Search results for: smoke concentration
403 A Small-Scale Flexible Test Bench for the Investigation of Fertigation Strategies in Soilless Culture
Authors: Giacomo Barbieri
Abstract:
In soilless culture, the management of the nutrient solution is the most important aspect for crop growing. Fertigation dose, frequency and nutrient concentration must be planned with the objective of reaching an optimal crop growth by limiting the utilized resources and the associated costs. The definition of efficient fertigation strategies is a complex problem since fertigation requirements vary on the basis of different factors, and crops are sensitive to small variations on fertigation parameters. To the best of author knowledge, a small-scale test bench that is flexible for both nutrient solution preparation and precise irrigation is currently missing, limiting the investigations in standard practices for soilless culture. Starting from the analysis of the state of the art, this paper proposes a small-scale system that is potentially able to concurrently test different fertigation strategies. The system will be designed and implemented throughout a three year project started on August 2018. However, due to the importance of the topic within current challenges as food security and climate change, this work is spread considering that may inspire other universities and organizations.Keywords: Soilless culture, fertigation, test bench, small-scale, automation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071402 The Removal of As(V) from Drinking Waters by Coagulation Process using Iron Salts
Abstract:
In this study arsenate [As(V)] removal from drinking water by coagulation process was investigated. Ferric chloride (FeCl3.6H2O) and ferrous sulfate (FeSO4.7H2O) were used as coagulant. The effects of major operating variables such as coagulant dose (1–30 mg/L) and pH (5.5–9.5) were investigated. Ferric chloride and ferrous sulfate were found as effective and reliable coagulant due to required dose, residual arsenate and coagulant concentration. Optimum pH values for maximum arsenate removal for ferrous sulfate and ferric chloride were found as 8 and 7.5. The arsenate removal efficiency decreased at neutral and acidic pH values for Fe(II) and at the high acidic and high alkaline pH for Fe(III). It was found that the increase of coagulant dose caused a substantial increase in the arsenate removal. But above a certain ferric chloride and ferrous sulfate dosage, the increase in arsenate removal was not significant. Ferric chloride and ferrous sulfate dose above 8 mg/L slightly increased arsenate removal.
Keywords: Arsenic removal, coagulation, ıron salts, drinking water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165401 Gas Injection Transport Mechanism for Shale Oil Recovery
Authors: Chinedu Ejike
Abstract:
The United States is now energy self-sufficient due to the production of shale oil reserves. With more than half of it being tapped daily in the United States, these unconventional reserves are massive and provide immense potential for future energy demands. Drilling horizontal wells and fracking are the primary methods for developing these reserves. Regrettably, recovery efficiency is rarely greater than 10%. Gas injection enhanced oil recovery offers a significant benefit in optimizing recovery of shale oil. This could be either through huff and puff, gas flooding, and cyclic gas injection. Methane, nitrogen, and carbon (IV) oxide, among other high-pressure gases, can be injected. Operators use Darcy's law to assess a reservoir's productive capacity, but they are unaware that the law may not apply to shale oil reserves. This is due to the fact that, unlike pressure differences alone, diffusion, concentration, and gas selection all play a role in the flow of gas injected into the wellbore. The reservoir drainage and oil sweep efficiency rates are determined by the transport method. This research evaluates the parameters that influence gas injection transport mechanism. Understanding the process could accelerate recovery by two to three times.
Keywords: enhanced oil recovery, gas injection, shale oil, transport mechanism, unconventional reservoir
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563400 Assessment of Susceptibility of the Poultry Red Mite, Dermanyssus gallinae (Acari: Dermanyssidae) to Some Plant Preparations with Focus on Exposure Time
Authors: Sh. Ranjbar-Bahadori, N. Farhadifar, L. Mohammadyar
Abstract:
Plant preparations from thyme and garlic have been shown to be effective acaricides against the poultry red mite, Dermanyssus gallinae. In a layer house with a history of D. gallinae problem, mites were detected in the monitoring traps for the first time and number of them was counted. Then, some rows of layer house was sprayed twice using a concentration of 0.21 mg/cm2 thyme essential oil and 0.07 mg/cm2 garlic juice and a similar row was used as an untreated control group. Red mite traps made of cardboard were used to assess the mite density during days 1 and 7 after treatment and always removed after 24 h. the collected mites were counted and the efficacy against all mite stages (larvae, nymphs and adults) was calculated. Results showed that on day 1 and 7 after the administration of garlic extract efficacy rate was 92.05% and 74.62%, respectively. Moreover, efficacy rate on day 1 and 7 was 89.4% and 95.37% when treatment was done with thyme essential oil. It is concluded that using garlic juice to control of D. gallinae is more effective on short time. But thyme essential oil has a long time effect in compare to garlic preparation.
Keywords: Dermanyssus gallinae, Essential oil, Garlic, Thyme, Efficacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3772399 Effect of Passive Modified Atmosphere in Different Packaging Materials on Fresh-Cut Mixed Fruit Salad Quality during Storage
Authors: I. Krasnova, L. Dukalska, D. Seglina, K. Juhnevica, E. Sne, D. Karklina
Abstract:
Experiments were carried out at the Latvia State Institute of Fruit-Growing in 2011. Fresh-cut minimally processed apple and pear mixed salad were packed by passive modified atmosphere (MAP) in PP containers, which were hermetically sealed by breathable conventional BOPP PropafreshTM P2GAF, and Amcor Agrifresh films. Biodegradable NatureFlexTM NVS INNOVIA Films and VC999 BioPack PLA films coated with a barrier of pure silicon oxide (SiOx) were used to compare the fresh-cut produce quality with this packed in conventional packaging films. Samples were cold stored at temperature +4.0±0.5 °C up to 10 days. The quality of salad was evaluated by physicochemical properties – weight losses, moisture, firmness, the effect of packaging modes on the colour, dynamics in headspace atmosphere concentration (CO2 and O2), titratable acidity values, as well as by microbiological contamination (yeasts, moulds and total bacteria count) of salads, analyzing before packaging and after 2, 4, 6, 8, and 10 storage days.Keywords: Biodegradable packaging, conventional, fresh-cut fruit salad
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3947398 Experimental Study of Light Crude Oil-Water Emulsions
Authors: M. Meriem-Benziane, Sabah A. Abdul-Wahab, H. Zahloul, M. Belhadri
Abstract:
This paper made an attempt to investigate the problem associated with enhancement of emulsions of light crude oil-water recovery in an oil field of Algerian Sahara. Measurements were taken through experiments using RheoStress (RS600). Factors such as shear rate, temperature and light oil concentration on the viscosity behavior were considered. Experimental measurements were performed in terms of shear stress–shear rate, yield stress and flow index on mixture of light crude oil–water. The rheological behavior of emulsion showed Non-Newtonian shear thinning behavior (Herschel-Bulkley). The experiments done in the laboratory showed the stability of some water in light crude oil emulsions form during consolidate oil recovery process. To break the emulsion using additives may involve higher cost and could be very expensive. Therefore, further research should be directed to find solution of these problems that have been encountered.
Keywords: Emulsion, Flow index, Herschel-Bulkley model, Newton model, Oil field, Rheology, Yield stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524397 Textile Dyeing with Natural Dye from Sappan Tree (Caesalpinia sappan Linn.) Extract
Authors: Ploysai Ohama, Nattida Tumpat
Abstract:
Natural dye extracted from Caesalpinia sappan Linn. was applied to a cotton fabric and silk yarn by dyeing process. The dyestuff component of Caesalpinia sappan Linn. was extracted using water and ethanol. Analytical studies such as UV–VIS spectrophotometry and gravimetric analysis were performed on the extracts. Brazilein, the major dyestuff component of Caesalpinia sappan Linn. was confirmed in both aqueous and ethanolic extracts by UV–VIS spectrum. The color of each dyed material was investigated in terms of the CIELAB (L*, a* and b*) and K/S values. Cotton fabric dyed without mordant had a shade of reddish-brown, while those post-mordanted with aluminum potassium sulfate, ferrous sulfate and copper sulfate produced a variety of wine red to dark purple color shades. Cotton fabric and silk yarn dyeing was studied using aluminum potassium sulfate as a mordant. The observed color strength was enhanced with increase in mordant concentration.
Keywords: Natural dyes, Plant materials, Dyeing, Mordant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5068396 Mechanisms of Organic Contaminants Uptake and Degradation in Plants
Authors: E.Kvesitadze, T.Sadunishvili, G.Kvesitadze
Abstract:
As a result of urbanization, the unpredictable growth of industry and transport, production of chemicals, military activities, etc. the concentration of anthropogenic toxicants spread in nature exceeds all the permissible standards. Most dangerous among these contaminants are organic compounds having great persistence, bioaccumulation, and toxicity along with our awareness of their prominent occurrence in the environment and food chain. Among natural ecological tools, plants still occupying above 40% of the world land, until recently, were considered as organisms having only a limited ecological potential, accumulating in plant biomass and partially volatilizing contaminants of different structure. However, analysis of experimental data of the last two decades revealed the essential role of plants in environment remediation due to ability to carry out intracellular degradation processes leading to partial or complete decomposition of carbon skeleton of different structure contaminants. Though, phytoremediation technologies still are in research and development, their various applications have been successfully used. The paper aims to analyze mechanisms of organic contaminants uptake and detoxification in plants, being the less studied issue in evaluation and exploration of plants potential for environment remediation.
Keywords: organic contaminants, Detoxification, metalloenzymes, plant ultrastructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065395 Comparison of Different Techniques for Processing and Preserving fish Rastrineobola argentea from Lake Victoria, Kenya
Authors: Ayub V. O. Ofulla, Jackson H. O. Onyuka, Samuel Wagai, Douglas Anyona, Gabriel O. Dida, John Gichuki
Abstract:
This study was set to determine the antimicrobial activities of brine salting, chlorinated solution, and oil frying treatments on enteric bacteria and fungi in Rastrineobola argentea fish from fish landing beaches within L. Victoria basin of western Kenya. Statistical differences in effectiveness of the different treatment methods was determined by single factor ANOVA, and paired two-tail t-Test was performed to compare the differences in moisture contents before and after storage. Oil fried fish recorded the lowest microbial loads, sodium chloride at 10% concentration was the second most effective and chlorinated solution even at 150ppm was the least effective against the bacteria and fungi in fish. Moisture contents of the control and treated fish were significantly lower after storage. These results show that oil frying of fish should be adopted for processing and preserving Rastrineobola argentea which is the most abundant and affordable fish species from Lake Victoria.Keywords: Fish landing beaches, Lake Victoria, oil frying, preservatives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161394 Effect of Wind and Humidity on Microwave Links in North West Libya
Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri
Abstract:
The propagation of microwave is affected by rain and dust particles causing signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents effect of wind and humidity on wireless communication such as microwave links in the North West region of Libya (Al-Khoms). The experimental procedure is done on three selected antennae towers (Nagaza station, Al-Khoms center station, Al-Khoms gateway station) for determining the attenuation loss per unit length and cross-polarization discrimination (XPD) change. Dust particles are collected along the region of the study, to measure the particle size distribution (PSD), calculate the concentration, and chemically analyze the contents, then the dielectric constant can be calculated. The results show that humidity and dust, antenna height and the visibility affect both attenuation and phase shift; in which, a few considerations must be taken into account in the communication power budget.
Keywords: Attenuation, scattering, transmission loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784393 Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube
Authors: Farhad Hekmatipour, M. A. Akhavan-Behabadi, Farzad Hekmatipour
Abstract:
In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.
Keywords: Nanofluid, heat transfer oil, mixed convection, vertical tube, laminar flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961392 Application of a Modified BCR Approach to Investigate the Mobility and Availability of Trace Elements (As, Ba, Cd, Co, Cr, Cu, Mo,Ni, Pb, Zn, and Hg) from a Solid Residue Matrix Designed for Soil Amendment
Authors: Mikko Mäkelä, Risto Pöykiö, Gary Watkins, Hannu Nurmesniemi, Olli Dahl
Abstract:
Trace element speciation of an integrated soil amendment matrix was studied with a modified BCR sequential extraction procedure. The analysis included pseudo-total concentration determinations according to USEPA 3051A and relevant physicochemical properties by standardized methods. Based on the results, the soil amendment matrix possessed neutralization capacity comparable to commercial fertilizers. Additionally, the pseudo-total concentrations of all trace elements included in the Finnish regulation for agricultural fertilizers were lower than the respective statutory limit values. According to chemical speciation, the lability of trace elements increased in the following order: Hg < Cr < Co < Cu < As < Zn < Ni < Pb < Cd < V < Mo < Ba. The validity of the BCR approach as a tool for chemical speciation was confirmed by the additional acid digestion phase. Recovery of trace elements during the procedure assured the validity of the approach and indicated good quality of the analytical work.Keywords: BCR, bioavailability, trace element, industrialresidue, sequential extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844391 Effect of Oxygen Annealing on the Surface Defects and Photoconductivity of Vertically Aligned ZnO Nanowire Array
Authors: Ajay Kushwaha, Hemen Kalita, M. Aslam
Abstract:
Post growth annealing of solution grown ZnO nanowire array is performed under controlled oxygen ambience. The role of annealing over surface defects and their consequence on dark/photo-conductivity and photosensitivity of nanowire array is investigated. Surface defect properties are explored using various measurement tools such as contact angle, photoluminescence, Raman spectroscopy and XPS measurements. The contact angle of the NW films reduces due to oxygen annealing and nanowire film surface changes from hydrophobic (96°) to hydrophilic (16°). Raman and XPS spectroscopy reveal that oxygen annealing improves the crystal quality of the nanowire films. The defect band emission intensity (relative to band edge emission, ID/IUV) reduces from 1.3 to 0.2 after annealing at 600 °C at 10 SCCM flow of oxygen. An order enhancement in dark conductivity is observed in O2 annealed samples, while photoconductivity is found to be slightly reduced due to lower concentration of surface related oxygen defects.Keywords: Zinc Oxide, Surface defects, Photoluminescence, Photoconductivity, Photosensor and Nanowire thin film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3555390 Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India
Authors: N. K. Ambujam, V. Sudha
Abstract:
Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll a (Chl a) were analysed. Trophic status of KR was classified by using Carlson's Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl a using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson’s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson’s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients.
Keywords: Hyper-eutrophication, Krishnagiri reservoir, nutrients, NPS pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622389 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency
Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao
Abstract:
A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.
Keywords: Absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584388 Removal of Heavy Metals from Water in the Presence of Organic Wastes: Fruit Peels
Authors: Berk Kılıç, Derin Dalgıç, Ela Mia Sevilla Levi, Ömer Aydın
Abstract:
In this experiment our goal was to remove heavy metals from water. Generally, removing toxic heavy elements: Cu+2, Cr+6 and Fe+3, ions from their aqueous solutions has been determined with different kinds of plants’ peels. However, this study focuses on banana, peach, orange, and potato peels. The first step of the experiment was to wash the peels with distilled water and then dry the peels in an oven for 80 h at 80 °C. The peels were washed with NaOH and dried again at 80 °C for 2 days. Once the peels were washed and dried, 0.4 grams were weighed and added to a 200 mL sample of 0.1% heavy metal solution by mass. The mixing process was done via a magnetic stirrer. A sample of each was taken at 15-minute intervals and the level of absorbance change of the solutions was detected using a UV-Vis Spectrophotometer. Among the used waste products, orange showed the best results, followed by banana peel as the most efficient for our purposes. Moreover, the amount of fruit peel, pH values of the initial heavy metal solution, and initial concentration of heavy metal solutions were investigated to determine the effectiveness of fruit peels for absorbency.
Keywords: Absorbance, heavy metal, removal of heavy metals, fruit peels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162387 Preparation and Investigation of Photocatalytic Properties of ZnO Nanocrystals: Effect of Operational Parameters and Kinetic Study
Authors: N. Daneshvar, S. Aber, M. S. Seyed Dorraji, A. R. Khataee, M. H. Rasoulifard
Abstract:
ZnO nanocrystals with mean diameter size 14 nm have been prepared by precipitation method, and examined as photocatalyst for the UV-induced degradation of insecticide diazinon as deputy of organic pollutant in aqueous solution. The effects of various parameters, such as illumination time, the amount of photocatalyst, initial pH values and initial concentration of insecticide on the photocatalytic degradation diazinon were investigated to find desired conditions. In this case, the desired parameters were also tested for the treatment of real water containing the insecticide. Photodegradation efficiency of diazinon was compared between commercial and prepared ZnO nanocrystals. The results indicated that UV/ZnO process applying prepared nanocrystalline ZnO offered electrical energy efficiency and quantum yield better than commercial ZnO. The present study, on the base of Langmuir-Hinshelwood mechanism, illustrated a pseudo first-order kinetic model with rate constant of surface reaction equal to 0.209 mg l-1 min-1 and adsorption equilibrium constant of 0.124 l mg-1.Keywords: Zinc oxide nanopowder, Electricity consumption, Quantum yield, Nanoparticles, Photodegradation, Kinetic model, Insecticide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3568386 Natural Preservatives: An Alternative for Chemical Preservative Used in Foods
Authors: Zerrin Erginkaya, Gözde Konuray
Abstract:
Microbial degradation of foods is defined as a decrease of food safety due to microorganism activity. Organic acids, sulfur dioxide, sulfide, nitrate, nitrite, dimethyl dicarbonate and several preservative gases have been used as chemical preservatives in foods as well as natural preservatives which are indigenous in foods. It is determined that usage of herbal preservatives such as blueberry, dried grape, prune, garlic, mustard, spices inhibited several microorganisms. Moreover, it is determined that animal origin preservatives such as whey, honey, lysosomes of duck egg and chicken egg, chitosan have antimicrobial effect. Other than indigenous antimicrobials in foods, antimicrobial agents produced by microorganisms could be used as natural preservatives. The antimicrobial feature of preservatives depends on the antimicrobial spectrum, chemical and physical features of material, concentration, mode of action, components of food, process conditions, and pH and storage temperature. In this review, studies about antimicrobial components which are indigenous in food (such as herbal and animal origin antimicrobial agents), antimicrobial materials synthesized by microorganisms, and their usage as an antimicrobial agent to preserve foods are discussed.
Keywords: Animal origin preservatives, antimicrobial, chemical preservatives, herbal preservatives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2610385 Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer
Authors: S. Iijima, K. Nakayama, D. Kuchar, M. Kubota, H. Matsuda
Abstract:
Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.Keywords: Regenerative Heat Exchange, Self Combustion, Toluene, Volatile Organic Compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442384 Numerical Investigation for External Strengthening of Dapped-End Beams
Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah
Abstract:
The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.Keywords: Dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001383 Influence of Radio Frequency Identification Technology in Logistic, Inventory Control and Supply Chain Optimization
Authors: H. Amoozad-khalili, R. Tavakkoli-Moghaddam, N.Shahab-Dehkordi
Abstract:
The main aim of Supply Chain Management (SCM) is to produce, distribute, logistics and deliver goods and equipment in right location, right time, right amount to satisfy costumers, with minimum time and cost waste. So implementing techniques that reduce project time and cost, and improve productivity and performance is very important. Emerging technologies such as the Radio Frequency Identification (RFID) are now making it possible to automate supply chains in a real time manner and making them more efficient than the simple supply chain of the past for tracing and monitoring goods and products and capturing data on movements of goods and other events. This paper considers concepts, components and RFID technology characteristics by concentration of warehouse and inventories management. Additionally, utilization of RFID in the role of improving information management in supply chain is discussed. Finally, the facts of installation and this technology-s results in direction with warehouse and inventory management and business development will be presented.Keywords: Logistics, Supply Chain Management, RFIDTechnology, Inventory Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835382 Predicting Effective Permeability of Nanodielectric Composites Bonded by Soft Magnetic Nanoparticles
Authors: A. Thabet, M. Repetto
Abstract:
Dielectric materials play an important role in broad applications, such as electrical and electromagnetic applications. This research studied the prediction of effective permeability of composite and nanocomposite dielectric materials based on theoretical analysis to specify the effects of embedded magnetic inclusions in enhancing magnetic properties of dielectrics. Effective permeability of Plastics and Glass nanodielectrics have been predicted with adding various types and percentages of magnetic nano-particles (Fe, Ni-Cu, Ni-Fe, MgZn_Ferrite, NiZn_Ferrite) for formulating new nanodielectric magnetic industrial materials. Soft nanoparticles powders that have been used in new nanodielectrics often possess the structure of a particle size in the range of micrometer- to nano-sized grains and magnetic isotropy, e.g., a random distribution of magnetic easy axes of the nanograins. It has been succeeded for enhancing characteristics of new nanodielectric magnetic industrial materials. The results have shown a significant effect of inclusions distribution on the effective permeability of nanodielectric magnetic composites, and so, explained the effect of magnetic inclusions types and their concentration on the effective permeability of nanodielectric magnetic materials.
Keywords: Nanoparticles, Nanodielectrics, Nanocomposites, Effective Permeability, Magnetic Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760381 Removal of Hydrogen Sulfide in Terms of Scrubbing Techniques using Silver Nano-Particles
Authors: SeungKyu Shin, Jeong Hyub Ha, Sung Han, JiHyeon Song
Abstract:
Silver nano-particles have been used for antibacterial purpose and it is also believed to have removal of odorous compounds, oxidation capacity as a metal catalyst. In this study, silver nano-particles in nano sizes (5-30 nm) were prepared on the surface of NaHCO3, the supporting material, using a sputtering method that provided high silver content and minimized conglomerating problems observed in the common AgNO3 photo-deposition method. The silver nano-particles were dispersed by dissolving Ag-NaHCO3 into water, and the dispersed silver nano-particles in the aqueous phase were applied to remove inorganic odor compounds, H2S, in a scrubbing reactor. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (SO4 2-) ion increased with time due to the oxidation reaction by silver as a catalyst. Consequently, the experimental results demonstrated that the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproductsKeywords: Silver nano-particles, Scrubbing, Oxidation, Hydrogen sulfide, Ammonia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402380 Fabrication of Microfluidic Device for Quantitative Monitoring of Algal Cell Behavior Using X-ray LIGA Technology
Authors: J. Ruenin, S. Sukprasong, R. Phatthanakun, N. Chomnawang, P. Kuntanawat
Abstract:
In this paper, a simple microfluidic device for monitoring algal cell behavior is proposed. An array of algal microwells is fabricated by PDMS soft-lithography using X-ray LIGA mold, placed on a glass substrate. Two layers of replicated PDMS and substrate are attached by oxygen plasma bonding, creating a microchannel for the microfluidic system. Algal cell are loaded into the microfluidic device, which provides positive charge on the bottom surface of wells. Algal cells, which are negative charged, can be attracted to the bottom of the wells via electrostatic interaction. By varying the concentration of algal cells in the loading suspension, it is possible to obtain wells with a single cell. Liquid medium for cells monitoring are flown continuously over the wells, providing nutrient and waste exchange between the well and the main flow. This device could lead to the uncovering of the quantitative biology of the algae, which is a key to effective and extensive algal utilizations in the field of biotechnology, food industry and bioenergy research and developments.
Keywords: Algal cells, microfluidic device, X-ray LIGA, X-ray lithography, metallic mold, synchrotron light, PDMS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428379 Eucalyptus camendulensis and Its Drying Effect on Water and Essential Oil Content
Abstract:
Medicinal and aromatic plants are promising and are characterized by the biosynthesis of odorous molecules that make up the so-called essential oils (EO), which have long been known for their antiseptic and therapeutic activity in folk medicine. Essential oils have many therapeutic properties. In herbal medicine, they are used for their antiseptic properties against infectious diseases of fungal origin, against dermatophytes, those of bacterial origin. The objective of this study was to evaluate the influence of drying in the shade on the water content and on the content of essential oils extracted from leaves of Eucalyptus camendulensis for better quality control of medicinal and aromatic plants. The water content of the Eucalyptus camendulensis plant material decreases during the drying process. It decreased from 100% to 0.006% for the drying in the shade after ten days. The moisture content is practically constant at the end of the drying period. The drying in the shade increases the concentration of essential oils of Eucalyptus camendulensis. When the leaves of Eucalyptus camendulensis plant are in the shade, the maximum of the essential oil content was obtained on the eighth day, the recorded value was 1.43% ± 0.01%. Beyond these periods, the content continuously drop in before stabilizing. The optimum drying time is between 6 and 9 days.
Keywords: Eucalyptus camendulensis, drying, essential oils, water and essential oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397378 Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru
Authors: Odón R. Sánchez-Ccoyllo, Elizabeth Ayma-Choque, Alan Llacza
Abstract:
Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³.
Keywords: Ground-ozone, Lima, Sulphur dioxide, WRF-Chem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 364377 Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs
Authors: I. Yalcin Enis, J. Vojtech, T. Gok Sadikoglu
Abstract:
In this study, polycaprolactone (PCL) was dissolved in chloroform:ethanol solvent system at a concentration of 18 w/v %. 1, 2, 4, and 6 droplets of formic acid were added to the prepared 10ml PCL-chloroform:ethanol solutions separately. Fibrous webs were produced by electrospinning technique based on the horizontal working principle. Morphology of the webs was investigated by using scanning electron microscopy (SEM) whereas fiber diameters were measured by Image J Software System. The effect of formic acid addition to the mostly used chloroform solvent on fiber morphology was examined. Results indicate that there is a distinct fall in fiber diameter with the addition of formic acid drops. The average fiber diameter was measured as 2.22μm in PCL /chloroform:ethanol solution system. On the other hand, 328nm and 256 nm average fiber diameters were measured for the samples of 4 drops and 6 drops formic acid added. This study offers alternative solvent systems to produce nanoscaled, nontoxic PCL fibrous webs by electrospinning technique.
Keywords: Chloroform, electrospinning, formic acid polycaprolactone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812376 Alternative Animal Feed Additive Obtain with Different Drying Methods from Carrot Unsuitable for Human Consumption
Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat
Abstract:
This study was conducted to determine that carrot powder obtain by different drying methods (oven and vacuum-freeze dryer) of carrot unfit for human consumption that whether feed additives in animal nutrition or not. Carrots randomly divided 2 groups. First group was dried by using oven, second group was by using vacuum freeze dryer methods. Dried carrot prepared from fresh carrot was analysed nutrient matter (energy, crude protein, crude oil, crude ash, beta carotene, mineral concentration and colour). The differences between groups in terms of energy, crude protein, ash, Ca and Mg was not significant (P>0,05). Crude oil, P, beta carotene content and colour values (L, a, b) with vacuum-freeze dryer group was greater than oven group (P<0,05). Consequently, carrot powder obtained by drying the vacuum-freeze dryer method can be used as a source of carotene.
Keywords: Carrot, vacuum freeze dryer, oven, beta carotene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993375 Efficacy of Combined CHAp and Lanthanum Carbonate in Therapy for Hyperphosphatemia
Authors: Andreea Cârâc, Elena Moroşan, Ana Corina Ioniță, Rica Boscencu, Geta Cârâc
Abstract:
Although, lanthanum carbonate has not been approved by the FDA for treatment of hyperphosphatemia, we prospectively evaluated the efficacy of the combination of Calcium hydroxyapatite (CHAp) and Lanthanum Carbonate (LaC) for the treatment of hyperphosphatemia on mice. CHAp was prepared by co-precipitation method using Ca(OH)2, H3PO4, NH4OH with calcination at 1200ºC. Lanthanum carbonate was prepared by chemical method using NaHCO3 and LaCl3 at low pH environment, below 4.0. The structures were characterized by FTIR spectra and SEM -EDX analysis. The study group included 16 subjects-mice divided into four groups according to the administered substance: lanthanum carbonate (group A), CHAp (group B), lanthanum carbonate + CHAp (group C) and salt water (group D). The results indicate a phosphate decrease when subjects (mice) were treated with CHAp and lanthanum carbonate (0.5% CMC), in a single dose of 1500 mg/kg. Serum phosphate concentration decreased [(from 4.5 ± 0.8 mg/dL) to 4.05 ± 0.2 mg/dL), P < 0.01] in group A and in group C (to 3.6 ± 0.2 mg/dL) at 12 hours from the administration. The combination of CHAp and lanthanum carbonate is a suitable regimen for hyperphosphatemia treatment because it avoids both the hypercalcemia of CaCO3 and the adverse effects of CHAp.
Keywords: Calcium hydroxyapatite, hyperphosphatemia, lanthanum carbonate, phosphatebinder, structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668374 Production of IAA by Bradyrhizobium sp.
Authors: Nisa Rachmania Mubarik, Irni Mahagiani, Aris Tri Wahyudi
Abstract:
The objective of this research was to determine the potency of indigenous acid-aluminium tolerant Bradyrhizobium japonicum as producer of indole acetic acid (IAA) and applied it as nitrogen fixation on local soybeans viz Anjasmoro, Tanggamus (yellow soybean seeds), and Detam (black soybean seed). Three isolates of acid-aluminium tolerant Bradyrhizobium japonicum (BJ) were used in this research, i.e. BJ 11 (wt), BJ 11 (19) - BJ 11(wt) mutant, and USDA 110 as a reference isolate. All of isolates tested to produce the IAA by using Salkowsky method. Effect of IAA production by each of B. japonicum was tested on growth pouch and greenhouse using three varieties of soybean. All isolates could grow well and produce IAA on yeast mannitol broth (YMB) medium in the presence of 0.5 mM L-tryptophan. BJ 11 (19) produced the highest of IAA at 4 days incubation compared to BJ 11 (wt) and USDA 110. All tested isolates of Bradyrhizobium japonicum have showed effect on stimulating the formation of root nodules in soybean varieties grown on Leonard bottle. The concentration of IAA on root nodules of soybean symbiotic with B. japonicum was significantly different with control, except on the treatment using Tanggamus soybean.Keywords: Acid-aluminium tolerant isolate, Bradyrhizobium japonicum, indole acetic acid, soybean.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023