Search results for: Fuzziness offuzzy sets Fuzzy
395 Intrusion Detection based on Distance Combination
Authors: Joffroy Beauquier, Yongjie Hu
Abstract:
The intrusion detection problem has been frequently studied, but intrusion detection methods are often based on a single point of view, which always limits the results. In this paper, we introduce a new intrusion detection model based on the combination of different current methods. First we use a notion of distance to unify the different methods. Second we combine these methods using the Pearson correlation coefficients, which measure the relationship between two methods, and we obtain a combined distance. If the combined distance is greater than a predetermined threshold, an intrusion is detected. We have implemented and tested the combination model with two different public data sets: the data set of masquerade detection collected by Schonlau & al., and the data set of program behaviors from the University of New Mexico. The results of the experiments prove that the combination model has better performances.
Keywords: Intrusion detection, combination, distance, Pearson correlation coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842394 Epoxidized-Transesterified Cotton Seed Oil for Temperature-Dependent Austempering Process
Authors: R. M. Dodo, Z. Musa, K. A. Bello, U. Abdullahi, G. A. Faruna
Abstract:
Temperature dependent austempering of high carbon steel using epoxidized-transesterified cotton seed oil (ETO) was examined. Five sets of samples were heated to 850 oC and held for one hour and then quenched in an oil bath of ETO at 250 oC for one hour. The same procedure was performed on the remaining samples, which were austempered at 270 oC, 290 oC, 310 oC, and 330 oC. Next, mechanical property tests were conducted. The austempered samples were then analyzed for microstructure using a scanning electron microscope (SEM). The results indicate that tensile strength and hardness decrease with increasing temperature, while impact strength improved with rising temperature. It was observed that 270 oC is the best austempering temperature, as it produces austempered samples with the best combination of mechanical properties.
Keywords: Epoxidized-transesterified cotton seed oil, austempering temperature, high carbon steel, bainitic structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17393 Dignity and Suffering: Reading of Human Rights in Untouchable by Anand
Authors: Norah A. Elgibreen
Abstract:
Cultural stories are political. They register cultural phenomena and their relations with the world and society in term of their existence, function, characteristics by using different context. This paper will provide a new way of rethinking which will help us to rethink the relationship between fiction and politics. It discusses the theme of human rights and it shows the relevance between art and politics by studying the civil society through a literary framework. Reasons to establish a relationship between fiction and politics are the relevant themes and universal issues among the two disciplines. Both disciplines are sets of views and ideas formulated by the human mind to explain political or cultural phenomenon. Other reasons are the complexity and depth of the author-s vision, and the need to explain the violations of human rights in a more active structure which can relate to emotional and social existence.Keywords: dignity, human rights, politics and literature, Untouchable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3303392 Development of a Pipeline Monitoring System by Bio-mimetic Robots
Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won
Abstract:
To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649391 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193390 Factors Impacting Entrepreneurial Intention: A Literature Review
Authors: Abir S. Al-Harrasi, Eyad B. Al-Zadjali, Zahran S. Al-Salti
Abstract:
Entrepreneurship has captured the attention of policy-makers, educators and researchers in the last few decades. It has been regarded as a main driver for economic growth, development and employment generation in many countries worldwide. However, scholars have not agreed on the key factors that impact entrepreneurial intention. This study attempts, through an extensive literature review, to provide a holistic view and a more comprehensive understanding of the key factors that lead university undergraduate students to become entrepreneurs. A systematic literature review is conducted and several scientific articles and reports have been examined. The results of this study indicate that there are four main sets of factors: the personality-traits factors, contextual factors, motivational factors, and personal background factors. This research will serve as a base for future studies and will have valuable implications for policy makers and educators.
Keywords: Entrepreneurship, Entrepreneurial Intention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8427389 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms
Authors: T. S. Chou, K. K. Yen, J. Luo
Abstract:
The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933388 A Generic e-Tutor for Graphical Problems
Authors: B.W. Field
Abstract:
For a variety of safety and economic reasons, engineering undergraduates in Australia have experienced diminishing access to the real hardware that is typically the embodiment of their theoretical studies. This trend will delay the development of practical competence, decrease the ability to model and design, and suppress motivation. The author has attempted to address this concern by creating a software tool that contains both photographic images of real machinery, and sets of graphical modeling 'tools'. Academics from a range of disciplines can use the software to set tutorial tasks, and incorporate feedback comments for a range of student responses. An evaluation of the software demonstrated that students who had solved modeling problems with the aid of the electronic tutor performed significantly better in formal examinations with similar problems. The 2-D graphical diagnostic routines in the Tutor have the potential to be used in a wider range of problem-solving tasks.
Keywords: CAL, graphics, modeling, structural distillation, tutoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414387 An Efficient Heuristic for the Minimum Connected Dominating Set Problem on Ad Hoc Wireless Networks
Authors: S. Balaji, N. Revathi
Abstract:
Connected dominating set (CDS) problem in unit disk graph has signi£cant impact on an ef£cient design of routing protocols in wireless sensor networks, where the searching space for a route is reduced to nodes in the set. A set is dominating if all the nodes in the system are either in the set or neighbors of nodes in the set. In this paper, a simple and ef£cient heuristic method is proposed for £nding a minimum connected dominating set (MCDS) in ad hoc wireless networks based on the new parameter support of vertices. With this parameter the proposed heuristic approach effectively £nds the MCDS of a graph. Extensive computational experiments show that the proposed approach outperforms the recently proposed heuristics found in the literature for the MCDKeywords: ad hoc wireless networks, dominating sets, unit disk graphs, heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204386 Serious Game for Autism Children: Review of Literature
Authors: Helmi Adly Mohd Noor, Faaizah Shahbodin, Naim Che Pee
Abstract:
Autism Spectrum Disorder (ASD) is a pervasive developmental disorder which affects individuals with varying degrees of impairment. Currently, there has been ample research done in serious game for autism children. Although serious games are traditionally associated with software developments, developing them in the autism field involves studying the associated technology and paying attention to aspects related to interaction with the game. Serious Games for autism cover matters related to education, therapy for communication, psychomotor treatment and social behavior enhancement. In this paper, a systematic review sets out the lines of development and research currently being conducted into serious games which pursue some form of benefit in the field of autism. This paper includes a literature review of relevant serious game developments since in year 2007 and examines new trends.
Keywords: Serious Game, Autism, Education, Therapy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7468385 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People
Authors: Ayman M. Mansour
Abstract:
In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.
Keywords: Fuzzy Logic, Inference system, Monitoring system, Multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282384 Enhanced Character Based Algorithm for Small Parsimony
Authors: Parvinder Singh Sandhu, Sumeet Kaur Sehra, Karmjit Kaur
Abstract:
Phylogenetic tree is a graphical representation of the evolutionary relationship among three or more genes or organisms. These trees show relatedness of data sets, species or genes divergence time and nature of their common ancestors. Quality of a phylogenetic tree requires parsimony criterion. Various approaches have been proposed for constructing most parsimonious trees. This paper is concerned about calculating and optimizing the changes of state that are needed called Small Parsimony Algorithms. This paper has proposed enhanced small parsimony algorithm to give better score based on number of evolutionary changes needed to produce the observed sequence changes tree and also give the ancestor of the given input.Keywords: Phylogenetic Analysis, Small Parsimony, EnhancedFitch Algorithm, Enhanced Sakoff Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349383 Fractal - Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan Lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for preprocessing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based preprocessing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.
Keywords: Wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063382 A Hybrid Heuristic for the Team Orienteering Problem
Authors: Adel Bouchakhchoukha, Hakim Akeb
Abstract:
In this work, we propose a hybrid heuristic in order to solve the Team Orienteering Problem (TOP). Given a set of points (or customers), each with associated score (profit or benefit), and a team that has a fixed number of members, the problem to solve is to visit a subset of points in order to maximize the total collected score. Each member performs a tour starting at the start point, visiting distinct customers and the tour terminates at the arrival point. In addition, each point is visited at most once, and the total time in each tour cannot be greater than a given value. The proposed heuristic combines beam search and a local optimization strategy. The algorithm was tested on several sets of instances and encouraging results were obtained.
Keywords: Team Orienteering Problem, Vehicle Routing, Beam Search, Local Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639381 Test Data Compression Using a Hybrid of Bitmask Dictionary and 2n Pattern Runlength Coding Methods
Authors: C. Kalamani, K. Paramasivam
Abstract:
In VLSI, testing plays an important role. Major problem in testing are test data volume and test power. The important solution to reduce test data volume and test time is test data compression. The Proposed technique combines the bit maskdictionary and 2n pattern run length-coding method and provides a substantial improvement in the compression efficiency without introducing any additional decompression penalty. This method has been implemented using Mat lab and HDL Language to reduce test data volume and memory requirements. This method is applied on various benchmark test sets and compared the results with other existing methods. The proposed technique can achieve a compression ratio up to 86%.Keywords: Bit Mask dictionary, 2n pattern run length code, system-on-chip, SOC, test data compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921380 Genetic Programming Approach to Hierarchical Production Rule Discovery
Authors: Basheer M. Al-Maqaleh, Kamal K. Bharadwaj
Abstract:
Automated discovery of hierarchical structures in large data sets has been an active research area in the recent past. This paper focuses on the issue of mining generalized rules with crisp hierarchical structure using Genetic Programming (GP) approach to knowledge discovery. The post-processing scheme presented in this work uses flat rules as initial individuals of GP and discovers hierarchical structure. Suitable genetic operators are proposed for the suggested encoding. Based on the Subsumption Matrix(SM), an appropriate fitness function is suggested. Finally, Hierarchical Production Rules (HPRs) are generated from the discovered hierarchy. Experimental results are presented to demonstrate the performance of the proposed algorithm.Keywords: Genetic Programming, Hierarchy, Knowledge Discovery in Database, Subsumption Matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451379 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise
Authors: Yasser F. Hassan
Abstract:
The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.
Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948378 Using Multi-Objective Particle Swarm Optimization for Bi-objective Multi-Mode Resource-Constrained Project Scheduling Problem
Authors: Fatemeh Azimi, Razeeh Sadat Aboutalebi, Amir Abbas Najafi
Abstract:
In this paper the multi-mode resource-constrained project scheduling problem with discounted cash flows is considered. Minimizing the makespan and maximization the net present value (NPV) are the two common objectives that have been investigated in the literature. We apply one evolutionary algorithm named multiobjective particle swarm optimization (MOPSO) to find Pareto front solutions. We used standard sets of instances from the project scheduling problem library (PSPLIB). The results are computationally compared respect to different metrics taken from the literature on evolutionary multi-objective optimization.
Keywords: Evolutionary multi-objective optimization makespan, multi-mode, resource constraint, net present value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294377 Cognition Technique for Developing a World Music
Authors: Haider Javed Uppal, Javed Yunas Uppal
Abstract:
In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm, and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.
Keywords: Cognition, world music, artificial intelligence, Thayer’s matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153376 Contractor Selection in Saudi Arabia
Authors: M. A. Bajaber, M. A. Taha
Abstract:
Contractor selection in Saudi Arabia is very important due to the large construction boom and the contractor role to get over construction risks. The need for investigating contractor selection is due to the following reasons; large number of defaulted or failed projects (18%), large number of disputes attributed to contractor during the project execution stage (almost twofold), the extension of the General Agreement on Tariffs and Trade (GATT) into construction industry, and finally the few number of researches. The selection strategy is not perfect and considered as the reason behind irresponsible contractors. As a response, this research was conducted to review the contractor selection strategies as an integral part of a long advanced research to develop a good selection model. Many techniques can be used to form a selection strategy; multi criteria for optimizing decision, prequalification to discover contractor-s responsibility, bidding process for competition, third party guarantee to enhance the selection, and fuzzy techniques for ambiguities and incomplete information.
Keywords: Bidding, Construction industry, Contractor selection, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3141375 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology
Authors: Peristera Baziana
Abstract:
In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.Keywords: Access algorithm, channels division, collisions avoidance, wavelength division multiplexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014374 SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals
Authors: Suresh S. Salankar, Balasaheb M. Patre
Abstract:
Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.
Keywords: Classification, MLP NN, backpropagation algorithm, SVM, Receiver Operating Characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820373 Microwave Shielding of Magnetized Hydrogen Plasma in Carbon Nanotubes
Authors: Afshin Moradi, Mohammad Hosain Teimourpour
Abstract:
We derive simple sets of equations to describe the microwave response of a thin film of magnetized hydrogen plasma in the presence of carbon nanotubes, which were grown by ironcatalyzed high-pressure disproportionation (HiPco). By considering the interference effects due to multiple reflections between thin plasma film interfaces, we present the effects of the continuously changing external magnetic field and plasma parameters on the reflected power, absorbed power, and transmitted power in the system. The simulation results show that the interference effects play an important role in the reflectance, transmittance and absorptance of microwave radiation at the magnetized plasma slab. As a consequence, the interference effects lead to a sinusoidal variation of the reflected intensity and can greatly reduce the amount of reflection power, but the absorption power increases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402372 A Graph Theoretic Approach for Quantitative Evaluation of NAAC Accreditation Criteria for the Indian University
Authors: Nameesh Miglani, Rajeev Saha, R. S. Parihar
Abstract:
Estimation of the quality regarding higher education within a university is practically long drawn process besides being difficult to measure primarily due to lack of a standard scale. National Assessment and Accreditation Council (NAAC) evolved a methodology of assessment which involves self-appraisal by each university/college and an assessment of performance by an expert committee. The attributes involved in assessing a university may not be totally independent from each other thereby necessitating the consideration of interdependencies. The present study focuses on evaluation of assessment criteria using graph theoretic approach and fuzzy treatment of data collected from the students. The technique will provide a suitable platform to university management team to cross check assessment of education quality by considering interdependencies of the attributes using graph theory.
Keywords: Graph theory, NAAC accreditation criteria, Indian University accreditation process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127371 Comparative Analysis of Diverse Collection of Big Data Analytics Tools
Authors: S. Vidhya, S. Sarumathi, N. Shanthi
Abstract:
Over the past era, there have been a lot of efforts and studies are carried out in growing proficient tools for performing various tasks in big data. Recently big data have gotten a lot of publicity for their good reasons. Due to the large and complex collection of datasets it is difficult to process on traditional data processing applications. This concern turns to be further mandatory for producing various tools in big data. Moreover, the main aim of big data analytics is to utilize the advanced analytic techniques besides very huge, different datasets which contain diverse sizes from terabytes to zettabytes and diverse types such as structured or unstructured and batch or streaming. Big data is useful for data sets where their size or type is away from the capability of traditional relational databases for capturing, managing and processing the data with low-latency. Thus the out coming challenges tend to the occurrence of powerful big data tools. In this survey, a various collection of big data tools are illustrated and also compared with the salient features.
Keywords: Big data, Big data analytics, Business analytics, Data analysis, Data visualization, Data discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3775370 A Design for Supply Chain Model by Integrated Evaluation of Design Value and Supply Chain Cost
Authors: Yuan-Jye Tseng, Jia-Shu Li
Abstract:
To design a product with the given product requirement and design objective, there can be alternative ways to propose the detailed design specifications of the product. In the design modeling stage, alternative design cases with detailed specifications can be modeled to fulfill the product requirement and design objective. Therefore, in the design evaluation stage, it is required to perform an evaluation of the alternative design cases for deciding the final design. The purpose of this research is to develop a product evaluation model for evaluating the alternative design cases by integrated evaluating the criteria of functional design, Kansei design, and design for supply chain. The criteria in the functional design group include primary function, expansion function, improved function, and new function. The criteria in the Kansei group include geometric shape, dimension, surface finish, and layout. The criteria in the design for supply chain group include material, manufacturing process, assembly, and supply chain operation. From the point of view of value and cost, the criteria in the functional design group and Kansei design group represent the design value of the product. The criteria in the design for supply chain group represent the supply chain and manufacturing cost of the product. It is required to evaluate the design value and the supply chain cost to determine the final design. For the purpose of evaluating the criteria in the three criteria groups, a fuzzy analytic network process (FANP) method is presented to evaluate a weighted index by calculating the total relational values among the three groups. A method using the technique for order preference by similarity to ideal solution (TOPSIS) is used to compare and rank the design alternative cases according to the weighted index using the total relational values of the criteria. The final decision of a design case can be determined by using the ordered ranking. For example, the design case with the top ranking can be selected as the final design case. Based on the criteria in the evaluation, the design objective can be achieved with a combined and weighted effect of the design value and manufacturing cost. An example product is demonstrated and illustrated in the presentation. It shows that the design evaluation model is useful for integrated evaluation of functional design, Kansei design, and design for supply chain to determine the best design case and achieve the design objective.
Keywords: Design evaluation, functional design, Kansei design, supply chain, design value, manufacturing cost, fuzzy analytic network process, technique for order preference by similarity to ideal solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794369 A Soft Set based Group Decision Making Method with Criteria Weight
Authors: Samsiah Abdul Razak, Daud Mohamad
Abstract:
Molodstov-s soft sets theory was originally proposed as general mathematical tool for dealing with uncertainty problems. The matrix form has been introduced in soft set and some of its properties have been discussed. However, the formulation of soft matrix in group decision making problem only with equal importance weights of criteria, which does not show the true opinion of decision maker on each criteria. The aim of this paper is to propose a method for solving group decision making problem incorporating the importance of criteria by using soft matrices in a more objective manner. The weight of each criterion is calculated by using the Analytic Hierarchy Process (AHP) method. An example of house selection process is given to illustrate the effectiveness of the proposed method.Keywords: Soft set, Soft Matrix, Soft max-min decision making (SMmDM), Analytic hierarchy process (AHP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900368 On the Dynamic Model of Service Innovation in Manufacturing Industry
Authors: Yongyoon Suh, Chulhyun Kim, Moon-soo Kim
Abstract:
As the trend of manufacturing is being dominated depending on services, products and processes are more and more related with sophisticated services. Thus, this research starts with the discussion about integration of the product, process, and service in the innovation process. In particular, this paper sets out some foundations for a theory of service innovation in the field of manufacturing, and proposes the dynamic model of service innovation related to product and process. Two dynamic models of service innovation are suggested to investigate major tendencies and dynamic variations during the innovation cycle: co-innovation and sequential innovation. To structure dynamic models of product, process, and service innovation, the innovation stages in which two models are mainly achieved are identified. The research would encourage manufacturers to formulate strategy and planning for service development with product and process.
Keywords: dynamic model, service innovation, service innovation models, innovation cycle, manufacturing industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019367 Facial Recognition on the Basis of Facial Fragments
Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza
Abstract:
There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.
Keywords: Face recognition, Labeled Faces in the Wild (LFW) database, Random Local Descriptor (RLD), random features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013366 Text Summarization for Oil and Gas Drilling Topic
Authors: Y. Y. Chen, O. M. Foong, S. P. Yong, Kurniawan Iwan
Abstract:
Information sharing and gathering are important in the rapid advancement era of technology. The existence of WWW has caused rapid growth of information explosion. Readers are overloaded with too many lengthy text documents in which they are more interested in shorter versions. Oil and gas industry could not escape from this predicament. In this paper, we develop an Automated Text Summarization System known as AutoTextSumm to extract the salient points of oil and gas drilling articles by incorporating statistical approach, keywords identification, synonym words and sentence-s position. In this study, we have conducted interviews with Petroleum Engineering experts and English Language experts to identify the list of most commonly used keywords in the oil and gas drilling domain. The system performance of AutoTextSumm is evaluated using the formulae of precision, recall and F-score. Based on the experimental results, AutoTextSumm has produced satisfactory performance with F-score of 0.81.
Keywords: Keyword's probability, synonym sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731