Search results for: error correction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1382

Search results for: error correction

332 Versatile Dual-Mode Class-AB Four-Quadrant Analog Multiplier

Authors: Montree Kumngern, Kobchai Dejhan

Abstract:

Versatile dual-mode class-AB CMOS four-quadrant analog multiplier circuit is presented. The dual translinear loops and current mirrors are the basic building blocks in realization scheme. This technique provides; wide dynamic range, wide-bandwidth response and low power consumption. The major advantages of this approach are; its has single ended inputs; since its input is dual translinear loop operate in class-AB mode which make this multiplier configuration interesting for low-power applications; current multiplying, voltage multiplying, or current and voltage multiplying can be obtainable with balanced input. The simulation results of versatile analog multiplier demonstrate a linearity error of 1.2 %, a -3dB bandwidth of about 19MHz, a maximum power consumption of 0.46mW, and temperature compensated. Operation of versatile analog multiplier was also confirmed through an experiment using CMOS transistor array.

Keywords: Class-AB, dual-mode CMOS analog multiplier, CMOS analog integrated circuit, CMOS translinear integrated circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
331 A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains

Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Talal H. Alzanki

Abstract:

This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.

Keywords: Fuzzy logic control, mobile robot, trajectory tracking, spiral dynamic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
330 Efficient System for Speech Recognition using General Regression Neural Network

Authors: Abderrahmane Amrouche, Jean Michel Rouvaen

Abstract:

In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.

Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
329 Reduction of Multiple User Interference for Optical CDMA Systems Using Successive Interference Cancellation Scheme

Authors: Tawfig Eltaif, Hesham A. Bakarman, N. Alsowaidi, M. R. Mokhtar, Malek Harbawi

Abstract:

Multiple User Interference (MUI) considers the primary problem in Optical Code-Division Multiple Access (OCDMA), which resulting from the overlapping among the users. In this article we aim to mitigate this problem by studying an interference cancellation scheme called successive interference cancellation (SIC) scheme. This scheme will be tested on two different detection schemes, spectral amplitude coding (SAC) and direct detection systems (DS), using partial modified prime (PMP) as the signature codes. It was found that SIC scheme based on both SAC and DS methods had a potential to suppress the intensity noise, that is to say it can mitigate MUI noise. Furthermore, SIC/DS scheme showed much lower bit error rate (BER) performance relative to SIC/SAC scheme for different magnitude of effective power. Hence, many more users can be supported by SIC/DS receiver system.

Keywords: Multiple User Interference (MUI), Optical Code-Division Multiple Access (OCDMA), Partial Modified Prime Code (PMP), Spectral Amplitude Coding (SAC), Successive Interference Cancellation (SIC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
328 RF Power Consumption Emulation Optimized with Interval Valued Homotopies

Authors: Deogratius Musiige, François Anton, Vital Yatskevich, Laulagnet Vincent, Darka Mioc, Nguyen Pierre

Abstract:

This paper presents a methodology towards the emulation of the electrical power consumption of the RF device during the cellular phone/handset transmission mode using the LTE technology. The emulation methodology takes the physical environmental variables and the logical interface between the baseband and the RF system as inputs to compute the emulated power dissipation of the RF device. The emulated power, in between the measured points corresponding to the discrete values of the logical interface parameters is computed as a polynomial interpolation using polynomial basis functions. The evaluation of polynomial and spline curve fitting models showed a respective divergence (test error) of 8% and 0.02% from the physically measured power consumption. The precisions of the instruments used for the physical measurements have been modeled as intervals. We have been able to model the power consumption of the RF device operating at 5MHz using homotopy between 2 continuous power consumptions of the RF device operating at the bandwidths 3MHz and 10MHz.

Keywords: Radio frequency, high power amplifier, baseband, LTE, power, emulation, homotopy, interval analysis, Tx power, register-transfer level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
327 Developing New Processes and Optimizing Performance Using Response Surface Methodology

Authors: S. Raissi

Abstract:

Response surface methodology (RSM) is a very efficient tool to provide a good practical insight into developing new process and optimizing them. This methodology could help engineers to raise a mathematical model to represent the behavior of system as a convincing function of process parameters. Through this paper the sequential nature of the RSM surveyed for process engineers and its relationship to design of experiments (DOE), regression analysis and robust design reviewed. The proposed four-step procedure in two different phases could help system analyst to resolve the parameter design problem involving responses. In order to check accuracy of the designed model, residual analysis and prediction error sum of squares (PRESS) described. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with one or more responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.

Keywords: Response Surface Methodology (RSM), Design of Experiments (DOE), Process modeling, Process setting, Process optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
326 Automated Algorithm for Removing Continuous Flame Spectrum Based On Sampled Linear Bases

Authors: Luis Arias, Jorge E. Pezoa, Daniel Sbárbaro

Abstract:

In this paper, an automated algorithm to estimate and remove the continuous baseline from measured spectra containing both continuous and discontinuous bands is proposed. The algorithm uses previous information contained in a Continuous Database Spectra (CDBS) to obtain a linear basis, with minimum number of sampled vectors, capable of representing a continuous baseline. The proposed algorithm was tested by using a CDBS of flame spectra where Principal Components Analysis and Non-negative Matrix Factorization were used to obtain linear bases. Thus, the radical emissions of natural gas, oil and bio-oil flames spectra at different combustion conditions were obtained. In order to validate the performance in the baseline estimation process, the Goodness-of-fit Coefficient and the Root Mean-squared Error quality metrics were evaluated between the estimated and the real spectra in absence of discontinuous emission. The achieved results make the proposed method a key element in the development of automatic monitoring processes strategies involving discontinuous spectral bands.

Keywords: Flame spectra, removing baseline, recovering spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
325 Clustering Based Formulation for Short Term Load Forecasting

Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha

Abstract:

A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.

Keywords: Load forecasting, clustering, fuzzy inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
324 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production

Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy

Abstract:

Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.

Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
323 Ensembling Adaptively Constructed Polynomial Regression Models

Authors: Gints Jekabsons

Abstract:

The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.

Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
322 Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators

Authors: Fethi Soltani, Adel Almarashi, Idir Mechai

Abstract:

Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.

Keywords: Fourier multiplier operators, Gauss-Kronrod method of integration, Paley-Wiener space, Tikhonov regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
321 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the  prediction of monthly average daily global solar radiation on  horizontal using recurrent neural networks (RNNs). Climatological  data and measures, mainly air temperature, humidity, sunshine  duration, and wind speed between 1995 and 2007 were used to design  and validate a feed forward and recurrent neural network based  prediction systems. In this paper we present our reference system  based on a feed-forward multilayer perceptron (MLP) as well as the  proposed approach based on an RNN model. The obtained results  were promising and comparable to those obtained by other existing  empirical and neural models. The experimental results showed the  advantage of RNNs over simple MLPs when we deal with time series  solar radiation predictions based on daily climatological data.

Keywords: Recurrent Neural Networks, Global Solar Radiation, Multi-layer perceptron, gradient, Root Mean Square Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
320 Fast Search for MPEG Video Clips Using Adjacent Pixel Intensity Difference Quantization Histogram Feature

Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we propose a novel fast search algorithm for short MPEG video clips from video database. This algorithm is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Instead of fully decompressed video frames, partially decoded data, namely DC images are utilized. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 3 % is achieved, which is more accurately and robust than conventional fast video search algorithm.

Keywords: Fast search, adjacent pixel intensity difference quantization (APIDQ), DC image, histogram feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
319 Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents

Authors: Tahseen A. Jilani, S. M. Aqil Burney, C. Ardil

Abstract:

In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.

Keywords: Average forecasting error rate (AFER), Fuzziness offuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
318 Improved Root-Mean-Square-Gain-Combining for SIMO Channels

Authors: Rania Minkara, Jean-Pierre Dubois

Abstract:

The major problem that wireless communication systems undergo is multipath fading caused by scattering of the transmitted signal. However, we can treat multipath propagation as multiple channels between the transmitter and receiver to improve the signal-to-scattering-noise ratio. While using Single Input Multiple Output (SIMO) systems, the diversity receivers extract multiple signal branches or copies of the same signal received from different channels and apply gain combining schemes such as Root Mean Square Gain Combining (RMSGC). RMSGC asymptotically yields an identical performance to that of the theoretically optimal Maximum Ratio Combining (MRC) for values of mean Signal-to- Noise-Ratio (SNR) above a certain threshold value without the need for SNR estimation. This paper introduces an improvement of RMSGC using two different issues. We found that post-detection and de-noising the received signals improve the performance of RMSGC and lower the threshold SNR.

Keywords: Bit error rate, de-noising, pre-detection, root-meansquare gain combining, single-input multiple-output channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
317 A Web-Based Self-Learning Grammar for Spoken Language Understanding

Authors: S. M. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno

Abstract:

One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.

Keywords: Spoken Dialog System, Spoken Language Understanding, Web Semantic, Name Entity Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
316 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia

Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi

Abstract:

Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.

Keywords: Artificial neural networks, short-term load forecasting, back propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
315 Optimal Power Allocation for the Proposed Asymmetric Turbo Code for 3G Systems

Authors: K. Ramasamy, B. Balamuralithara, Mohammad Umar Siddiqi

Abstract:

We proposed a new class of asymmetric turbo encoder for 3G systems that performs well in both “water fall" and “error floor" regions in [7]. In this paper, a modified (optimal) power allocation scheme for the different bits of new class of asymmetric turbo encoder has been investigated to enhance the performance. The simulation results and performance bound for proposed asymmetric turbo code with modified Unequal Power Allocation (UPA) scheme for the frame length, N=400, code rate, r=1/3 with Log-MAP decoder over Additive White Gaussian Noise (AWGN) channel are obtained and compared with the system with typical UPA and without UPA. The performance tests are extended over AWGN channel for different frame size to verify the possibility of implementation of the modified UPA scheme for the proposed asymmetric turbo code. From the performance results, it is observed that the proposed asymmetric turbo code with modified UPA performs better than the system without UPA and with typical UPA and it provides a coding gain of 0.4 to 0.52dB.

Keywords: Asymmetric turbo code, Generator polynomial, Interleaver, UPA, WCDMA, cdma2000.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
314 Packet Losses Interpretation in Mobile Internet

Authors: Hossam el-ddin Mostafa, Pavel Čičak

Abstract:

The mobile users with Laptops need to have an efficient access to i.e. their home personal data or to the Internet from any place in the world, regardless of their location or point of attachment, especially while roaming outside the home subnet. An efficient interpretation of packet losses problem that is encountered from this roaming is to the centric of all aspects in this work, to be over-highlighted. The main previous works, such as BER-systems, Amigos, and ns-2 implementation that are considered to be in conjunction with that problem under study are reviewed and discussed. Their drawbacks and limitations, of stopping only at monitoring, and not to provide an actual solution for eliminating or even restricting these losses, are mentioned. Besides that, the framework around which we built a Triple-R sequence as a costeffective solution to eliminate the packet losses and bridge the gap between subnets, an area that until now has been largely neglected, is presented. The results show that, in addition to the high bit error rate of wireless mobile networks, mainly the low efficiency of mobile-IP registration procedure is a direct cause of these packet losses. Furthermore, the output of packet losses interpretation resulted an illustrated triangle of the registration process. This triangle should be further researched and analyzed in our future work.

Keywords: Amigos, BER-systems, ns-2 implementation, packetlosses, registration process, roaming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
313 Performance Evaluation of Data Mining Techniques for Predicting Software Reliability

Authors: Pradeep Kumar, Abdul Wahid

Abstract:

Accurate software reliability prediction not only enables developers to improve the quality of software but also provides useful information to help them for planning valuable resources. This paper examines the performance of three well-known data mining techniques (CART, TreeNet and Random Forest) for predicting software reliability. We evaluate and compare the performance of proposed models with Cascade Correlation Neural Network (CCNN) using sixteen empirical databases from the Data and Analysis Center for Software. The goal of our study is to help project managers to concentrate their testing efforts to minimize the software failures in order to improve the reliability of the software systems. Two performance measures, Normalized Root Mean Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate that CART model is accurate than the models predicted using Random Forest, TreeNet and CCNN in all datasets used in our study. Finally, we conclude that such methods can help in reliability prediction using real-life failure datasets.

Keywords: Classification, Cascade Correlation Neural Network, Random Forest, Software reliability, TreeNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
312 Crack Width Evaluation for Flexural RC Members with Axial Tension

Authors: Sukrit Ghorai

Abstract:

Proof of controlling crack width is a basic condition for securing suitable performance in serviceability limit state. The cracking in concrete can occur at any time from the casting of time to the years after the concrete has been set in place. Most codes struggle with offering procedure for crack width calculation. There is lack in availability of design charts for designers to compute crack width with ease. The focus of the study is to utilize design charts and parametric equations in calculating crack width with minimum error. The paper contains a simplified procedure to calculate crack width for reinforced concrete (RC) sections subjected to bending with axial tensile force following the guidelines of Euro code [DS EN-1992-1-1 & DS EN-1992-1-2]. Numerical examples demonstrate the application of the suggested procedure. Comparison with parallel analytical tools supports the validity of result and show the percentage deviation of crack width in both the procedures. The technique is simple, user friendly and ready to evolve for a greater spectrum of section sizes and materials.

Keywords: Concrete structures, crack width calculation, serviceability limit state, structural design, bridge engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6671
311 Empirical Modeling of Air Dried Rubberwood Drying System

Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit

Abstract:

Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (= 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.

Keywords: Empirical models, hot air, moisture ratio, rubberwood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
310 Maximizer of the Posterior Marginal Estimate for Noise Reduction of JPEG-compressed Image

Authors: Yohei Saika, Yuji Haraguchi

Abstract:

We constructed a method of noise reduction for JPEG-compressed image based on Bayesian inference using the maximizer of the posterior marginal (MPM) estimate. In this method, we tried the MPM estimate using two kinds of likelihood, both of which enhance grayscale images converted into the JPEG-compressed image through the lossy JPEG image compression. One is the deterministic model of the likelihood and the other is the probabilistic one expressed by the Gaussian distribution. Then, using the Monte Carlo simulation for grayscale images, such as the 256-grayscale standard image “Lena" with 256 × 256 pixels, we examined the performance of the MPM estimate based on the performance measure using the mean square error. We clarified that the MPM estimate via the Gaussian probabilistic model of the likelihood is effective for reducing noises, such as the blocking artifacts and the mosquito noise, if we set parameters appropriately. On the other hand, we found that the MPM estimate via the deterministic model of the likelihood is not effective for noise reduction due to the low acceptance ratio of the Metropolis algorithm.

Keywords: Noise reduction, JPEG-compressed image, Bayesian inference, the maximizer of the posterior marginal estimate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
309 Numerical Optimization Design of PEM Fuel Cell Performance Applying the Taguchi Method

Authors: Shan-Jen Cheng, Jr-Ming Miao, Sheng-Ju Wu

Abstract:

The purpose of this paper is applied Taguchi method on the optimization for PEMFC performance, and a representative Computational Fluid Dynamics (CFD) model is selectively performed for statistical analysis. The studied factors in this paper are pressure of fuel cell, operating temperature, the relative humidity of anode and cathode, porosity of gas diffusion electrode (GDE) and conductivity of GDE. The optimal combination for maximum power density is gained by using a three-level statistical method. The results confirmed that the robustness of the optimum design parameters influencing the performance of fuel cell are founded by pressure of fuel cell, 3atm; operating temperature, 353K; the relative humidity of anode, 50%; conductivity of GDE, 1000 S/m, but the relative humidity of cathode and porosity of GDE are pooled as error due to a small sum of squares. The present simulation results give designers the ideas ratify the effectiveness of the proposed robust design methodology for the performance of fuel cell.

Keywords: PEMFC, numerical simulation, optimization, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
308 A Proposed Managerial Framework for International Marketing Operations in the Fast Food Industry

Authors: Emmanuel Selase Asamoah, Miloslava Chovancová

Abstract:

When choosing marketing strategies for international markets, one of the factors that should be considered is the cultural differences that exist among consumers in different countries. If the branding strategy has to be contextual and in tune with the culture, then the brand positioning variables has to interact, adapt and respond to the cultural variables in which the brand is operating. This study provides an overview of the relevance of culture in the development of an effective branding strategy in the international business environment. Hence, the main objective of this study is to provide a managerial framework for developing strategies for cross cultural brand management. The framework is useful because it incorporates the variables that are important in the competitiveness of fast food enterprises irrespective of their size. It provides practical, proactive and result oriented analysis that will help fast food firms augment their strategies in the international fast food markets. The proposed framework will enable managers understand the intricacies involved in branding in the global fast food industry and decrease the use of 'trial and error' when entering into unfamiliar markets.

Keywords: culture, branding strategy, marketing mix, mass customization, standardization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
307 Current Drainage Attack Correction via Adjusting the Attacking Saw Function Asymmetry

Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap

Abstract:

Current drainage attack suggested previously is further studied in regular settings of closed-loop controlled Brushless DC (BLDC) motor with Kalman filter in the feedback loop. Modeling and simulation experiments are conducted in a MATLAB environment, implementing the closed-loop control model of BLDC motor operation in position sensorless mode under Kalman filter drive. The current increase in the motor windings is caused by the controller (p-controller in our case) affected by false data injection of substitution of the angular velocity estimates with distorted values. Operation of multiplication to distortion coefficient, values of which are taken from the distortion function synchronized in its periodicity with the rotor’s position change. A saw function with a triangular tooth shape is studied herewith for the purpose of carrying out the bias injection with current drainage consequences. The specific focus here is on how the asymmetry of the tooth in the saw function affects the flow of current drainage. The purpose is two-fold: (i) to produce and collect the signature of an asymmetric saw in the attack for further pattern recognition process, and (ii) to determine conditions of improving stealthiness of such attack via regulating asymmetry in saw function used. It is found that modification of the symmetry in the saw tooth affects the periodicity of current drainage modulation. Specifically, the modulation frequency of the drained current for a fully asymmetric tooth shape coincides with the saw function modulation frequency itself. Increasing the symmetry parameter for the triangle tooth shape leads to an increase in the modulation frequency for the drained current. Moreover, such frequency reaches the switching frequency of the motor windings for fully symmetric triangular shapes, thus becoming undetectable and improving the stealthiness of the attack. Therefore, the collected signatures of the attack can serve for attack parameter identification via the pattern recognition route.

Keywords: Bias injection attack, Kalman filter, BLDC motor, control system, closed loop, P-controller, PID-controller, current drainage, saw-function, asymmetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155
306 Performance Evaluation of Intelligent Controllers for AGC in Thermal Systems

Authors: Muhammad Muhsin, Abhishek Mishra, Shreyansh Vishwakarma, K. Dasaratha Babu, Anudevi Samuel

Abstract:

In an interconnected power system, any sudden small load perturbation in any of the interconnected areas causes the deviation of the area frequencies, the tie line power and voltage deviation at the generator terminals. This paper deals with the study of performance of intelligent Fuzzy Logic controllers coupled with Conventional Controllers (PI and PID) for Load Frequency Control. For analysis, an isolated single area and interconnected two area thermal power systems with and without generation rate constraints (GRC) have been considered. The studies have been performed with conventional PI and PID controllers and their performance has been compared with intelligent fuzzy controllers. It can be demonstrated that these controllers can successfully bring back the excursions in area frequencies and tie line powers within acceptable limits in smaller time periods and with lesser transients as compared to the performance of conventional controllers under same load disturbance conditions. The simulations in MATLAB have been used for comparative studies.

Keywords: Area Control Error, Fuzzy Logic, Generation rate constraint, Load Frequency, Tie line Power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460
305 Specialized Reduced Models of Dynamic Flows in 2-Stroke Engines

Authors: S. Cagin, X. Fischer, E. Delacourt, N. Bourabaa, C. Morin, D. Coutellier, B. Carré, S. Loumé

Abstract:

The complexity of scavenging by ports and its impact on engine efficiency create the need to understand and to model it as realistically as possible. However, there are few empirical scavenging models and these are highly specialized. In a design optimization process, they appear very restricted and their field of use is limited. This paper presents a comparison of two methods to establish and reduce a model of the scavenging process in 2-stroke diesel engines. To solve the lack of scavenging models, a CFD model has been developed and is used as the referent case. However, its large size requires a reduction. Two techniques have been tested depending on their fields of application: The NTF method and neural networks. They both appear highly appropriate drastically reducing the model’s size (over 90% reduction) with a low relative error rate (under 10%). Furthermore, each method produces a reduced model which can be used in distinct specialized fields of application: the distribution of a quantity (mass fraction for example) in the cylinder at each time step (pseudo-dynamic model) or the qualification of scavenging at the end of the process (pseudo-static model).

Keywords: Diesel engine, Design optimization, Model reduction, Neural network, NTF algorithm, Scavenging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
304 Palmprint based Cancelable Biometric Authentication System

Authors: Ying-Han Pang, Andrew Teoh Beng Jin, David Ngo Chek Ling

Abstract:

A cancelable palmprint authentication system proposed in this paper is specifically designed to overcome the limitations of the contemporary biometric authentication system. In this proposed system, Geometric and pseudo Zernike moments are employed as feature extractors to transform palmprint image into a lower dimensional compact feature representation. Before moment computation, wavelet transform is adopted to decompose palmprint image into lower resolution and dimensional frequency subbands. This reduces the computational load of moment calculation drastically. The generated wavelet-moment based feature representation is used to generate cancelable verification key with a set of random data. This private binary key can be canceled and replaced. Besides that, this key also possesses high data capture offset tolerance, with highly correlated bit strings for intra-class population. This property allows a clear separation of the genuine and imposter populations, as well as zero Equal Error Rate achievement, which is hardly gained in the conventional biometric based authentication system.

Keywords: Cancelable biometric authenticator, Discrete- Hashing, Moments, Palmprint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
303 Determining of Threshold Levels of Burst by Burst AQAM/CDMA in Slow Rayleigh Fading Environments

Authors: F. Nejadebrahimi, M. ArdebiliPour

Abstract:

In this paper, we are going to determine the threshold levels of adaptive modulation in a burst by burst CDMA system by a suboptimum method so that the above method attempts to increase the average bit per symbol (BPS) rate of transceiver system by switching between the different modulation modes in variable channel condition. In this method, we choose the minimum values of average bit error rate (BER) and maximum values of average BPS on different values of average channel signal to noise ratio (SNR) and then calculate the relative threshold levels of them, so that when the instantaneous SNR increases, a higher order modulation be employed for increasing throughput and vise-versa when the instantaneous SNR decreases, a lower order modulation be employed for improvement of BER. In transmission step, by this adaptive modulation method, in according to comparison between obtained estimation of pilot symbols and a set of above suboptimum threshold levels, above system chooses one of states no transmission, BPSK, 4QAM and square 16QAM for modulation of data. The expected channel in this paper is a slow Rayleigh fading.

Keywords: AQAM, burst, BER, BPS, CDMA, threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533