Search results for: Deep Reinforcement Learning
1524 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity
Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle
Abstract:
The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.Keywords: Complex-valued signal processing, synthetic aperture radar (SAR), 2-D radar imaging, compressive sensing, Sparse Bayesian learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15431523 The Integration of Environmental Educational Outcomes within Higher Education to Nurture Environmental Consciousness amongst Engineering Undergraduates
Authors: Sivapalan, S., Subramaniam, G., Clifford, M.J., Balbir Singh, M.S., Abdullah, A
Abstract:
Higher education has an important role to play in advocating environmentalism. Given this responsibility, the goal of higher education should therefore be to develop graduates with the knowledge, skills and values related to environmentalism. However, research indicates that there is a lack of consciousness amongst graduates on the need to be more environmentally aware, especially when it comes to applying the appropriate knowledge and skills related to environmentalism. Although institutions of higher learning do include environmental parameters within their undergraduate and postgraduate academic programme structures, the environmental boundaries are usually confined to specific engineering majors within an engineering programme. This makes environmental knowledge, skills and values exclusive to certain quarters of the higher education system. The incorporation of environmental literacy within higher education institutions as a whole is of utmost pertinence if a nation-s human capital is to be nurtured to become change agents for the preservation of environment. This paper discusses approaches that can be adapted by institutions of higher learning to include environmental literacy within the graduate-s higher learning experience.Keywords: Higher education, engineering education, environmental literacy, Malaysia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16811522 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks
Authors: Anne-Lena Kampen, Øivind Kure
Abstract:
Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.
Keywords: Central ML, embedded machine learning, energy consumption, local ML, Wireless Sensor Networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8411521 Using SMS Mobile Technology to Assess the Mastery of Subject Content Knowledge of Science and Mathematics Teachers of Secondary Schools in Tanzania
Authors: Joel S. Mtebe, Aron Kondoro, Mussa M. Kissaka, Elia Kibga
Abstract:
Sub-Saharan Africa is described as the second fastest growing in mobile phone penetration in the world more than in the United States or the European Union. Mobile phones have been used to provide a lot of opportunities to improve people’s lives in the region such as in banking, marketing, entertainment, and paying for various bills such as water, TV, and electricity. However, the potential of mobile phones to enhance teaching and learning has not been explored. This study presents an experience of developing and delivering SMS based quiz questions used to assess mastery of subject content knowledge of science and mathematics secondary school teachers in Tanzania. The SMS quizzes were used as a follow up support mechanism to 500 teachers who participated in a project to upgrade subject content knowledge of teachers in science and mathematics subjects in Tanzania. Quizzes of 10-15 questions were sent to teachers each week for 8 weeks and the results were analyzed using SPSS. Results show that teachers who participated in chemistry and biology subjects have better performance compared to those who participated in mathematics and physics subjects. Teachers reported some challenges that led to poor performance, This research has several practical implications for those who are implementing or planning to use mobile phones in teaching and learning especially in rural secondary schools in sub-Saharan Africa.
Keywords: Mobile learning, e-learning, educational technologies, SMS, secondary education, assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20751520 Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, Gaussian processes, robot control learning, tracked vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17931519 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9551518 A Model for Collaborative COTS Software Acquisition (COSA)
Authors: Torsti Rantapuska, Sariseelia Sore
Abstract:
Acquiring commercial off-the-shelf (COTS) software applications is becoming routine in organizations. However, eliciting user requirements, finding the candidate COTS products and making the decision is a complex task, especially for SMEs who do not have the time and knowledge needed to do the task properly. The existing models intended to help the decision makers are originally designed for professional use. SMEs are obligated to rely on the software vendor’s ability to solve the problem with the systems provided. In this paper, we develop a model for SMEs for the acquisition of Commercial Off-The-Shelf (COTS) software products. A leading idea of the model is that the ICT investment is basically a change initiative and therefore it should also be taken as a process of organizational learning. The model is designed bearing three objectives in mind: 1) business orientation, 2) agility, and 3) Learning and knowledge management orientation. The model can be applied to ICT investments in SMEs which have a professional team leader with basic business and IT knowledge.
Keywords: COTS acquisition, ICT investment, organizational learning, ICT adoption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17761517 Visual Analytics in K 12 Education - Emerging Dimensions of Complexity
Authors: Linnea Stenliden
Abstract:
The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors within Actor-network theory (ANT). The learning conditions are found to be distinguished by broad complexity, characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.
Keywords: Analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17001516 AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform
Authors: Yingqi Cui, Changran Huang, Raymond Lee
Abstract:
In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent.
Keywords: Artificial intelligence, natural language process, knowledge graph, agent, QA system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9071515 Websites for Hypothesis Testing
Authors: František Mošna
Abstract:
E-learning has become an efficient and widespread means of education at all levels of human activities. Statistics is no exception. Unfortunately the main focus in statistics teaching is usually paid to the substitution in formulas. Suitable websites can simplify and automate calculations and provide more attention and time to the basic principles of statistics, mathematization of real-life situations and following interpretation of results. We now introduce our own web-site for hypothesis testing. Its didactic aspects, the technical possibilities of the individual tools, the experience of use and the advantages or disadvantages are discussed in this paper. This web-site is not a substitute for common statistical software but should significantly improve the teaching of statistics at universities.
Keywords: E-learning, hypothesis testing, PHP, websites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23571514 Composite Relevance Feedback for Image Retrieval
Authors: Pushpa B. Patil, Manesh B. Kokare
Abstract:
This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.
Keywords: Image retrieval, relevance feedback, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19971513 Concept Indexing using Ontology and Supervised Machine Learning
Authors: Rossitza M. Setchi, Qiao Tang
Abstract:
Nowadays, ontologies are the only widely accepted paradigm for the management of sharable and reusable knowledge in a way that allows its automatic interpretation. They are collaboratively created across the Web and used to index, search and annotate documents. The vast majority of the ontology based approaches, however, focus on indexing texts at document level. Recently, with the advances in ontological engineering, it became clear that information indexing can largely benefit from the use of general purpose ontologies which aid the indexing of documents at word level. This paper presents a concept indexing algorithm, which adds ontology information to words and phrases and allows full text to be searched, browsed and analyzed at different levels of abstraction. This algorithm uses a general purpose ontology, OntoRo, and an ontologically tagged corpus, OntoCorp, both developed for the purpose of this research. OntoRo and OntoCorp are used in a two-stage supervised machine learning process aimed at generating ontology tagging rules. The first experimental tests show a tagging accuracy of 78.91% which is encouraging in terms of the further improvement of the algorithm.Keywords: Concepts, indexing, machine learning, ontology, tagging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16891512 A Cognitive Model of Character Recognition Using Support Vector Machines
Authors: K. Freedman
Abstract:
In the present study, a support vector machine (SVM) learning approach to character recognition is proposed. Simple feature detectors, similar to those found in the human visual system, were used in the SVM classifier. Alphabetic characters were rotated to 8 different angles and using the proposed cognitive model, all characters were recognized with 100% accuracy and specificity. These same results were found in psychiatric studies of human character recognition.Keywords: Character recognition, cognitive model, support vector machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18831511 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.
Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731510 Self-efficacy, Self-reliance, and Motivation inan Asynchronous Learning Environment
Authors: Linda H. Meyer, Carol S. Sternberger
Abstract:
Self-efficacy, self-reliance, and motivation were examined in a quasi-experimental study with 178 sophomore university students. Participants used an interactive cardiovascular anatomy and physiology CD-ROM, and completed a 15-item questionnaire. Reliability of the questionnaire was established using Cronbach-s alpha. Post-tests and course grades were examined using a t-test, demonstrating no significance. Results of an item-to-item analysis of the questionnaire showed overall satisfaction with the teaching methodology and varied results for self-efficacy, selfreliance, and motivation. Kendall-s Tau was calculated for all items in the questionnaire.Keywords: Asynchronous learning environments, motivation, self-efficacy, self-reliance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36661509 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules
Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima
Abstract:
Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19641508 Awareness of Reading Strategies among EFL Learners at Bangkok University
Authors: Nuttanuch Munsakorn
Abstract:
This questionnaire-based study, aimed to measure and compare the awareness of English reading strategies among EFL learners at Bangkok University (BU) classified by their gender, field of study, and English learning experience. Proportional stratified random sampling was employed to formulate a sample of 380 BU students. The data were statistically analyzed in terms of the mean and standard deviation. t-Test analysis was used to find differences in awareness of reading strategies between two groups (-male and female- /-science and social-science students). In addition, one-way analysis of variance (ANOVA) was used to compare reading strategy awareness among BU students with different lengths of English learning experience. The results of this study indicated that the overall awareness of reading strategies of EFL learners at BU was at a high level (ðÑ = 3.60) and that there was no statistically significant difference between males and females, and among students who have different lengths of English learning experience at the significance level of 0.05. However, significant differences among students coming from different fields of study were found at the same level of significance.Keywords: EFL learners, higher education, reading comprehension, reading strategies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39461507 Combination of Different Classifiers for Cardiac Arrhythmia Recognition
Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari
Abstract:
This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22331506 Iterative Image Reconstruction for Sparse-View Computed Tomography via Total Variation Regularization and Dictionary Learning
Authors: XianYu Zhao, JinXu Guo
Abstract:
Recently, low-dose computed tomography (CT) has become highly desirable due to increasing attention to the potential risks of excessive radiation. For low-dose CT imaging, ensuring image quality while reducing radiation dose is a major challenge. To facilitate low-dose CT imaging, we propose an improved statistical iterative reconstruction scheme based on the Penalized Weighted Least Squares (PWLS) standard combined with total variation (TV) minimization and sparse dictionary learning (DL) to improve reconstruction performance. We call this method "PWLS-TV-DL". In order to evaluate the PWLS-TV-DL method, we performed experiments on digital phantoms and physical phantoms, respectively. The experimental results show that our method is in image quality and calculation. The efficiency is superior to other methods, which confirms the potential of its low-dose CT imaging.Keywords: Low dose computed tomography, penalized weighted least squares, total variation, dictionary learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8481505 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17491504 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8451503 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).
Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5501502 Experimental Study of Eccentrically Loaded Columns Strengthened Using a Steel Jacketing Technique
Authors: Mohamed K. Elsamny, Adel A. Hussein, Amr M. Nafie, Mohamed K. Abd-Elhamed
Abstract:
An experimental study of Reinforced Concrete, RC, columns strengthened using a steel jacketing technique was conducted. The jacketing technique consisted of four steel vertical angles installed at the corners of the column joined by horizontal steel straps confining the column externally. The effectiveness of the technique was evaluated by testing the RC column specimens under eccentric monotonic loading until failure occurred. Strain gauges were installed to monitor the strains in the internal reinforcement as well as the external jacketing system. The effectiveness of the jacketing technique was demonstrated, and the parameters affecting the technique were studied.
Keywords: Reinforced Concrete Columns, Steel Jacketing, Strengthening, Eccentric Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39001501 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach
Authors: Hamed Rahmani, Wim Groot
Abstract:
The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Center of Iran and the Ministry of Cooperatives Labor and Social Welfare that are taken from the labor force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of 6 years in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education, years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.
Keywords: NEET youth, probit, CART, machine learning, unemployment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3671500 Neurogenic Potential of Clitoria ternatea Aqueous Root Extract–A Basis for Enhancing Learning and Memory
Authors: Kiranmai S.Rai
Abstract:
The neurogenic potential of many herbal extracts used in Indian medicine is hitherto unknown. Extracts derived from Clitoria ternatea Linn have been used in Indian Ayurvedic system of medicine as an ingredient of “Medhya rasayana", consumed for improving memory and longevity in humans and also in treatment of various neurological disorders. Our earlier experimental studies with oral intubation of Clitoria ternatea aqueous root extract (CTR) had shown significant enhancement of learning and memory in postnatal and young adult Wistar rats. The present study was designed to elucidate the in vitro effects of 200ng/ml of CTR on proliferation, differentiation and growth of anterior subventricular zone neural stem cells (aSVZ NSC-s) derived from prenatal and postnatal rat pups. Results show significant increase in proliferation and growth of neurospheres and increase in the yield of differentiated neurons of aSVZ neural precursor cells (aSVZNPC-s) at 7 days in vitro when treated with 200ng/ml of CTR as compared to age matched control. Results indicate that CTR has growth promoting neurogenic effect on aSVZ neural stem cells and their survival similar to neurotrophic factors like Survivin, Neuregulin 1, FGF-2, BDNF possibly the basis for enhanced learning and memory.Keywords: Anterior subventricular zone (aSVZ) neural stemcell, Clitoria ternatea, Learning and memory, Neurogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30311499 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.
Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991498 Morphemic Analysis Awareness: A Boon or Bane on ESL Students’ Vocabulary Learning Strategy
Authors: Chandrakala Varatharajoo, Adelina Binti Asmawi, Nabeel Abdallah Mohammad Abedalaziz
Abstract:
This study investigated the impact of inflectional and derivational morphemic analysis awareness on ESL secondary school students’ vocabulary learning strategy. The quasi-experimental study was conducted with 106 low proficiency secondary school students in two experimental groups (inflectional and derivational) and one control group. The students’ vocabulary acquisition was assessed through two measures: Morphemic Analysis Test and Vocabulary- Morphemic Test in the pretest and posttest before and after an intervention programme. Results of ANCOVA revealed that both the experimental groups achieved a significant score in Morphemic Analysis Test and Vocabulary-Morphemic Test. However, the inflectional group obtained a fairly higher score than the derivational group. Thus, the results indicated that ESL low proficiency secondary school students performed better on inflectional morphemic awareness as compared to derivatives. The results also showed that the awareness of inflectional morphology contributed more on the vocabulary acquisition. Importantly, learning inflectional morphology can help ESL low proficiency secondary school students to develop both morphemic awareness and vocabulary gain. Theoretically, these findings show that not all morphemes are equally useful to students for their language development. Practically, these findings indicate that morphological instruction should at least be included in remediation and instructional efforts with struggling learners across all grade levels, allowing them to focus on meaning within the word before they attempt the text in large for better comprehension. Also, by methodologically, by conducting individualized intervention and assessment this study provided fresh empirical evidence to support the existing literature on morphemic analysis awareness and vocabulary learning strategy. Thus, a major pedagogical implication of the study is that morphemic analysis awareness strategy is a definite boon for ESL secondary school students in learning English vocabulary.
Keywords: ESL, instruction, morphemic analysis, vocabulary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29171497 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.
Keywords: Predictive maintenance, machine learning, big data, cloud, on premise SQL, R.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19281496 Investigating Mental Workload of VR Training versus Serious Game Training on Shoot Operation Training
Authors: Ta-Min Hung, Tien-Lung Sun
Abstract:
Thanks to VR technology advanced, there are many researches had used VR technology to develop a training system. Using VR characteristics can simulate many kinds of situations to reach our training-s goal. However, a good training system not only considers real simulation but also considers learner-s learning motivation. So, there are many researches started to conduct game-s features into VR training system. We typically called this is a serious game. It is using game-s features to engage learner-s learning motivation. However, VR or Serious game has another important advantage. That is simulating feature. Using this feature can create any kinds of pressured environments. Because in the real environment may happen any emergent situations. So, increasing the trainees- pressure is more important when they are training. Most pervious researches are investigated serious game-s applications and learning performance. Seldom researches investigated how to increase the learner-s mental workload when they are training. So, in our study, we will introduce a real case study and create two types training environments. Comparing the learner-s mental workload between VR training and serious game.Keywords: Intrinsic Motivation, Mental Workload, VR Training, Serious Game
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601495 Driving What’s Next: The De La Salle Lipa Social Innovation in Quality Education Initiatives
Authors: Dante Jose R. Amisola, Glenford M. Prospero
Abstract:
'Driving What’s Next' is a strong campaign of the new administration of De La Salle Lipa in promoting social innovation in quality education. The new leadership directs social innovation in quality education in the institutional directions and initiatives to address real-world challenges with real-world solutions. This research under study aims to qualify the commitment of the institution to extend the Lasallian quality human and Christian education to all, as expressed in the Institution’s new mission-vision statement. The Classic Grounded Theory methodology is employed in the process of generating concepts in reference to the documents, a series of meetings, focus group discussions and other related activities that account for the conceptualization and formulation of the new mission-vision along with the new education innovation framework. Notably, Driving What’s Next is the emergent theory that encapsulates the commitment of giving quality human and Christian education to all. It directs the new leadership in driving social innovation in quality education initiatives. Correspondingly, Driving What’s Next is continually resolved through four interrelated strategies also termed as the institution's four strategic directions, namely: (1) driving social innovation in quality education, (2) embracing our shared humanity and championing social inclusion and justice initiatives, (3) creating sustainable futures and (4) engaging diverse stakeholders in our shared mission. Significantly, the four strategic directions capture and integrate the 17 UN sustainable development goals, making the innovative curriculum locally and globally relevant. To conclude, the main concern of the new administration and how it is continually resolved, provide meaningful and fun learning experiences and promote a new way of learning in the light of the 21st century skills among the members of the academic community including stakeholders and extended communities at large, which are defined as: learning together and by association (collaboration), learning through engagement (communication), learning by design (creativity) and learning with social impact (critical thinking).
Keywords: De La Salle Lipa, Driving What’s Next, social innovation in quality education, DLSL mission - vision, strategic directions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920