Search results for: High performance computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10696

Search results for: High performance computing

316 Effects of Duct Geometry, Thickness and Types of Liners on Transmission Loss for Absorptive Silencers

Authors: M. Kashfi, K. Jahani

Abstract:

Sound attenuation in absorptive silencers has been analyzed in this paper. The structure of such devices is as follows. When the rigid duct of an expansion chamber has been lined by a packed absorptive material under a perforated membrane, incident sound waves will be dissipated by the absorptive liners. This kind of silencer, usually are applicable for medium to high frequency ranges. Several conditions for different absorptive materials, variety in their thicknesses, and different shapes of the expansion chambers have been studied in this paper. Also, graphs of sound attenuation have been compared between empty expansion chamber and duct of silencer with applying liner. Plane waves have been assumed in inlet and outlet regions of the silencer. Presented results that have been achieved by applying finite element method (FEM), have shown the dependence of the sound attenuation spectrum to flow resistivity and the thicknesses of the absorptive materials, and geometries of the cross section (configuration of the silencer). As flow resistivity and thickness of absorptive materials increase, sound attenuation improves. In this paper, diagrams of the transmission loss (TL) for absorptive silencers in five different cross sections (rectangle, circle, ellipse, square, and rounded rectangle as the main geometry) have been presented. Also, TL graphs for silencers using different absorptive material (glass wool, wood fiber, and kind of spongy materials) as liner with three different thicknesses of 5 mm, 15 mm, and 30 mm for glass wool liner have been exhibited. At first, the effect of substances of the absorptive materials with the specific flow resistivity and densities on the TL spectrum, then the effect of the thicknesses of the glass wool, and at last the efficacy of the shape of the cross section of the silencer have been investigated.

Keywords: Transmission loss, absorptive material, flow resistivity, thickness, frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
315 High Sensitivity Crack Detection and Locating with Optimized Spatial Wavelet Analysis

Authors: A. Ghanbari Mardasi, N. Wu, C. Wu

Abstract:

In this study, a spatial wavelet-based crack localization technique for a thick beam is presented. Wavelet scale in spatial wavelet transformation is optimized to enhance crack detection sensitivity. A windowing function is also employed to erase the edge effect of the wavelet transformation, which enables the method to detect and localize cracks near the beam/measurement boundaries. Theoretical model and vibration analysis considering the crack effect are first proposed and performed in MATLAB based on the Timoshenko beam model. Gabor wavelet family is applied to the beam vibration mode shapes derived from the theoretical beam model to magnify the crack effect so as to locate the crack. Relative wavelet coefficient is obtained for sensitivity analysis by comparing the coefficient values at different positions of the beam with the lowest value in the intact area of the beam. Afterward, the optimal wavelet scale corresponding to the highest relative wavelet coefficient at the crack position is obtained for each vibration mode, through numerical simulations. The same procedure is performed for cracks with different sizes and positions in order to find the optimal scale range for the Gabor wavelet family. Finally, Hanning window is applied to different vibration mode shapes in order to overcome the edge effect problem of wavelet transformation and its effect on the localization of crack close to the measurement boundaries. Comparison of the wavelet coefficients distribution of windowed and initial mode shapes demonstrates that window function eases the identification of the cracks close to the boundaries.

Keywords: Edge effect, scale optimization, small crack locating, spatial wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
314 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study

Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari

Abstract:

The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two wellknown scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a casestudy. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means, which allows simulating the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With this model is possible to obtain quite accurate and reliable results that allow identifying effective combinations building-HVAC system. The second step has consisted of using output data obtained as input to the calculation model, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing determining the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while our calculation model provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model for different design options.

Keywords: Energy, Buildings, Systems, Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
313 Potential of Henna Leaves as Dye and Its Fastness Properties on Fabric

Authors: Nkem Angela Udeani

Abstract:

Despite the wide spread use of synthetic dyes, natural dyes are still exploited and used to enhance its inherent aesthetic qualities as a major material for beautification of the body. Centuries before the discovery of synthetic dyes, natural dyes were the only source of dye open to mankind. Dyes are extracted from plant - leaves, roots and barks, insect secretions, and minerals. However, research findings have made it clear that of all, plants- leaves, roots, barks or flowers are the most explored and exploited in which henna (Lawsonia innermis L.) is one of those plants. Experiment has also shown that henna is used in body painting in conjunction with an alkaline (Ammonium Sulphate) as a fixing agent. This of course gives a clue that if colour derived from henna is properly investigated, it may not only be used for body decoration but possibly, may have affinity to fiber substrate. This paper investigates the dyeing potentials – dye ability and fastness qualities of henna dye extracts on cotton and linen fibers using mordants like ammonium sulphate and other alkalis (hydrosulphate and caustic soda, potash, common salt, potassium alum). Hot and cold water and ethanol solvent were used in the extraction of the dye to investigate the most effective method, dye ability, and fastness qualities of these extracts under room temperature. The results of the experiment show that cotton have a high rate of dye intake than other fiber. On a similar note, the colours obtained depend most on the solvent used. In conclusion, hot water extraction appears more effective. While the colours obtained from ethanol and both cold hot methods of extraction range from light to dark yellow, light green to army green and to some extent shades of brown hues.

Keywords: Dye, fabrics, henna leaves, potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4110
312 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: Airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080
311 Hydraulic Optimization of an Adjustable Spiral-Shaped Evaporator

Authors: Matthias Feiner, Francisco Javier Fernández García, Michael Arneman, Martin Kipfmüller

Abstract:

To ensure reliability in miniaturized devices or processes with increased heat fluxes, very efficient cooling methods have to be employed in order to cope with small available cooling surfaces. To address this problem, a certain type of evaporator/heat exchanger was developed: It is called a swirl evaporator due to its flow characteristic. The swirl evaporator consists of a concentrically eroded screw geometry in which a capillary tube is guided, which is inserted into a pocket hole in components with high heat load. The liquid refrigerant R32 is sprayed through the capillary tube to the end face of the blind hole and is sucked off against the injection direction in the screw geometry. Its inner diameter is between one and three millimeters. The refrigerant is sprayed into the pocket hole via a small tube aligned in the center of the bore hole and is sucked off on the front side of the hole against the direction of injection. The refrigerant is sucked off in a helical geometry (twisted flow) so that it is accelerated against the hot wall (centrifugal acceleration). This results in an increase in the critical heat flux of up to 40%. In this way, more heat can be dissipated on the same surface/available installation space. This enables a wide range of technical applications. To optimize the design for the needs in various fields of industry, like the internal tool cooling when machining nickel base alloys like Inconel 718, a correlation-based model of the swirl-evaporator was developed. The model is separated into 3 subgroups with overall 5 regimes. The pressure drop and heat transfer are calculated separately. An approach to determine the locality of phase change in the capillary and the swirl was implemented. A test stand has been developed to verify the simulation.

Keywords: Helically-shaped, oil-free, R32, swirl-evaporator, twist flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
310 Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing

Authors: Tim Dunne, Jiaxiang Ren, Lei Zhao, Peng Cheng, Yi Song, Yu Liu, Wenhan Yue, Xiongwen Yang

Abstract:

Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude.

Keywords: Equal channel angular processing, dissolvable magnesium, frac plug, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
309 Food Security Model and the Role of Community Empowerment: The Case of a Marginalized Village in Mexico, Tatoxcac, Puebla

Authors: Marco Antonio Lara De la Calleja, María Catalina Ovando Chico, Eduardo Lopez Ruiz

Abstract:

Community empowerment has been proved to be a key element in the solution of the food security problem. As a result of a conceptual analysis, it was found that agricultural production, economic development and governance, are the traditional basis of food security models. Although the literature points to social inclusion as an important factor for food security, no model has considered it as the basis of it. The aim of this research is to identify different dimensions that make an integral model for food security, with emphasis on community empowerment. A diagnosis was made in the study community (Tatoxcac, Zacapoaxtla, Puebla), to know the aspects that impact the level of food insecurity. With a statistical sample integrated by 200 families, the Latin American and Caribbean Food Security Scale (ELCSA) was applied, finding that: in households composed by adults and children, have moderated food insecurity, (ELCSA scale has three levels, low, moderated and high); that result is produced mainly by the economic income capacity and the diversity of the diet on its food. With that being said, a model was developed to promote food security through five dimensions: 1. Regional context of the community; 2. Structure and system of local food; 3. Health and nutrition; 4. Information and technology access; and 5. Self-awareness and empowerment. The specific actions on each axis of the model, allowed a systemic approach needed to attend food security in the community, through the empowerment of society. It is concluded that the self-awareness of local communities is an area of extreme importance, which must be taken into account for participatory schemes to improve food security. In the long term, the model requires the integrated participation of different actors, such as government, companies and universities, to solve something such vital as food security.

Keywords: Community empowerment, food security, model, systemic approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
308 The Necessity of Biomass Application for Developing Combined Heat and Power(CHP) with Biogas Fuel: Case Study

Authors: Farnaz Amin Salehi, David Edward.Cotton, Mohammad Ali Abdoli, Kambiz Rezapour

Abstract:

The daily increase of organic waste materials resulting from different activities in the country is one of the main factors for the pollution of environment. Today, with regard to the low level of the output of using traditional methods, the high cost of disposal waste materials and environmental pollutions, the use of modern methods such as anaerobic digestion for the production of biogas has been prevailing. The collected biogas from the process of anaerobic digestion, as a renewable energy source similar to natural gas but with a less methane and heating value is usable. Today, with the help of technologies of filtration and proper preparation, access to biogas with features fully similar to natural gas has become possible. At present biogas is one of the main sources of supplying electrical and thermal energy and also an appropriate option to be used in four stroke engine, diesel engine, sterling engine, gas turbine, gas micro turbine and fuel cell to produce electricity. The use of biogas for different reasons which returns to socio-economic and environmental advantages has been noticed in CHP for the production of energy in the world. The production of biogas from the technology of anaerobic digestion and its application in CHP power plants in Iran can not only supply part of the energy demands in the country, but it can materialize moving in line with the sustainable development. In this article, the necessity of the development of CHP plants with biogas fuels in the country will be dealt based on studies performed from the economic, environmental and social aspects. Also to prove the importance of the establishment of these kinds of power plants from the economic point of view, necessary calculations has been done as a case study for a CHP power plant with a biogas fuel.

Keywords: Anaerobic Digestion, Biogas, CHP, Organic Wastes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
307 Water and Soil Environment Pollution Reduction by Filter Strips

Authors: Roy R. Gu, Mahesh Sahu, Xianggui Zhao

Abstract:

Contour filter strips planted with perennial vegetation can be used to improve surface and ground water quality by reducing pollutant, such as NO3-N, and sediment outflow from cropland to a river or lake. Meanwhile, the filter strips of perennial grass with biofuel potentials also have economic benefits of producing ethanol. In this study, The Soil and Water Assessment Tool (SWAT) model was applied to the Walnut Creek Watershed to examine the effectiveness of contour strips in reducing NO3-N outflows from crop fields to the river or lake. Required input data include watershed topography, slope, soil type, land-use, management practices in the watershed and climate parameters (precipitation, maximum/minimum air temperature, solar radiation, wind speed and relative humidity). Numerical experiments were conducted to identify potential subbasins in the watershed that have high water quality impact, and to examine the effects of strip size and location on NO3-N reduction in the subbasins under various meteorological conditions (dry, average and wet). Variable sizes of contour strips (10%, 20%, 30% and 50%, respectively, of a subbasin area) planted with perennial switchgrass were selected for simulating the effects of strip size and location on stream water quality. Simulation results showed that a filter strip having 10%-50% of the subbasin area could lead to 55%- 90% NO3-N reduction in the subbasin during an average rainfall year. Strips occupying 10-20% of the subbasin area were found to be more efficient in reducing NO3-N when placed along the contour than that when placed along the river. The results of this study can assist in cost-benefit analysis and decision-making in best water resources management practices for environmental protection.

Keywords: modeling, SWAT, water quality, NO3-N, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
306 Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass

Authors: Morteza Elsa, Amirhossein Moghanian

Abstract:

The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.

Keywords: Antibacterial, bioactive glass, hydroxyapatite, proliferation, sol-gel processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
305 Water Security in Rural Areas through Solar Energy in Baja California Sur, Mexico

Authors: Luis F. Beltrán-Morales, Dalia Bali Cohen, Enrique Troyo-Diéguez, Gerzaín Avilés Polanco, Victor Sevilla Unda

Abstract:

This study aims to assess the potential of solar energy technology for improving access to water and hence the livelihood strategies of rural communities in Baja California Sur, Mexico. It focuses on livestock ranches and photovoltaic water-pumptechnology as well as other water extraction methods. The methodology used are the Sustainable Livelihoods and the Appropriate Technology approaches. A household survey was applied in June of 2006 to 32 ranches in the municipality, of which 22 used PV pumps; and semi-structured interviews were conducted. Findings indicate that solar pumps have in fact helped people improve their quality of life by allowing them to pursue a different livelihood strategy and that improved access to water -not necessarily as more water but as less effort to extract and collect it- does not automatically imply overexploitation of the resource; consumption is based on basic needs as well as on storage and pumping capacity. Justification for such systems lies in the avoidance of logistical problems associated to fossil fuels, PV pumps proved to be the most beneficial when substituting gasoline or diesel equipment but of dubious advantage if intended to replace wind or gravity systems. Solar water pumping technology-s main obstacle to dissemination are high investment and repairs costs and it is therefore not suitable for all cases even when insolation rates and water availability are adequate. In cases where affordability is not an obstacle it has become an important asset that contributes –by means of reduced expenses, less effort and saved time- to the improvement of livestock, the main livelihood provider for these ranches.

Keywords: Solar Pumps, Water Security, Livestock Ranches, Sustainable Livelihoods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
304 Appraisal of Trace Elements in Scalp Hair of School Children in Kandal Province, Cambodia

Authors: A. Yavar, S. Sarmani, K. S. Khoo

Abstract:

The analysis of trace elements in human hair provides crucial insights into an individual's nutritional status and environmental exposure. This research aimed to examine the levels of toxic and essential elements in the scalp hair of school children aged 12-17 from three villages (Anglong Romiot (AR), Svay Romiot (SR), and Kampong Kong (KK)) in Cambodia's Kandal province, a region where residents are especially vulnerable to toxic elements, notably arsenic (As), due to their dietary habits, lifestyle, and environmental conditions. The scalp hair samples were analyzed using the k0-Instrumental Neutron Activation method (k0-INAA), with a six-hour irradiation period in the Malaysian Nuclear Agency (MNA) research reactor followed by High Purity Germanium (HPGe) detector use to identify the gamma peaks of radionuclides. The analysis identified 31 elements in the human hair from the study area, including As, Au, Br, Ca, Ce, Co, Dy, Eu-152m, Hg-197, Hg-203, Ho, Ir, K, La, Lu, Mn, Na, Pa, Pt-195m, Pt-197, Sb, Sc-46, Sc-47, Sm, Sn-117m, W-181, W-187, Yb-169, Yb-175, Zn, and Zn-69m. The accuracy of the method was verified through the analysis of ERM-DB001-human hair as a Certified Reference Material (CRM), with the results demonstrating consistency with the certified values. Given the prevalent arsenic pollution in the research area, the study also examined the relationship between the concentration of As and other elements using Pearson's correlation test. The outcomes offer a comprehensive resource for future investigations into toxic and essential element presence in the region. In the main body of the paper, a more extensive discussion on the implications of arsenic pollution and the correlations observed is provided to enhance understanding and inform future research directions.

Keywords: Human scalp hair, toxic and essential elements, Kandal Province, Cambodia, k0-Instrumental Neutron Activation Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 263
303 Modified Scaling-Free CORDIC Based Pipelined Parallel MDC FFT and IFFT Architecture for Radix 2^2 Algorithm

Authors: C. Paramasivam, K. B. Jayanthi

Abstract:

An innovative approach to develop modified scaling free CORDIC based two parallel pipelined Multipath Delay Commutator (MDC) FFT and IFFT architectures for radix 22 FFT algorithm is presented. Multipliers and adders are the most important data paths in FFT and IFFT architectures. Multipliers occupy high area and consume more power. In order to optimize the area and power overhead, modified scaling-free CORDIC based complex multiplier is utilized in the proposed design. In general twiddle factor values are stored in RAM block. In the proposed work, modified scaling-free CORDIC based twiddle factor generator unit is used to generate the twiddle factor and efficient switching units are used. In addition to this, four point FFT operations are performed without complex multiplication which helps to reduce area and power in the last two stages of the pipelined architectures. The design proposed in this paper is based on multipath delay commutator method. The proposed design can be extended to any radix 2n based FFT/IFFT algorithm to improve the throughput. The work is synthesized using Synopsys design Compiler using TSMC 90-nm library. The proposed method proves to be better compared to the reference design in terms of area, throughput and power consumption. The comparative analysis of the proposed design with Xilinx FPGA platform is also discussed in the paper.

Keywords: Coordinate Rotational Digital Computer(CORDIC), Complex multiplier, Fast Fourier transform (FFT), Inverse fast Fourier transform (IFFT), Multipath delay Commutator (MDC), modified scaling free CORDIC, complex multiplier, pipelining, parallel processing, radix-2^2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
302 Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces

Authors: Sadegh Lotfieblisofla, Arash Khodabakhshi

Abstract:

Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by Agrobacterium tumefaciens strain LBA4404. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins.

Keywords: Recombinant tissue plasminogen activator, plant cell comportment, leader signals, transgenic tobacco.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
301 Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt

Authors: Ahmed M. Khedr, Saad M. Abdelrahman, Kareem M. Tonbol

Abstract:

Two geo-referenced sea level datasets (September 2008 – November 2010) and (April 2012 – January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a “Form Factor” of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1–6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates.

Keywords: Alexandria, Delft-3D, Egypt, geodetic reference, harmonic analysis, sea level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
300 Congolese Wood in the Antwerp Interwar Interior

Authors: M. Jaenen, M. de Bouw, A. Verdonck, M. Leus

Abstract:

During the interwar period artificial materials were often preferred, but many Antwerp architects relied on the application of wood for most of the interior finishing works and furnishings. Archival, literature and on site research of interwar suburban townhouses and the Belgian wood and furniture industry gave a new insight to the application of wood in the interwar interior. Many interwar designers favored the decorative values in all treatments of wood because of its warmth, comfort, good-wearing, and therefore, economic qualities. For the creation of a successful modern interior the texture and surface of the wood becomes as important as the color itself. This aesthetics valuation was the result of the modernization of the wood industry. The development of veneer and plywood gave the possibility to create strong, flat, long and plain wooden surfaces which are capable of retaining their shape. Also the modernization of cutting machines resulted in high quality and diversity in texture of veneer. The flat and plain plywood surfaces were modern decorated with all kinds of veneer-sliced options. In addition, wood species from the former Belgian Colony Congo were imported. Limba (Terminalia superba), kambala (Chlorophora excelsa), mubala (Pentaclethra macrophylla) and sapelli (Entandrophragma cylindricum) were used in the interior of many Antwerp interwar suburban town houses. From the thirties onwards Belgian wood firms established modern manufactures in Congo. There the local wood was dried, cut and prepared for exportation to the harbor of Antwerp. The presence of all kinds of strong and decorative Congolese wood products supported its application in the interwar interior design. The Antwerp architects combined them in their designs for doors, floors, stairs, built-in-furniture, wall paneling and movable furniture.

Keywords: Antwerp, Congo, furniture, interwar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
299 An Overview of Project Management Application in Computational Fluid Dynamics

Authors: Sajith Sajeev

Abstract:

The application of Computational Fluid Dynamics (CFD) is widespread in engineering and industry, including aerospace, automotive, and energy. CFD simulations necessitate the use of intricate mathematical models and a substantial amount of computational power to accurately describe the behavior of fluids. The implementation of CFD projects can be difficult, and a well-structured approach to project management is required to assure the timely and cost-effective delivery of high-quality results. This paper's objective is to provide an overview of project management in CFD, including its problems, methodologies, and best practices. The study opens with a discussion of the difficulties connected with CFD project management, such as the complexity of the mathematical models, the need for extensive computational resources, and the difficulties associated with validating and verifying the results. In addition, the study examines the project management methodologies typically employed in CFD, such as the Traditional/Waterfall model, Agile and Scrum. Comparisons are made between the advantages and disadvantages of each technique, and suggestions are made for their effective implementation in CFD projects. The study concludes with a discussion of the best practices for project management in CFD, including the utilization of a well-defined project scope, a clear project plan, and effective teamwork. In addition, it highlights the significance of continuous process improvement and the utilization of metrics to monitor progress and discover improvement opportunities. This article is a resource for project managers, researchers, and practitioners in the field of CFD. It can aid in enhancing project outcomes, reducing risks, and enhancing the productivity of CFD projects. This paper provides a complete overview of project management in CFD and is a great resource for individuals who wish to implement efficient project management methods in CFD projects.

Keywords: Project management, Computational Fluid Dynamics, Traditional/Waterfall methodology, agile methodology, scrum methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
298 Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents

Authors: Neha Budhwani

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsorbents of natural origin including sawdust (shisham), coconut fiber, neem bark, chitin, activated charcoal. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant Kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents.

Keywords: Acenaphthene, anthracene, biphenyl, Coconut fiber, naphthalene, natural adsorbent, PAHs, TPO and wood powder (shisham).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4053
297 Experimental Studies of Sigma Thin-Walled Beams Strengthen by CFRP Tapes

Authors: Katarzyna Rzeszut, Ilona Szewczak

Abstract:

The review of selected methods of strengthening of steel structures with carbon fiber reinforced polymer (CFRP) tapes and the analysis of influence of composite materials on the steel thin-walled elements are performed in this paper. The study is also focused to the problem of applying fast and effective strengthening methods of the steel structures made of thin-walled profiles. It is worth noting that the issue of strengthening the thin-walled structures is a very complex, due to inability to perform welded joints in this type of elements and the limited ability to applying mechanical fasteners. Moreover, structures made of thin-walled cross-section demonstrate a high sensitivity to imperfections and tendency to interactive buckling, which may substantially contribute to the reduction of critical load capacity. Due to the lack of commonly used and recognized modern methods of strengthening of thin-walled steel structures, authors performed the experimental studies of thin-walled sigma profiles strengthened with CFRP tapes. The paper presents the experimental stand and the preliminary results of laboratory test concerning the analysis of the effectiveness of the strengthening steel beams made of thin-walled sigma profiles with CFRP tapes. The study includes six beams made of the cold-rolled sigma profiles with height of 140 mm, wall thickness of 2.5 mm, and a length of 3 m, subjected to the uniformly distributed load. Four beams have been strengthened with carbon fiber tape Sika CarboDur S, while the other two were tested without strengthening to obtain reference results. Based on the obtained results, the evaluation of the accuracy of applied composite materials for strengthening of thin-walled structures was performed.

Keywords: CFRP tapes, sigma profiles, steel thin-walled structures, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
296 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs

Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez

Abstract:

Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.

Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137
295 A Modelling Study of the Photochemical and Particulate Pollution Characteristics above a Typical Southeast Mediterranean Urban Area

Authors: Kiriaki-Maria Fameli, Vasiliki D. Assimakopoulos, Vasiliki Kotroni

Abstract:

The Greater Athens Area (GAA) faces photochemical and particulate pollution episodes as a result of the combined effects of local pollutant emissions, regional pollution transport, synoptic circulation and topographic characteristics. The area has undergone significant changes since the Athens 2004 Olympic Games because of large scale infrastructure works that lead to the shift of population to areas previously characterized as rural, the increase of the traffic fleet and the operation of highways. However, few recent modelling studies have been performed due to the lack of an accurate, updated emission inventory. The photochemical modelling system MM5/CAMx was applied in order to study the photochemical and particulate pollution characteristics above the GAA for two distinct ten-day periods in the summer of 2006 and 2010, where air pollution episodes occurred. A new updated emission inventory was used based on official data. Comparison of modeled results with measurements revealed the importance and accuracy of the new Athens emission inventory as compared to previous modeling studies. The model managed to reproduce the local meteorological conditions, the daily ozone and particulates fluctuations at different locations across the GAA. Higher ozone levels were found at suburban and rural areas as well as over the sea at the south of the basin. Concerning PM10, high concentrations were computed at the city centre and the southeastern suburbs in agreement with measured data. Source apportionment analysis showed that different sources contribute to the ozone levels, the local sources (traffic, port activities) affecting its formation.

Keywords: Photochemical modelling, urban pollution, greater Athens area, MM5/CAMx.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
294 Factors Determining Intention to Pursue Genetic Testing for People in Taiwan

Authors: Ju-Chun Chien

Abstract:

The Ottawa Charter for Health Promotion proposed that the role of health services should shift the focus from cure to prevention. Nowadays, besides having physical examinations, people could also conduct genetic tests to provide important information for diagnosing, treating, and/or preventing illnesses. However, because of the incompletion of the Chinese Genetic Database, people in Taiwan were still unfamiliar with genetic testing. The purposes of the present study were to: (1) Figure out people’s attitudes towards genetic testing. (2) Examine factors that influence people’s intention to pursue genetic testing by means of the Health Belief Model (HBM). A pilot study was conducted on 249 Taiwanese in 2017 to test the feasibility of the self-developed instrument. The reliability and construct validity of scores on the self-developed questionnaire revealed that this HBM-based questionnaire with 40 items was a well-developed instrument. A total of 542 participants were recruited and the valid participants were 535 (99%) between the ages of 20 and 86. Descriptive statistics, one-way ANOVA, two-way contingency table analysis, Pearson’s correlation, and stepwise multiple regression analysis were used in this study. The main results were that only 32 participants (6%) had already undergone genetic testing; moreover, their attitude towards genetic testing was more positive than those who did not have the experience. Compared with people who never underwent genetic tests, those who had gone for genetic testing had higher self-efficacy, greater intention to pursue genetic testing, had academic majors in health-related fields, had chronic and genetic diseases, possessed Catastrophic Illness Cards, and all of them had heard about genetic testing. The variables that best predicted people’s intention to pursue genetic testing were cues to action, self-efficacy, and perceived benefits (the three variables all correlated with one another positively at high magnitudes). To sum up, the HBM could be effective in designing and identifying the needs and priorities of the target population to pursue genetic testing.

Keywords: Genetic testing, intention to pursue genetic testing, Taiwan, health belief model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
293 Identification of Promiscuous Epitopes for Cellular Immune Responses in the Major Antigenic Protein Rv3873 Encoded by Region of Difference 1 of Mycobacterium tuberculosis

Authors: Abu Salim Mustafa

Abstract:

Rv3873 is a relatively large size protein (371 amino acids in length) and its gene is located in the immunodominant genomic region of difference (RD)1 that is present in the genome of Mycobacterium tuberculosis but deleted from the genomes of all the vaccine strains of Bacillus Calmette Guerin (BCG) and most other mycobacteria. However, when tested for cellular immune responses using peripheral blood mononuclear cells from tuberculosis patients and BCG-vaccinated healthy subjects, this protein was found to be a major stimulator of cell mediated immune responses in both groups of subjects. In order to further identify the sequence of immunodominant epitopes and explore their Human Leukocyte Antigen (HLA)-restriction for epitope recognition, 24 peptides (25-mers overlapping with the neighboring peptides by 10 residues) covering the sequence of Rv3873 were synthesized chemically using fluorenylmethyloxycarbonyl chemistry and tested in cell mediated immune responses. The results of these experiments helped in the identification of an immunodominant peptide P9 that was recognized by people expressing varying HLA-DR types. Furthermore, it was also predicted to be a promiscuous binder with multiple epitopes for binding to HLA-DR, HLA-DP and HLA-DQ alleles of HLA-class II molecules that present antigens to T helper cells, and to HLA-class I molecules that present antigens to T cytotoxic cells. In addition, the evaluation of peptide P9 using an immunogenicity predictor server yielded a high score (0.94), which indicated a greater probability of this peptide to elicit a protective cellular immune response. In conclusion, P9, a peptide with multiple epitopes and ability to bind several HLA class I and class II molecules for presentation to cells of the cellular immune response, may be useful as a peptide-based vaccine against tuberculosis.

Keywords: Mycobacterium tuberculosis, Rv3873, peptides, vaccine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
292 Potential Climate Change Impacts on the Hydrological System of the Harvey River Catchment

Authors: Hashim Isam Jameel Al-Safi, P. Ranjan Sarukkalige

Abstract:

Climate change is likely to impact the Australian continent by changing the trends of rainfall, increasing temperature, and affecting the accessibility of water quantity and quality. This study investigates the possible impacts of future climate change on the hydrological system of the Harvey River catchment in Western Australia by using the conceptual modelling approach (HBV mode). Daily observations of rainfall and temperature and the long-term monthly mean potential evapotranspiration, from six weather stations, were available for the period (1961-2015). The observed streamflow data at Clifton Park gauging station for 33 years (1983-2015) in line with the observed climate variables were used to run, calibrate and validate the HBV-model prior to the simulation process. The calibrated model was then forced with the downscaled future climate signals from a multi-model ensemble of fifteen GCMs of the CMIP3 model under three emission scenarios (A2, A1B and B1) to simulate the future runoff at the catchment outlet. Two periods were selected to represent the future climate conditions including the mid (2046-2065) and late (2080-2099) of the 21st century. A control run, with the reference climate period (1981-2000), was used to represent the current climate status. The modelling outcomes show an evident reduction in the mean annual streamflow during the mid of this century particularly for the A1B scenario relative to the control run. Toward the end of the century, all scenarios show a relatively high reduction trends in the mean annual streamflow, especially the A1B scenario, compared to the control run. The decline in the mean annual streamflow ranged between 4-15% during the mid of the current century and 9-42% by the end of the century.

Keywords: Climate change impact, Harvey catchment, HBV model, hydrological modelling, GCMs, LARS-WG, Australia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
291 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: Cutting temperatures, DSS2205, dry turning, HiPIMS, surface integrity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
290 A Quantitative Model for Determining the Area of the “Core and Structural System Elements” of Tall Office Buildings

Authors: Görkem Arslan Kılınç

Abstract:

Due to the high construction, operation, and maintenance costs of tall buildings, quantification of the area in the plan layout which provides a financial return is an important design criterion. The area of the “core and the structural system elements” does not provide financial return but must exist in the plan layout. Some characteristic items of tall office buildings affect the size of these areas. From this point of view, 15 tall office buildings were systematically investigated. The typical office floor plans of these buildings were re-produced digitally. The area of the “core and the structural system elements” in each building and the characteristic items of each building were calculated. These characteristic items are the size of the long and short plan edge, plan length/width ratio, size of the core long and short edge, core length/width ratio, core area, slenderness, building height, number of floors, and floor height. These items were analyzed by correlation and regression analyses. Results of this paper put forward that; characteristic items which affect the area of "core and structural system elements" are plan long and short edge size, core short edge size, building height, and the number of floors. A one-unit increase in plan short side size increases the area of the "core and structural system elements" in the plan by 12,378 m2. An increase in core short edge size increases the area of the core and structural system elements in the plan by 25,650 m2. Subsequent studies can be conducted by expanding the sample of the study and considering the geographical location of the building.

Keywords: Core area, correlation analysis, floor area, regression analysis, space efficiency, tall office buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507
289 Chatter Stability Characterization of Full-Immersion End-Milling Using a Generalized Modified Map of the Full-Discretization Method, Part 1: Validation of Results and Study of Stability Lobes by Numerical Simulation

Authors: Chigbogu G. Ozoegwu, Sam N. Omenyi

Abstract:

The objective in this work is to generate and discuss the stability results of fully-immersed end-milling process with parameters; tool mass m=0.0431kg,tool natural frequency ωn = 5700 rads^-1, damping factor ξ=0.002 and workpiece cutting coefficient C=3.5x10^7 Nm^-7/4. Different no of teeth is considered for the end-milling. Both 1-DOF and 2-DOF chatter models of the system are generated on the basis of non-linear force law. Chatter stability analysis is carried out using a modified form (generalized for both 1-DOF and 2-DOF models) of recently developed method called Full-discretization. The full-immersion three tooth end-milling together with higher toothed end-milling processes has secondary Hopf bifurcation lobes (SHBL’s) that exhibit one turning (minimum) point each. Each of such SHBL is demarcated by its minimum point into two portions; (i) the Lower Spindle Speed Portion (LSSP) in which bifurcations occur in the right half portion of the unit circle centred at the origin of the complex plane and (ii) the Higher Spindle Speed Portion (HSSP) in which bifurcations occur in the left half portion of the unit circle. Comments are made regarding why bifurcation lobes should generally get bigger and more visible with increase in spindle speed and why flip bifurcation lobes (FBL’s) could be invisible in the low-speed stability chart but visible in the high-speed stability chart of the fully-immersed three-tooth miller.

Keywords: Chatter, flip bifurcation, modified full-discretization map stability lobe, secondary Hopf bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
288 Numerical Investigation of Multiphase Flow in Pipelines

Authors: Gozel Judakova, Markus Bause

Abstract:

We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.

Keywords: Discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
287 Modeling the Fischer-Tropsch Reaction In a Slurry Bubble Column Reactor

Authors: F. Gholami, M. Torabi Angaji, Z. Gholami

Abstract:

Fischer-Tropsch synthesis is one of the most important catalytic reactions that convert the synthetic gas to light and heavy hydrocarbons. One of the main issues is selecting the type of reactor. The slurry bubble reactor is suitable choice for Fischer- Tropsch synthesis because of its good qualification to transfer heat and mass, high durability of catalyst, low cost maintenance and repair. The more common catalysts for Fischer-Tropsch synthesis are Iron-based and Cobalt-based catalysts, the advantage of these catalysts on each other depends on which type of hydrocarbons we desire to produce. In this study, Fischer-Tropsch synthesis is modeled with Iron and Cobalt catalysts in a slurry bubble reactor considering mass and momentum balance and the hydrodynamic relations effect on the reactor behavior. Profiles of reactant conversion and reactant concentration in gas and liquid phases were determined as the functions of residence time in the reactor. The effects of temperature, pressure, liquid velocity, reactor diameter, catalyst diameter, gasliquid and liquid-solid mass transfer coefficients and kinetic coefficients on the reactant conversion have been studied. With 5% increase of liquid velocity (with Iron catalyst), H2 conversions increase about 6% and CO conversion increase about 4%, With 8% increase of liquid velocity (with Cobalt catalyst), H2 conversions increase about 26% and CO conversion increase about 4%. With 20% increase of gas-liquid mass transfer coefficient (with Iron catalyst), H2 conversions increase about 12% and CO conversion increase about 10% and with Cobalt catalyst H2 conversions increase about 10% and CO conversion increase about 6%. Results show that the process is sensitive to gas-liquid mass transfer coefficient and optimum condition operation occurs in maximum possible liquid velocity. This velocity must be more than minimum fluidization velocity and less than terminal velocity in such a way that avoid catalysts particles from leaving the fluidized bed.

Keywords: Modeling, Fischer-Tropsch Synthesis, Slurry Bubble Column Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020