Search results for: Predictive equations
526 Baseline Performance of Notebook Computer under Various Environmental and Usage Conditions for Prognostics
Authors: Sachin Kumar, Michael Pecht
Abstract:
A study was conducted to formally characterize notebook computer performance under various environmental and usage conditions. Software was developed to collect data from the operating system of the computer. An experiment was conducted to evaluate the performance parameters- variations, trends, and correlations, as well as the extreme value they can attain in various usage and environmental conditions. An automated software script was written to simulate user activity. The variability of each performance parameter was addressed by establishing the empirical relationship between performance parameters. These equations were presented as baseline estimates for performance parameters, which can be used to detect system deviations from normal operation and for prognostic assessment. The effect of environmental factors, including different power sources, ambient temperatures, humidity, and usage, on performance parameters of notebooks was studied.Keywords: Health monitoring, Electronic prognostics, Reliability, Usage monitoring, Notebook computer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283525 Creep Constitutive Equation for 2- Materials of Weldment-304L Stainless Steel
Authors: Amir Hossein Daei Sorkhabi, Farid Vakili Tahami
Abstract:
In this paper, creep constitutive equations of base (Parent) and weld materials of the weldment for cold-drawn 304L stainless steel have been obtained experimentally. For this purpose, test samples have been generated from cold drawn bars and weld material according to the ASTM standard. The creep behavior and properties have been examined for these materials by conducting uniaxial creep tests. Constant temperatures and constant load uni-axial creep tests have been carried out at two high temperatures, 680 and 720 oC, subjected to constant loads, which produce initial stresses ranging from 240 to 360 MPa. The experimental data have been used to obtain the creep constitutive parameters using numerical optimization techniques.Keywords: Creep, Constitutive equation, Cold-drawn 304L stainless steel, Weld, Base material
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2777524 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044523 A Novel Slip Correction Factor for Spherical Aerosol Particles
Authors: Abouzar Moshfegh, Mehrzad Shams, Goodarz Ahmadi, Reza Ebrahimi
Abstract:
A 3D simulation study for an incompressible slip flow around a spherical aerosol particle was performed. The full Navier-Stokes equations were solved and the velocity jump at the gas-particle interface was treated numerically by imposition of the slip boundary condition. Analytical solution to the Stokesian slip flow past a spherical particle was used as a benchmark for code verification, and excellent agreement was achieved. The Simulation results showed that in addition to the Knudsen number, the Reynolds number affects the slip correction factor. Thus, the Cunningham-based slip corrections must be augmented by the inclusion of the effect of Reynolds number for application to Lagrangian tracking of fine particles. A new expression for the slip correction factor as a function of both Knudsen number and Reynolds number was developed.Keywords: CFD, Cunningham correction, Slip correction factor, Spherical aerosol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3543522 Isobaric Vapor-Liquid Equilibrium Data for Binary Mixture of 2-Methyltetrahydrofuran and Cumene
Authors: V. K. Rattan, Baljinder K. Gill, Seema Kapoor
Abstract:
Isobaric vapor-liquid equilibrium measurements are reported for binary mixture of 2-Methyltetrahydrofuran and Cumene at 97.3 kPa. The data were obtained using a vapor recirculating type (modified Othmer's) equilibrium still. The mixture shows slight negative deviation from ideality. The system does not form an azeotrope. The experimental data obtained in this study are thermodynamically consistent according to the Herington test. The activity coefficients have been satisfactorily correlated by means of the Margules, and NRTL equations. Excess Gibbs free energy has been calculated from the experimental data. The values of activity coefficients have also been obtained by the UNIFAC group contribution method.Keywords: Binary mixture, 2-Methyltetrahydrofuran, Cumene, Vapor-liquid equilibrium, UNIFAC, Excess Gibbs free energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722521 Deformation of Water Waves by Geometric Transitions with Power Law Function Distribution
Authors: E. G. Bautista, J. M. Reyes, O. Bautista, J. C. Arcos
Abstract:
In this work, we analyze the deformation of surface waves in shallow flows conditions, propagating in a channel of slowly varying cross-section. Based on a singular perturbation technique, the main purpose is to predict the motion of waves by using a dimensionless formulation of the governing equations, considering that the longitudinal variation of the transversal section obey a power-law distribution. We show that the spatial distribution of the waves in the varying cross-section is a function of a kinematic parameter,κ , and two geometrical parameters εh and w ε . The above spatial behavior of the surface elevation is modeled by an ordinary differential equation. The use of single formulas to model the varying cross sections or transitions considered in this work can be a useful approximation to natural or artificial geometrical configurations.
Keywords: Surface waves, Asymptotic solution, Power law function, Non-dispersive waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858520 Mixed Convection with Radiation Effect over a Nonlinearly Stretching Sheet
Authors: Kai-Long Hsiao
Abstract:
In this study, an analysis has been performed for free convection with radiation effect over a thermal forming nonlinearly stretching sheet. Parameters n, k0, Pr, G represent the dominance of the nonlinearly effect, radiation effect, heat transfer and free convection effects which have been presented in governing equations, respectively. The similarity transformation and the finite-difference methods have been used to analyze the present problem. From the results, we find that the effects of parameters n, k0, Pr, Ec and G to the nonlinearly stretching sheet. The increase of Prandtl number Pr, free convection parameter G or radiation parameter k0 resulting in the increase of heat transfer effects, but increase of the viscous dissipation number Ec will decrease of heat transfer effect.Keywords: Nonlinearly stretching sheet, Free convection, Finite-difference, Radiation effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758519 Static Single Point Positioning Using The Extended Kalman Filter
Authors: I. Sarras, G. Gerakios, A. Diamantis, A. I. Dounis, G. P. Syrcos
Abstract:
Global Positioning System (GPS) technology is widely used today in the areas of geodesy and topography as well as in aeronautics mainly for military purposes. Due to the military usage of GPS, full access and use of this technology is being denied to the civilian user who must then work with a less accurate version. In this paper we focus on the estimation of the receiver coordinates ( X, Y, Z ) and its clock bias ( δtr ) of a fixed point based on pseudorange measurements of a single GPS receiver. Utilizing the instantaneous coordinates of just 4 satellites and their clock offsets, by taking into account the atmospheric delays, we are able to derive a set of pseudorange equations. The estimation of the four unknowns ( X, Y, Z , δtr ) is achieved by introducing an extended Kalman filter that processes, off-line, all the data collected from the receiver. Higher performance of position accuracy is attained by appropriate tuning of the filter noise parameters and by including other forms of biases.
Keywords: Extended Kalman filter, GPS, Pseudorange
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579518 Free Vibration Analysis of Functionally Graded Beams
Authors: Gholam Reza Koochaki
Abstract:
This work presents the highly accurate numerical calculation of the natural frequencies for functionally graded beams with simply supported boundary conditions. The Timoshenko first order shear deformation beam theory and the higher order shear deformation beam theory of Reddy have been applied to the functionally graded beams analysis. The material property gradient is assumed to be in the thickness direction. The Hamilton-s principle is utilized to obtain the dynamic equations of functionally graded beams. The influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are discussed. Comparison of the numerical results for the homogeneous beam with Euler-Bernoulli beam theory results show that the derived model is satisfactory.Keywords: Functionally graded beam, Free vibration, Hamilton's principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132517 A Robust Software for Advanced Analysis of Space Steel Frames
Authors: Viet-Hung Truong, Seung-Eock Kim
Abstract:
This paper presents a robust software package for practical advanced analysis of space steel framed structures. The pre- and post-processors of the presented software package are coded in the C++ programming language while the solver is written by using the FORTRAN programming language. A user-friendly graphical interface of the presented software is developed to facilitate the modeling process and result interpretation of the problem. The solver employs the stability functions for capturing the second-order effects to minimize modeling and computational time. Both the plastic-hinge and fiber-hinge beam-column elements are available in the presented software. The generalized displacement control method is adopted to solve the nonlinear equilibrium equations.
Keywords: Advanced analysis, beam-column, fiber-hinge, plastic hinge, steel frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463516 Time-Domain Analysis of Pulse Parameters Effects on Crosstalk (In High Speed Circuits)
Authors: L. Tani, N. El Ouzzani
Abstract:
Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in highspeed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information.Keywords: Multiconductor transmission line, Crosstalk, Finite difference time domain (FDTD), printed-circuit board (PCB), Rise time, Statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774515 Adomian’s Decomposition Method to Functionally Graded Thermoelastic Materials with Power Law
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
This paper presents an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement.
Keywords: Adomian, Decomposition Method, Generalized Thermoelasticity, algorithm, empirical parameter, lattice design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556514 Numerical Investigation of Improved Aerodynamic Performance of a NACA 0015 Airfoil Using Synthetic Jet
Authors: K. Boualem, T. Yahiaoui, A. Azzi
Abstract:
Numerical investigations are performed to analyze the flow behavior over NACA0015 and to evaluate the efficiency of synthetic jet as active control device. The second objective of this work is to investigate the influence of momentum coefficient of synthetic jet on the flow behaviour. The unsteady Reynolds-averaged Navier-Stokes equations of the turbulent flow are solved using, k-ω SST provided by ANSYS CFX-CFD code. The model presented in this paper is a comprehensive representation of the information found in the literature. Comparison of obtained numerical flow parameters with the experimental ones shows that the adopted computational procedure reflects nearly the real flow nature. Also, numerical results state that use of synthetic jets devices has positive effects on the flow separation, and thus, aerodynamic performance improvement of NACA0015 airfoil. It can also be observed that the use of synthetic jet increases the lift coefficient about 13.3% and reduces the drag coefficient about 52.7%.
Keywords: Active control, CFD, NACA airfoil, synthetic jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662513 Isobaric Vapor-Liquid Equilibria of Mesitylene + 1- Heptanol and Mesitylene +1-Octanol at 97.3 kPa
Authors: Seema Kapoor, Sushil K. Kansal, Baljinder K. Gill, Aarti Sharma, Swati Arora
Abstract:
Isobaric vapor-liquid equilibrium measurements are reported for the binary mixtures of Mesitylene + 1-Heptanol and Mesitylene + 1-Octanol at 97.3 kPa. The measurements have been performed using a vapor recirculating type (modified Othmer's) equilibrium still. Both the mixtures show positive deviation from ideality. The Mesitylene + 1-Heptanol mixture forms an azeotrope whereas Mesitylene + 1- Octanol form a non – azeotropic mixture. The activity coefficients have been calculated taking into consideration the vapor phase nonideality. The data satisfy the thermodynamic consistency tests of Herington, and Hirata. The activity coefficients have been satisfactorily correlated by means of the Margules, Redlich-Kister, Wilson, Black, and NRTL equations. The activity coefficient values have also been obtained by UNIFAC method.
Keywords: Binary mixture, Mesitylene, Vapor-liquid equilibrium, 1-Heptanol, 1-Octanol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947512 Steady-State Analysis and Control of Double Feed Induction Motor
Authors: H. Sediki, Dj. Ould Abdeslam, T. Otmane-cherif, A. Bechouche, K. Mesbah
Abstract:
This paper explores steady-state characteristics of grid-connected doubly fed induction motor (DFIM) in case of unity power factor operation. Based on the synchronized mathematical model, analytic determination of the control laws is presented and illustrated by various figures to understand the effect of the applied rotor voltage on the speed and the active power. On other hand, unlike previous works where the stator resistance was neglected, in this work, stator resistance is included such that the equations can be applied to small wind turbine generators which are becoming more popular. Finally the work is crowned by integration of the studied induction generator in a wind system where an open loop control is proposed confers a remarkable simplicity of implementation compared to the known methods.Keywords: DFIM, equivalent circuit, induction machine, steady state
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953511 Carbon Storage in Above-Ground Biomass of Tropical Deciduous Forest in Ratchaburi Province, Thailand
Authors: Ubonwan Chaiyo, Savitri Garivait, Kobsak Wanthongchai
Abstract:
The study site was located in Ratchaburi Province, Thailand. Four experimental plots in dry dipterocarp forest (DDF) and four plots in mixed deciduous forest (MDF) were set up to estimate the above-ground biomass of tree, sapling and bamboo. The allometry equations were used to investigate above-ground biomass of these vegetation. Seedling and other understory were determined using direct harvesting method. Carbon storage in above-ground biomass was calculated based on IPCC 2006. The results showed that the above-ground biomass of DDF at 20-40% slope, <20% slope and MDF at <20% slope were 91.96, 30.95 and 59.44 ton/ha, respectively. Bamboo covers about half of total aboveground biomass in MDF, which is a specific characteristic of this area. The carbon sequestration potential in above-ground biomass of plot slope range 20-40% DDF, <20% DDF and <20% MDF are 43.22, 14.55 and 27.94 ton C/ha, respectively.Keywords: Carbon storage, aboveground biomass, tropical deciduous forest, dry dipterocarp forest, mixed deciduous forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970510 Numerical Evaluation of Nusselt Number on the Hot Wall in Square Enclosure Filled with Nanofluid
Authors: A. Ghafouri, A. Falavand Jozaei, M. Salari
Abstract:
In this paper, effects of using Alumina-water nanofluid on the rate of heat transfer have been investigated numerically. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the Richardson number 0.1 to 10 and the solid volume fraction 0 to 0.04. Results are presented by isotherms lines, average Nusselt number and normalized Nusselt number in different range of φ and Ri for forced, combined and natural convection dominated regime. It is found that higher heat transfer rate is predicted when the effects of nanoparticle is taken into account.
Keywords: Nanofluid, Heat Transfer Enhancement, Square Enclosure, Nusselt number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336509 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel
Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan
Abstract:
This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.
Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588508 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method
Authors: Yanan Yang, Zhigang Wang, Xiang Chen
Abstract:
This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807507 Stochastic Impact Analysis of COVID-19 on Karachi Stock Exchange
Authors: Syeda Maria Ali Shah, Asif Mansoor, Talat Sharafat Rehmani, Safia Mirza
Abstract:
The stock market of any country acts as a predictor of the economy. The spread of the COVID-19 pandemic has severely impacted the global financial markets. Besides, it has also critically affected the economy of Pakistan. In this study, we consider the role of the Karachi Stock Exchange (KSE) with regard to the Pakistan Stock Exchange and quantify the impact on macroeconomic variables in presence of COVID-19. The suitable macroeconomic variables are used to quantify the impact of COVID-19 by developing the stochastic model. The sufficiency of the computed model is attained by means of available techniques in the literature. The estimated equations are used to forecast the impact of pandemic on macroeconomic variables. The constructed model can help the policymakers take counteractive measures for restricting the influence of viruses on the Karachi Stock Market.
Keywords: COVID-19, Karachi Stock Market, macroeconomic variables, stochastic model, forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737506 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary
Authors: Mark Watson, J.-F. Bousquet, Adam Forget
Abstract:
A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.Keywords: Magnetic Induction, FDTD, Underwater Communication, Sommerfeld.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572505 Finite Element Solution of Navier-Stokes Equations for Steam Flow and Heat Transfer
Authors: Igor Nedelkovski, Ilios Vilos, Tale Geramitcioski
Abstract:
Computational simulation of steam flow and heat transfer in power plant condensers on the basis of the threedimensional mathematical model for the flow through porous media is presented. In order to solve the mathematical model of steam flow and heat transfer in power plant condensers, the Streamline Upwind Petrov-Galerkin finite element method is applied. By comparison of the results of simulation with experimental results about an experimental condenser, it is confirmed that SUPG finite element method can be successfully applied for solving the three-dimensional mathematical model of steam flow and heat transfer in power plant condensers.
Keywords: Navier-Stokes, FEM, condensers, steam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267504 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model
Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry
Abstract:
The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.
Keywords: Crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598503 Investigation on Fluid Flow Characteristics of the Orifice in Nuclear Power Plant
Authors: Nam-Seok Kim, Sang-Kyu Lee, Byung-Soo Shin, O-Hyun Keum
Abstract:
The present paper represents a methodology for investigating flow characteristics near orifice plate by using a commercial computational fluid dynamics code. The flow characteristics near orifice plate which is located in the auxiliary feedwater system were modeled via three different levels of grid and four different types of Reynolds Averaged Navier-Stokes (RANS) equations with proper near-wall treatment. The results from CFD code were compared with experimental data in terms of differential pressure through the orifice plate. In this preliminary study, the Realizable k-ε and the Reynolds stress models with enhanced wall treatment were suitable to analyze flow characteristics near orifice plate, and the results had a good agreement with experimental data.Keywords: Auxiliary Feedwater, Computational Fluid Dynamics, Orifice, Nuclear Power Plant
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493502 The Influence of Variable Geometrical Modifications of the Trailing Edge of Supercritical Airfoil on the Characteristics of Aerodynamics
Authors: P. Lauk, K. E. Seegel, T. Tähemaa
Abstract:
The fuel consumption of modern, high wing loading, commercial aircraft in the first stage of flight is high because the usable flight level is lower and the weather conditions (jet stream) have great impact on aircraft performance. To reduce the fuel consumption, it is necessary to raise during first stage of flight the L/D ratio value within Cl 0.55-0.65. Different variable geometrical wing trailing edge modifications of SC(2)-410 airfoil were compared at M 0.78 using the CFD software STAR-CCM+ simulation based Reynolds-averaged Navier-Stokes (RANS) equations. The numerical results obtained show that by increasing the width of the airfoil by 4% and by modifying the trailing edge airfoil, it is possible to decrease airfoil drag at Cl 0.70 for up to 26.6% and at the same time to increase commercial aircraft L/D ratio for up to 5.0%. Fuel consumption can be reduced in proportion to the increase in L/D ratio.
Keywords: L/D ratio, miniflaps, mini-TED, supercritical airfoil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998501 Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic
Authors: Nasser Mohamed Ramli, Mohamad Syafiq Mohamad
Abstract:
Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of differential equations into S-function using MATLAB. The reactor model and S-function are developed using m.file. After developing the S-function of CSTR model, User-Defined functions are used to link to SIMULINK file. Results that are obtained from simulation and temperature control were better when using Fuzzy logic control compared to PID control.
Keywords: CSTR, temperature, PID, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485500 Double-Diffusive Natural Convection with Marangoni and Cooling Effects
Authors: Norazam Arbin, Ishak Hashim
Abstract:
Double-diffusive natural convection in an open top square cavity and heated from the side is studied numerically. Constant temperatures and concentration are imposed along the right and left walls while the heat balance at the surface is assumed to obey Newton-s law of cooling. The finite difference method is used to solve the dimensionless governing equations. The numerical results are reported for the effect of Marangoni number, Biot number and Prandtl number on the contours of streamlines, temperature and concentration. The predicted results for the average Nusselt number and Sherwood number are presented for various parametric conditions. The parameters involved are as follows; the thermal Marangoni number, 0 ≤ MaT ≤1000 , the solutal Marangoni number, 0 1000 c ≤ Ma ≤ , the Biot number, 0 ≤ Bi ≤ 6 , Grashof number, 5 Gr = 10 and aspect ratio 1. The study focused on both flows; thermal dominated, N = 0.8 , and compositional dominated, N = 1.3 .Keywords: Double-diffusive, Marangoni effects, heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871499 Linear Stability Characteristics of Wake-Shear Layers in Two-Phase Shallow Flows
Authors: Inta Volodko, Valentina Koliskina
Abstract:
Linear stability of wake-shear layers in two-phase shallow flows is analyzed in the present paper. Stability analysis is based on two-dimensional shallow water equations. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. Linear stability curves are obtained for different values of the particle loading parameter, the velocity ratio and the velocity deficit. It is shown that the increase in the velocity ratio destabilizes the flow. The particle loading parameter has a stabilizing effect on the flow. The role of the velocity deficit is also destabilizing: the increase of the velocity deficit leads to less stable flow.Keywords: Linear stability, Shallow flows, Wake-shear flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251498 Saturated Gain of Doped Multilayer Quantum Dot Semiconductor Optical Amplifiers
Authors: Omar Qasaimeh
Abstract:
The effect of the number of quantum dot (QD) layers on the saturated gain of doped QD semiconductor optical amplifiers (SOAs) has been studied using multi-population coupled rate equations. The developed model takes into account the effect of carrier coupling between adjacent layers. It has been found that increasing the number of QD layers (K) increases the unsaturated optical gain for K<8 and approximately has no effect on the unsaturated gain for K ≥ 8. Our analysis shows that the optimum ptype concentration that maximizes the unsaturated optical gain of the ground state is NA Ôëê 0.75 ×1018cm-3 . On the other hand, it has been found that the saturated optical gain for both the ground state and the excited state are strong function of both the doping concentration and K where we find that it is required to dope the dots with n-type concentration for very large K at high photon energy.Keywords: doping, multilayer, quantum dot optical amplifier, saturated gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928497 Increase of Energy Efficiency by Means of Application of Active Bearings
Authors: Alexander Babin, Leonid Savin
Abstract:
In the present paper, increasing of energy efficiency of a thrust hybrid bearing with a central feeding chamber is considered. The mathematical model was developed to determine the pressure distribution and the reaction forces, based on the Reynolds equation and static characteristics’ equations. The boundary problem of pressure distribution calculation was solved using the method of finite differences. For various types of lubricants, geometry and operational characteristics, axial gaps can be determined, where the minimal friction coefficient is provided. The next part of the study considers the application of servovalves in order to maintain the desired position of the rotor. The report features the calculation results and the analysis of the influence of the operational and geometric parameters on the energy efficiency of mechatronic fluid-film bearings.
Keywords: Active bearings, energy efficiency, mathematical model, mechatronics, thrust multipad bearing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222