. In addition, we explain the generality of our approach by showing its possible use as a visualization tool for data obtained from diverse domains, such as Public Administration and Education.Keywords: Computational Geometry, Education, e-Governance, Semantic Web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176211814 MLOps Scaling Machine Learning Lifecycle in an Industrial Setting
Authors: Yizhen Zhao, Adam S. Z. Belloum, Gonc¸alo Maia da Costa, Zhiming Zhao
Abstract:
Machine learning has evolved from an area of academic research to a real-world applied field. This change comes with challenges, gaps and differences exist between common practices in academic environments and the ones in production environments. Following continuous integration, development and delivery practices in software engineering, similar trends have happened in machine learning (ML) systems, called MLOps. In this paper we propose a framework that helps to streamline and introduce best practices that facilitate the ML lifecycle in an industrial setting. This framework can be used as a template that can be customized to implement various machine learning experiments. The proposed framework is modular and can be recomposed to be adapted to various use cases (e.g. data versioning, remote training on Cloud). The framework inherits practices from DevOps and introduces other practices that are unique to the machine learning system (e.g.data versioning). Our MLOps practices automate the entire machine learning lifecycle, bridge the gap between development and operation.
Keywords: Cloud computing, continuous development, data versioning, DevOps, industrial setting, MLOps, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108911813 Reducing Cognitive Load in Learning Computer Programming
Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin
Abstract:
Many difficulties are faced in the process of learning computer programming. This paper will propose a system framework intended to reduce cognitive load in learning programming. In first section focus is given on the process of learning and the shortcomings of the current approaches to learning programming. Finally the proposed prototype is suggested along with the justification of the prototype. In the proposed prototype the concept map is used as visualization metaphor. Concept maps are similar to the mental schema in long term memory and hence it can reduce cognitive load well. In addition other method such as part code method is also proposed in this framework to can reduce cognitive load.Keywords: Cognitive load, concept maps, working memory, split attention effect, partial code programs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 259811812 Attacks Classification in Adaptive Intrusion Detection using Decision Tree
Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 363711811 eMedI: Web-Based E-Training for Multimodal Breast Imaging
Authors: Ioannis Pratikakis, Anna Karahaliou, Katerina Vassiou, Vassilis Virvilis, Dimitrios Kosmopoulos, Stavros Perantonis
Abstract:
In this paper, a Web-based e-Training platform that is dedicated to multimodal breast imaging is presented. The assets of this platform are summarised in (i) the efficient representation of the curriculum flow that will permit efficient training; (ii) efficient tagging of multimodal content appropriate for the completion of realistic cases and (iii) ubiquitous accessibility and platform independence via a web-based approach.
Keywords: Breast imaging, e-Training, web-based learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169011810 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: Crime prediction, machine learning, public safety, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133311809 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: Computational social science, movie preference, machine learning, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165711808 Online Language Learning and Teaching Pedagogy: Constructivism and Beyond
Authors: Zeineb Deymi-Gheriani
Abstract:
In the last two decades, one can clearly observe a boom of interest for e-learning and web-supported programs. However, one can also notice that many of these programs focus on the accumulation and delivery of content generally as a business industry with no much concern for theoretical underpinnings. The existing research, at least in online English language teaching (ELT), has demonstrated a lack of an effective online teaching pedagogy anchored in a well-defined theoretical framework. Hence, this paper comes as an attempt to present constructivism as one of the theoretical bases for the design of an effective online language teaching pedagogy which is at the same time technologically intelligent and theoretically informed to help envision how education can best take advantage of the information and communication technology (ICT) tools. The present paper discusses the key principles underlying constructivism, its implications for online language teaching design, as well as its limitations that should be avoided in the e-learning instructional design. Although the paper is theoretical in nature, essentially based on an extensive literature survey on constructivism, it does have practical illustrations from an action research conducted by the author both as an e-tutor of English using Moodle online educational platform at the Virtual University of Tunis (VUT) from 2007 up to 2010 and as a face-to-face (F2F) English teaching practitioner in the Professional Certificate of English Language Teaching Training (PCELT) at AMIDEAST, Tunisia (April-May, 2013).
Keywords: Active learning, constructivism, experiential learning, Piaget, Vygotsky.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147511807 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: Personal information, deep learning, auto fill, NLP, document analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86911806 Direction of Arrival Estimation Based on a Single Port Smart Antenna Using MUSIC Algorithm with Periodic Signals
Authors: Chen Sun, Nemai Chandra Karmakar
Abstract:
A novel direction-of-arrival (DOA) estimation technique, which uses a conventional multiple signal classification (MUSIC) algorithm with periodic signals, is applied to a single RF-port parasitic array antenna for direction finding. Simulation results show that the proposed method gives high resolution (1 degree) DOA estimation in an uncorrelated signal environment. The novelty lies in that the MUSIC algorithm is applied to a simplified antenna configuration. Only one RF port and one analogue-to-digital converter (ADC) are used in this antenna, which features low DC power consumption, low cost, and ease of fabrication. Modifications to the conventional MUSIC algorithm do not bring much additional complexity. The proposed technique is also free from the negative influence by the mutual coupling between elements. Therefore, the technique has great potential to be implemented into the existing wireless mobile communications systems, especially at the power consumption limited mobile terminals, to provide additional position location (PL) services.
Keywords: Direction-of-arrival (DOA) estimation, electronically steerable parasitic array radiator (ESPAR), multiple single classifications (MUSIC), position location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 299811805 Integrating Computer Games with Mathematics Instruction in Elementary School- An Analysis of Motivation, Achievement, and Pupil-Teacher Interactions
Authors: Kuo Hung Huang, Chong-Ji Ke
Abstract:
The purpose of this study is to explore the impacts of computer games on the mathematics instruction. First, the research designed and implemented the web-based games according to the content of existing textbook. And the researcher collected and analyzed the information related to the mathematics instruction integrating the computer games. In this study, the researcher focused on the learning motivation of mathematics, mathematics achievement, and pupil-teacher interactions in classroom. The results showed that students under instruction integrating computer games significantly improved in motivation and achievement. The teacher tended to use less direct teaching and provide more time for student-s active learning.Keywords: computer games, mathematics instruction, pupil-teacher interaction, technology-enhanced learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193011804 Design of a Statistics Lecture for Multidisciplinary Postgraduate Students Using a Range of Tools and Techniques
Abstract:
Teaching statistics is a critical and challenging issue especially to students from multidisciplinary and diverse postgraduate backgrounds. Postgraduate research students require statistics not only for the design of experiments; but also for data analysis. Students often perceive statistics as a complex and technical subject; thus, they leave data analysis to the last moment. The lecture needs to be simple and inclusive at the same time to make it comprehendible and address the learning needs of each student. Therefore, the aim of this work was to design a simple and comprehendible statistics lecture to postgraduate research students regarding ‘Research plan, design and data collection’. The lecture adopted the constructive alignment learning theory which facilitated the learning environments for the students. The learning environment utilized a student-centered approach and used interactive learning environment with in-class discussion, handouts and electronic voting system handsets. For evaluation of the lecture, formative assessment was made with in-class discussions and poll questions which were introduced during and after the lecture. The whole approach showed to be effective in creating a learning environment to the students who were able to apply the concepts addressed to their individual research projects.
Keywords: Teaching, statistics, lecture, multidisciplinary, postgraduate, learning theory, learning environment, student-centered approach, data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113811803 Student Satisfaction Data for Work Based Learners
Authors: Rosie Borup, Hanifa Shah
Abstract:
This paper aims to describe how student satisfaction is measured for work-based learners as these are non-traditional learners, conducting academic learning in the workplace, typically their curricula have a high degree of negotiation, and whose motivations are directly related to their employers- needs, as well as their own career ambitions. We argue that while increasing WBL participation, and use of SSD are both accepted as being of strategic importance to the HE agenda, the use of WBL SSD is rarely examined, and lessons can be learned from the comparison of SSD from a range of WBL programmes, and increased visibility of this type of data will provide insight into ways to improve and develop this type of delivery. The key themes that emerged from the analysis of the interview data were: learners profiles and needs, employers drivers, academic staff drivers, organizational approach, tools for collecting data and visibility of findings. The paper concludes with observations on best practice in the collection, analysis and use of WBL SSD, thus offering recommendations for both academic managers and practitioners.Keywords: Student satisfaction data, work based learning, employer engagement, NSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149411802 Study on Evaluating the Utilization of Social Media Tools (SMT) in Collaborative Learning Case Study: Faculty of Medicine, King Khalid University
Authors: Vasanthi Muniasamy, Intisar Magboul Ejalani, M. Anandhavalli, K. Gauthaman
Abstract:
Social Media (SM) is websites increasingly popular and built to allow people to express themselves and to interact socially with others. Most SMT are dominated by youth particularly College students. The proliferation of popular social media tools, which can accessed from any communication devices has become pervasive in the lives of today’s student life. Connecting traditional education to social media tools are a relatively new era and any collaborative tool could be used for learning activities. This study focuses (i) how the social media tools are useful for the learning activities of the students of faculty of medicine in King Khalid University (ii) whether the social media affects the collaborative learning with interaction among students, among course instructor, their engagement, perceived ease of use and perceived ease of usefulness (TAM) (iii) overall, the students satisfy with this collaborative learning through Social media.
Keywords: Social Media, Web 2.0, Perceived ease of use, perceived usefulness, Collaborative Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231711801 Self-Assembling Hypernetworks for Cognitive Learning of Linguistic Memory
Authors: Byoung-Tak Zhang, Chan-Hoon Park
Abstract:
Hypernetworks are a generalized graph structure representing higher-order interactions between variables. We present a method for self-organizing hypernetworks to learn an associative memory of sentences and to recall the sentences from this memory. This learning method is inspired by the “mental chemistry" model of cognition and the “molecular self-assembly" technology in biochemistry. Simulation experiments are performed on a corpus of natural-language dialogues of approximately 300K sentences collected from TV drama captions. We report on the sentence completion performance as a function of the order of word-interaction and the size of the learning corpus, and discuss the plausibility of this architecture as a cognitive model of language learning and memory.Keywords: Linguistic recall memory, sentence completion task, self-organizing hypernetworks, cognitive learning and memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150011800 Using A Hybrid Algorithm to Improve the Quality of Services in Multicast Routing Problem
Authors: Mohammad Reza Karami Nejad
Abstract:
A hybrid learning automata-genetic algorithm (HLGA) is proposed to solve QoS routing optimization problem of next generation networks. The algorithm complements the advantages of the learning Automato Algorithm(LA) and Genetic Algorithm(GA). It firstly uses the good global search capability of LA to generate initial population needed by GA, then it uses GA to improve the Quality of Service(QoS) and acquiring the optimization tree through new algorithms for crossover and mutation operators which are an NP-Complete problem. In the proposed algorithm, the connectivity matrix of edges is used for genotype representation. Some novel heuristics are also proposed for mutation, crossover, and creation of random individuals. We evaluate the performance and efficiency of the proposed HLGA-based algorithm in comparison with other existing heuristic and GA-based algorithms by the result of simulation. Simulation results demonstrate that this paper proposed algorithm not only has the fast calculating speed and high accuracy but also can improve the efficiency in Next Generation Networks QoS routing. The proposed algorithm has overcome all of the previous algorithms in the literature.
Keywords: Routing, Quality of Service, Multicaset, Learning Automata, Genetic, Next Generation Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174011799 Toward a Model for Knowledge Development in Virtual Environments: Strategies for Student Ownership
Authors: N.B. Adams
Abstract:
This article discusses the concept of student ownership of knowledge and seeks to determine how to move students from knowledge acquisition to knowledge application and ultimately to knowledge generation in a virtual setting. Instructional strategies for fostering student engagement in a virtual environment are critical to the learner-s strategic ownership of the knowledge. A number of relevant theories that focus on learning, affect, needs and adult concerns are presented to provide a basis for exploring the transfer of knowledge from teacher to learner. A model under development is presented that combines the dimensions of knowledge approach, the teacher-student relationship with regards to knowledge authority and teaching approach to demonstrate the recursive and scaffolded design for creation of virtual learning environments.
Keywords: Virtual learning environments, learning theory, teaching model, online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187211798 System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data
Authors: Luís Pina
Abstract:
The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.
Keywords: GSM, marine biology, marine turtles, USSD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93611797 Implementation of the Quality Management System and Development of Organizational Learning: Case of Three Small and Medium-Sized Enterprises in Morocco
Authors: Abdelghani Boudiaf
Abstract:
The profusion of studies relating to the concept of organizational learning shows the importance that has been given to this concept in the management sciences. A few years ago, companies leaned towards ISO 9001 certification; this requires the implementation of the quality management system (QMS). In order for this objective to be achieved, companies must have a set of skills, which pushes them to develop learning through continuous training. The results of empirical research have shown that implementation of the QMS in the company promotes the development of learning. It should also be noted that several types of learning are developed in this sense. Given the nature of skills development is normative in the context of the quality demarche, companies are obliged to qualify and improve the skills of their human resources. Continuous training is the keystone to develop the necessary learning. To carry out continuous training, companies need to be able to identify their real needs by developing training plans based on well-defined engineering. The training process goes obviously through several stages. Initially, training has a general aspect, that is to say, it focuses on topics and actions of a general nature. Subsequently, this is done in a more targeted and more precise way to accompany the evolution of the QMS and also to make the changes decided each time (change of working method, change of practices, change of objectives, change of mentality, etc.). To answer our problematic we opted for the method of qualitative research. It should be noted that the case study method crosses several data collection techniques to explain and understand a phenomenon. Three cases of companies were studied as part of this research work using different data collection techniques related to this method.
Keywords: Changing mentalities, continuous training, organizational learning, quality management system, skills development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73211796 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets
Authors: Najmeh Abedzadeh, Matthew Jacobs
Abstract:
An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.
Keywords: IDS, intrusion detection system, imbalanced datasets, sampling algorithms, big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113711795 Effective Online Staff Training: Is This Possible?
Authors: C. Rogerson, E. Scott
Abstract:
The purpose of this paper is to consider the introduction of online courses to replace the current classroom-based staff training. The current training is practical, and must be completed before access to the financial computer system is authorized. The long term objective is to measure the efficacy, effectiveness and efficiency of the training, and to establish whether a transfer of knowledge back to the workplace has occurred. This paper begins with an overview explaining the importance of staff training in an evolving, competitive business environment and defines the problem facing this particular organization. A summary of the literature review is followed by a brief discussion of the research methodology and objective. The implementation of the alpha version of the online course is then described. This paper may be of interest to those seeking insights into, or new theory regarding, practical interventions of online learning in the real world.
Keywords: Computer-based courses, e-learning, online training, workplace training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168311794 The Efficacy of Technology in Enhancing the Development and Learning of Children (0 – 5 Years)
Authors: Adesina, Olusola Joseph
Abstract:
The use of Technological tools in the classroom setting has drawn the interest of researchers all over the world in the recent time. Technology has been identified in the recent time as potentials tools to aid learning especially during early childhood stage. The main objective of this is to assist the upcoming younger generations to acquire necessary skills for cognitive development which later enhances effective teaching learning process. The integration of Technology in early childhood requires a careful selection of devices that will both assist the children and the teachers or care givers. This paper therefore, examines some selected literature evidences and highlighted the efficacy of various technologies tools in enhancing the development and learning of children (0 – 5 years). Conclusion and recommendations were also drawn in this paper.
Keywords: Development, Efficacy, Learning, Technological Device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152711793 Accidents and Close Call Situations Due to Cell Phone Use While Moving, Driving, and Working
Authors: L. Korpinen, R. Pääkkönen, F. Gobba
Abstract:
Accidents and close call situations involving cell phones are nowadays possible. The objective of this study was to investigate the accidents and close call situations due to cell phone use while moving, driving, and working among Finns aged between 18 and 65. This work is part of a large cross-sectional study that was carried out on 15,000 working-age Finns. About 26% of people who had an accident, and about half of the people including close call situation with the mobile phone, answered that use of the phone influenced. In the future, it is important to take into account that the use of a mobile phone can be distracting while driving.
Keywords: Blue-collar workers, accident, cell phone, close call situation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141211792 Designing for Inclusion within the Learning Management System: Social Justice, Identities, and Online Design for Digital Spaces in Higher Education
Authors: Christina Van Wingerden
Abstract:
The aim of this paper is to propose pedagogical design for learning management systems (LMS) that offers greater inclusion for students based on a number of theoretical perspectives and delineated through an example. Considering the impact of COVID-19, including on student mental health, the research suggesting the importance of student sense of belonging on retention, success, and student well-being, the author describes intentional LMS design incorporating theoretically based practices informed by critical theory, feminist theory, indigenous theory and practices, and new materiality. This article considers important aspects of these theories and practices which attend to inclusion, identities, and socially just learning environments. Additionally, increasing student sense of belonging and mental health through LMS design influenced by adult learning theory and the community of inquiry model are described. The process of thinking through LMS pedagogical design with inclusion intentionally in mind affords the opportunity to allow LMS to go beyond course use as a repository of documents, to an intentional community of practice that facilitates belonging and connection, something much needed in our times. In virtual learning environments it has been harder to discern how students are doing, especially in feeling connected to their courses, their faculty, and their student peers. Increasingly at the forefront of public universities is addressing the needs of students with multiple and intersecting identities and the multiplicity of needs and accommodations. Education in 2020, and moving forward, calls for embedding critical theories and inclusive ideals and pedagogies to the ways instructors design and teach in online platforms. Through utilization of critical theoretical frameworks and instructional practices, students may experience the LMS as a welcoming place with intentional plans for welcoming diversity in identities.
Keywords: Belonging, critical pedagogy, instructional design, Learning Management System, LMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84311791 Investigating Intrusion Detection Systems in MANET and Comparing IDSs for Detecting Misbehaving Nodes
Authors: Marjan Kuchaki Rafsanjani, Ali Movaghar, Faroukh Koroupi
Abstract:
As mobile ad hoc networks (MANET) have different characteristics from wired networks and even from standard wireless networks, there are new challenges related to security issues that need to be addressed. Due to its unique features such as open nature, lack of infrastructure and central management, node mobility and change of dynamic topology, prevention methods from attacks on them are not enough. Therefore intrusion detection is one of the possible ways in recognizing a possible attack before the system could be penetrated. All in all, techniques for intrusion detection in old wireless networks are not suitable for MANET. In this paper, we classify the architecture for Intrusion detection systems that have so far been introduced for MANETs, and then existing intrusion detection techniques in MANET presented and compared. We then indicate important future research directions.Keywords: Intrusion Detection System(IDS), Misbehavingnodes, Mobile Ad Hoc Network(MANET), Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027