Search results for: surface modifications
1226 Investigation of Layer Thickness and Surface Roughness on Aerodynamic Coefficients of Wind Tunnel RP Models
Authors: S. Daneshmand, A. Ahmadi Nadooshan, C. Aghanajafi
Abstract:
Traditional wind tunnel models are meticulously machined from metal in a process that can take several months. While very precise, the manufacturing process is too slow to assess a new design's feasibility quickly. Rapid prototyping technology makes this concurrent study of air vehicle concepts via computer simulation and in the wind tunnel possible. This paper described the Affects layer thickness models product with rapid prototyping on Aerodynamic Coefficients for Constructed wind tunnel testing models. Three models were evaluated. The first model was a 0.05mm layer thickness and Horizontal plane 0.1μm (Ra) second model was a 0.125mm layer thickness and Horizontal plane 0.22μm (Ra) third model was a 0.15mm layer thickness and Horizontal plane 4.6μm (Ra). These models were fabricated from somos 18420 by a stereolithography (SLA). A wing-body-tail configuration was chosen for the actual study. Testing covered the Mach range of Mach 0.3 to Mach 0.9 at an angle-of-attack range of -2° to +12° at zero sideslip. Coefficients of normal force, axial force, pitching moment, and lift over drag are shown at each of these Mach numbers. Results from this study show that layer thickness does have an effect on the aerodynamic characteristics in general; the data differ between the three models by fewer than 5%. The layer thickness does have more effect on the aerodynamic characteristics when Mach number is decreased and had most effect on the aerodynamic characteristics of axial force and its derivative coefficients.
Keywords: Aerodynamic characteristics, stereolithography, layer thickness, Rapid prototyping, surface finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29311225 Influence of Garbage Leachate on Soil Reaction,Salinity and Soil Organic Matter in East of Isfahan
Authors: Ebrahim Panahpour, Ali Gholami, Amir Hossein Davami
Abstract:
During this day a considerable amount of Leachate is produced with high amounts of organic material and nutrients needed plants. This study has done in order to scrutinize the effect of Leachate compost on the pH, EC and organic matter percentage in the form of statistical Factorial plan through randomizing block design with three main and two minor treatments and also three replications during three six month periods. Major treatments include N: Irrigation with the region-s well water as a control, I: Frequent irrigation with well water and Leachate, C: Mixing Leachate and water well (25 percent leachate + 75 percent ordinary well water) and secondary treatments, include DI: surface drip irrigation and SDI: sub surface drip irrigation. Results of this study indicated significant differences between treatments and also there were mixing up with the control treatment in the reduction of pH, increasing soluble salts and also increasing the organic matter percentage. This increase is proportional to the amount of added Leachate and in the treatment also proportional to higher mixture of frequent treatment. Therefore, since creating an acidic pH increases the ability to absorb some nutrient elements such as phosphorus, iron, zinc, copper and manganese are increased and the other hand, organic materials also improve many physical and chemical properties of soil are used in Leachate trash Consider health issues as refined in the green belts around cities as a liquid fertilizer recommended.
Keywords: Leachate, compost, drip irrigation, liquid fertilizer, soil reaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22801224 Preliminary Results of In-Vitro Skin Tissue Soldering using Gold Nanoshells and ICG Combination
Authors: M. S. Nourbakhsh, M. E. Khosroshahi
Abstract:
Laser soldering is based on applying some soldering material (albumin) onto the approximated edges of the cut and heating the solder (and the underlying tissues) by a laser beam. Endogenous and exogenous materials such as indocyanine green (ICG) are often added to solders to enhance light absorption. Gold nanoshells are new materials which have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes, allowing nanoshells to be tailored for particular applications. The purposes of this study was use combination of ICG and different concentration of gold nanoshells for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different combinations of ICG and gold nanoshells were prepared. A full thickness incision of 2×20 mm2 was made on the surface and after addition of mixtures it was irradiated by an 810nm diode laser at different power densities. The changes of tensile strength σt due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σt of repaired incisions increases by increasing the concentration of gold nanoshells in solder, Ns and decreasing Vs. It is therefore important to consider the tradeoff between the scan velocity and the surface temperature for achieving an optimum operating condition. In our case this corresponds to σt =1800 gr/cm2 at I~ 47 Wcm-2, T ~ 85ºC, Ns =10 and Vs=0.3mms-1.
Keywords: Tissue soldering, gold nanoshells, indocyanine green, combination, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15021223 Multiscale Modelization of Multilayered Bi-Dimensional Soils
Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur
Abstract:
Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.
Keywords: Multiscale, bi-dimensional, wavelets, SPM, backscattering, multilayer, air pockets, vegetable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6081222 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric
Authors: J. R. Mudakavi, K. Puttanna
Abstract:
Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.
Keywords: Activated carbon fabric, adsorption, drinking water, hexavalent chromium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10451221 Signals from the Rocks
Authors: Ernst D. Schmitter
Abstract:
There is increasing evidence that earthquakes produce electromagnetic signals observable at the surface in the extremely low to very low freqency (ELF - VLF) range often in advance to the main event. These precursors are candidates for prediction purposes. Laboratory experiments con´¼ürm that material under load emits an electromagnetic signature, the detailed generation mechanisms how- ever are not well understood yet.Keywords: Earthquakes, ELF, EM signals from material under load, signal propagation in conductors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16141220 Computer Aided Docking Studies on Antiviral Drugs for SARS
Authors: Virupakshaiah DBM, Chandrakanth Kelmani, Rachanagouda Patil, Prasad Hegade
Abstract:
Severe acute respiratory syndrome (SARS) is a respiratory disease in humans which is caused by the SARS coronavirus. The treatment of coronavirus-associated SARS has been evolving and so far there is no consensus on an optimal regimen. The mainstream therapeutic interventions for SARS involve broad-spectrum antibiotics and supportive care, as well as antiviral agents and immunomodulatory therapy. The Protein- Ligand interaction plays a significant role in structural based drug designing. In the present work we have taken the receptor Angiotensin converting enzyme 2 and identified the drugs that are commonly used against SARS. They are Lopinavir, Ritonavir, Ribavirin, and Oseltamivir. The receptor Angiotensin converting enzyme 2 (ACE-2) was docked with above said drugs and the energy value obtained are as follows, Lopinavir (-292.3), Ritonavir (-325.6), Oseltamivir (- 229.1), Ribavirin (-208.8). Depending on the least energy value we have chosen the best two drugs out of the four conventional drugs. We tried to improve the binding efficiency and steric compatibility of the two drugs namely Ritonavir and Lopinavir. Several modifications were made to the probable functional groups (phenylic, ketonic groups in case of Ritonavir and carboxylic groups in case of Lopinavir respectively) which were interacting with the receptor molecule. Analogs were prepared by Marvin Sketch software and were docked using HEX docking software. Lopinavir analog 8 and Ritonavir analog 11 were detected with significant energy values and are probable lead molecule. It infers that some of the modified drugs are better than the original drugs. Further work can be carried out to improve the steric compatibility of the drug based upon the work done above for a more energy efficient binding of the drugs to the receptor.
Keywords: Protein data bank, Rasmol, Marvin sketch, Hexdocking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22611219 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis
Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński
Abstract:
The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.
Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11671218 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance
Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar
Abstract:
The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.
Keywords: Laser induced breakdown spectroscopy, rotating disk electrode optical emission spectroscopy, surface plasmon resonance, ICCD spectrometer, Nd:YAG laser, engine oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7521217 Investigation of Heat Transfer by Natural Convection in an Open Channel
Authors: Mahmoud S. Ahmed, Hany A. Mohamed, Mohamed A. Omara, Mohamed F. Abdeen
Abstract:
Experimental study of natural convection heat transfer inside smooth and rough surfaces of vertical and inclined equilateral triangular channels of different inclination angles with a uniformly heated surface are performed. The inclination angle is changed from 15º to 90º. Smooth and rough surface of average roughness (0.02mm) are used and their effect on the heat transfer characteristics are studied. The local and average heat transfer coefficients and Nusselt number are obtained for smooth and rough channels at different heat flux values, different inclination angles and different Rayleigh numbers (Ra) 6.48 × 105 ≤ Ra ≤ 4.78 × 106. The results show that the local Nusselt number decreases with increase of axial distance from the lower end of the triangular channel to a point near the upper end of channel, and then, it slightly increases. Higher values of local Nusselt number for rough channel along the axial distance compared with the smooth channel. The average Nusselt number of rough channel is higher than that of smooth channel by about 8.1% for inclined case at θ = 45o and 10% for vertical case. The results obtained are correlated using dimensionless groups for both rough and smooth surfaces of the inclined and vertical triangular channels.
Keywords: Natural heat transfer convection, constant heat flux, open channels, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23631216 River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand
Authors: S. Chuenchooklin
Abstract:
This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013.
Keywords: HEC-RAS, HMS, pumping stations, cascade weirs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22851215 LAYMOD; A Layered and Modular Platform for CAx Collaboration Management and Supporting Product data Integration based on STEP Standard
Authors: Omid F. Valilai, Mahmoud Houshmand
Abstract:
Nowadays companies strive to survive in a competitive global environment. To speed up product development/modifications, it is suggested to adopt a collaborative product development approach. However, despite the advantages of new IT improvements still many CAx systems work separately and locally. Collaborative design and manufacture requires a product information model that supports related CAx product data models. To solve this problem many solutions are proposed, which the most successful one is adopting the STEP standard as a product data model to develop a collaborative CAx platform. However, the improvement of the STEP-s Application Protocols (APs) over the time, huge number of STEP AP-s and cc-s, the high costs of implementation, costly process for conversion of older CAx software files to the STEP neutral file format; and lack of STEP knowledge, that usually slows down the implementation of the STEP standard in collaborative data exchange, management and integration should be considered. In this paper the requirements for a successful collaborative CAx system is discussed. The STEP standard capability for product data integration and its shortcomings as well as the dominant platforms for supporting CAx collaboration management and product data integration are reviewed. Finally a platform named LAYMOD to fulfil the requirements of CAx collaborative environment and integrating the product data is proposed. The platform is a layered platform to enable global collaboration among different CAx software packages/developers. It also adopts the STEP modular architecture and the XML data structures to enable collaboration between CAx software packages as well as overcoming the STEP standard limitations. The architecture and procedures of LAYMOD platform to manage collaboration and avoid contradicts in product data integration are introduced.Keywords: CAx, Collaboration management, STEP applicationmodules, STEP standard, XML data structures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22181214 Polyvinyl Alcohol Processed Templated Polyaniline Films: Preparation, Characterization and Assessment of Tensile Strength
Authors: J. Subbalakshmi, G. Dhruvasamhith, S. M. Hussain
Abstract:
Polyaniline (PANI) is one of the most extensively studied material among the conducting polymers due to its simple synthesis by chemical and electrochemical routes. PANIs have advantages of chemical stability and high conductivity making their commercial applications quite attractive. However, to our knowledge, very little work has been reported on the tensile strength properties of templated PANIs processed with polyvinyl alcohol and also, detailed study has not been carried out. We have investigated the effect of small molecule and polymers as templates on PANI. Stable aqueous colloidal suspensions of trisodium citrate (TSC), poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS), and polyethylene glycol (PEG) templated PANIs were prepared through chemical synthesis, processed with polyvinyl alcohol (PVA) and were fabricated into films by solution casting. Absorption and infra-red spectra were studied to gain insight into the possible molecular interactions. Surface morphology was studied through scanning electron microscope and optical microscope. Interestingly, tensile testing studies revealed least strain for pure PVA when compared to the blends of templated PANI. Furthermore, among the blends, TSC templated PANI possessed maximum elasticity. The ultimate tensile strength for PVA processed, PEG-templated PANI was found to be five times more than other blends considered in this study. We establish structure–property correlation with morphology, spectral characterization and tensile testing studies.Keywords: Processed films, polyvinyl alcohol, spectroscopy, surface morphology, templated polyanilines, tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11861213 Integrated Subset Split for Balancing Network Utilization and Quality of Routing
Authors: S. V. Kasmir Raja, P. Herbert Raj
Abstract:
The overlay approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet backbones. In the overlay approach, logical connections are set up between edge nodes to form a full mesh virtual network on top of the physical topology. IP routing is then run over the virtual network. Traffic engineering objectives are achieved through carefully routing logical connections over the physical links. Although the overlay approach has been implemented in many operational networks, it has a number of well-known scaling issues. This paper proposes a new approach to achieve traffic engineering without full-mesh overlaying with the help of integrated approach and equal subset split method. Traffic engineering needs to determine the optimal routing of traffic over the existing network infrastructure by efficiently allocating resource in order to optimize traffic performance on an IP network. Even though constraint-based routing [1] of Multi-Protocol Label Switching (MPLS) is developed to address this need, since it is not widely tested or debugged, Internet Service Providers (ISPs) resort to TE methods under Open Shortest Path First (OSPF), which is the most commonly used intra-domain routing protocol. Determining OSPF link weights for optimal network performance is an NP-hard problem. As it is not possible to solve this problem, we present a subset split method to improve the efficiency and performance by minimizing the maximum link utilization in the network via a small number of link weight modifications. The results of this method are compared against results of MPLS architecture [9] and other heuristic methods.
Keywords: Constraint based routing, Link Utilization, Subsetsplit method and Traffic Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13971212 Removal of Malachite Green from Aqueous Solution using Hydrilla verticillata -Optimization, Equilibrium and Kinetic Studies
Authors: R. Rajeshkannan, M. Rajasimman, N. Rajamohan
Abstract:
In this study, the sorption of Malachite green (MG) on Hydrilla verticillata biomass, a submerged aquatic plant, was investigated in a batch system. The effects of operating parameters such as temperature, adsorbent dosage, contact time, adsorbent size, and agitation speed on the sorption of Malachite green were analyzed using response surface methodology (RSM). The proposed quadratic model for central composite design (CCD) fitted very well to the experimental data that it could be used to navigate the design space according to ANOVA results. The optimum sorption conditions were determined as temperature - 43.5oC, adsorbent dosage - 0.26g, contact time - 200min, adsorbent size - 0.205mm (65mesh), and agitation speed - 230rpm. The Langmuir and Freundlich isotherm models were applied to the equilibrium data. The maximum monolayer coverage capacity of Hydrilla verticillata biomass for MG was found to be 91.97 mg/g at an initial pH 8.0 indicating that the optimum sorption initial pH. The external and intra particle diffusion models were also applied to sorption data of Hydrilla verticillata biomass with MG, and it was found that both the external diffusion as well as intra particle diffusion contributes to the actual sorption process. The pseudo-second order kinetic model described the MG sorption process with a good fitting.
Keywords: Response surface methodology, Hydrilla verticillata, malachite green, adsorption, central composite design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901211 Deep Injection Wells for Flood Prevention and Groundwater Management
Authors: Mohammad R. Jafari, Francois G. Bernardeau
Abstract:
With its arid climate, Qatar experiences low annual rainfall, intense storms, and high evaporation rates. However, the fast-paced rate of infrastructure development in the capital city of Doha has led to recurring instances of surface water flooding as well as rising groundwater levels. Public Work Authority (PWA/ASHGHAL) has implemented an approach to collect and discharge the flood water into a) positive gravity systems; b) Emergency Flooding Area (EFA) – Evaporation, Infiltration or Storage off-site using tankers; and c) Discharge to deep injection wells. As part of the flood prevention scheme, 21 deep injection wells have been constructed to discharge the collected surface and groundwater table in Doha city. These injection wells function as an alternative in localities that do not possess either positive gravity systems or downstream networks that can accommodate additional loads. These injection wells are 400-m deep and are constructed in a complex karstic subsurface condition with large cavities. The injection well system will discharge collected groundwater and storm surface runoff into the permeable Umm Er Radhuma Formation, which is an aquifer present throughout the Persian Gulf Region. The Umm Er Radhuma formation contains saline water that is not being used for water supply. The injection zone is separated by an impervious gypsum formation which acts as a barrier between upper and lower aquifer. State of the art drilling, grouting, and geophysical techniques have been implemented in construction of the wells to assure that the shallow aquifer would not be contaminated and impacted by injected water. Injection and pumping tests were performed to evaluate injection well functionality (injectability). The results of these tests indicated that majority of the wells can accept injection rate of 200 to 300 m3 /h (56 to 83 l/s) under gravity with average value of 250 m3 /h (70 l/s) compared to design value of 50 l/s. This paper presents design and construction process and issues associated with these injection wells, performing injection/pumping tests to determine capacity and effectiveness of the injection wells, the detailed design of collection system and conveying system into the injection wells, and the operation and maintenance process. This system is completed now and is under operation, and therefore, construction of injection wells is an effective option for flood control.Keywords: Deep injection well, wellhead assembly system, emergency flood area, flood prevention scheme, geophysical tests, pumping and injection tests, Qatar geology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14381210 Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor
Authors: PoiSim Khiew, MuiYen Ho, ThianKhoonTan, WeeSiong Chiu, Roslinda Shamsudin, Muhammad Azmi Abd-Hamid, ChinHua Chia
Abstract:
In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.
Keywords: Metal oxide nanomaterials, Electrochemical Capacitor, Double Layer Capacitance, Pseduocapacitance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56451209 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy
Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah
Abstract:
This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.Keywords: Friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16071208 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) hold significant value for their capacity to undertake hazardous and labor-intensive operations over aquatic environments. Object detection tasks are significant in these applications. Nonetheless, the efficacy of USVs in object detection is impeded by several intrinsic challenges, including the intricate dispersal of obstacles, reflections emanating from coastal structures, and the presence of fog over water surfaces, among others. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. The MMW radar is a complementary tool to vision sensors, offering reliable environmental data. This approach involves the conversion of the radar’s 3D point cloud into a 2D radar pseudo-image, thereby standardizing the format for radar and vision data by leveraging a point transformer. Furthermore, this paper proposes the development of a multi-source object detection network, named RV-YOLOX, which leverages radar-vision integration specifically tailored for inland waterway environments. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.
Keywords: Inland waterways, object detection, YOLO, sensor fusion, self-attention, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2951207 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures
Authors: Tomoko Fukuyama, Osamu Senbu
Abstract:
Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.
Keywords: Prestressed concrete, electric charge, impedance, phase shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7221206 Fatigue Life Consumption for Turbine Blades-Vanes Accelerated by Erosion-Contour Modification
Authors: Julio C. Gómez-Mancilla, Luis M. Palacios-Pineda, Yunuén López-Grijalba
Abstract:
A new mechanism responsible for structural life consumption due to resonant fatigue in turbine blades, or vanes, is presented and explained. A rotating blade or vane in a gas turbine can change its contour due to erosion and/or material build up, in any of these instances, the surface pressure distribution occurring on the suction and pressure sides of blades-vanes can suffer substantial modification of their pressure and temperatures envelopes and flow characteristics. Meanwhile, the relative rotation between the blade and duct vane while the pressurized gas flows and the consequent wake crossings, will induce a fluctuating thrust force or lift that will excite the blade. An actual totally used up set of vane-blade components in a HP turbine power stage in a gas turbine is analyzed. The blade suffered some material erosion mostly at the trailing edge provoking a peculiar surface pressure envelope which evolved as the relative position between the vane and the blade passed in front of each other. Interestingly preliminary modal analysis for this eroded blade indicates several natural frequencies within the aeromechanic power spectrum, moreover, the highest frequency component is 94% of one natural frequency indicating near resonant condition. Independently of other simultaneously occurring fatigue cycles (such as thermal, centrifugal stresses).Keywords: Aeromechanic induced vibration, potential flowinteraction, turbine unsteady flow, rotor/stator interaction, turbinevane-blade aerodynamic interaction, airfoil clocking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25381205 Physical and Microbiological Evaluation of Chitosan Films: Effect of Essential Oils and Storage
Authors: N. Valderrama, W. Albarracín, N. Algecira
Abstract:
The effect of the inclusion of thyme and rosemary essential oils into chitosan films, as well as the microbiological and physical properties when storing chitosan film with and without the mentioned inclusion was studied. The film forming solution was prepared by dissolving chitosan (2%, w/v), polysorbate 80 (4% w/w CH) and glycerol (16% w/w CH) in aqueous lactic acid solutions (control). The thyme (TEO) and rosemary (REO) essential oils (EOs) were included 1:1 w/w (EOs:CH) on their combination 50/50 (TEO:REO). The films were stored at temperatures of 5, 20, 33°C and a relative humidity of 75% during four weeks. The films with essential oil inclusion did not show an antimicrobial activity against strains. This behavior could be explained because the chitosan only inhibits the growth of microorganisms in direct contact with the active sites. However, the inhibition capacity of TEO was higher than the REO and a synergic effect between TEO:REO was found for S. enteritidis strains in the chitosan solution. Some physical properties were modified by the inclusion of essential oils. The addition of essential oils does not affect the mechanical properties (tensile strength, elongation at break, puncture deformation), the water solubility, the swelling index nor the DSC behavior. However, the essential oil inclusion can significantly decrease the thickness, the moisture content, and the L* value of films whereas the b* value increased due to molecular interactions between the polymeric matrix, the loosing of the structure, and the chemical modifications. On the other hand, the temperature and time of storage changed some physical properties on the chitosan films. This could have occurred because of chemical changes, such as swelling in the presence of high humidity air and the reacetylation of amino groups. In the majority of cases, properties such as moisture content, tensile strength, elongation at break, puncture deformation, a*, b*, chrome, 7E increased whereas water resistance, swelling index, L*, and hue angle decreased.
Keywords: Chitosan, food additives, modified films, polymers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29921204 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys
Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes
Abstract:
This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.
Keywords: Precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11851203 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows
Authors: J. P. Panda, K. Sasmal, H. V. Warrior
Abstract:
Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9551202 A Novel Low-Profile Coupled-Fed Printed Twelve-Band Mobile Phone Antenna with Slotted Ground Plane for LTE/GSM/UMTS/WIMAX/WLAN Operations
Authors: Omar A. Saraereh, M. A. Smadi, A. K. S. Al-Bayati, Jasim A. Ghaeb, Qais H. Alsafasfeh
Abstract:
A low profile planar antenna for twelve-band operation in the mobile phone is presented. The proposed antenna radiating elements occupy an area equals 17 × 50 mm2 are mounted on the compact no-ground portion of the system circuit board to achieve a simple low profile structure. In order to overcome the shortcoming of narrow bandwidth for conventional planar printed antenna, a novel bandwidth enhancement approach for multiband handset antennas is proposed here. The technique used in this study shows that by using a coupled-fed mechanism and a slotted ground structure, a multiband operation with wideband characteristic can be achieved. The influences of the modifications introduced into the ground plane improved significantly the bandwidths of the designed antenna. The slotted ground plane structure with the coupled-fed elements contributes their lowest, middle and higher-order resonant modes to form four operating modes. The generated modes are able to cover LTE 700/2300/2500, GSM 850/900/1800/1900, UMTS, WiMAX 3500, WLAN 2400/5200/5800 operations. Parametric studies via simulation are provided and discussed. Proposed antenna’s gain, efficiency and radiation pattern characteristics over the desired operating bands are obtained and discussed. The reasonable results observed can meet the requirements of practical mobile phones.
Keywords: Antenna, handset, LTE, Mobile, Multiband, Slotted ground, specific absorption rate (SAR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30461201 Comparative in silico and in vitro Study of N-(1- Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent
Authors: Pamita Awasthi, Kirna, Shilpa Dogra, Manu Vatsal, Ritu Barthwal
Abstract:
Doxorubicin, also known as Adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemia, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, antiinflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilinoethyl) benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 μM whereas for doxorubicin is 7.2 μM.
Keywords: Anticancer, Auto Dock, Doxorubicin, Sulfonamide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23421200 The Influence of Step and Fillet Shape on Nozzle Endwall Heat Transfer
Authors: JeongJu Kim, Heeyoon Chung, DongHo Rhee, HyungHee Cho
Abstract:
There is a gap at combustor-turbine interface where leakage flow comes out to prevent hot gas ingestion into the gas turbine nozzle platform. The leakage flow protects the nozzle endwall surface from the hot gas coming from combustor exit. For controlling flow’s stream, the gap’s geometry is transformed by changing fillet radius size. During the operation, step configuration is occurred that was unintended between combustor-turbine platform interface caused by thermal expansion or mismatched assembly. In this study, CFD simulations were performed to investigate the effect of the fillet and step on heat transfer and film cooling effectiveness on the nozzle platform. The Reynolds-averaged Navier-stokes equation was solved with turbulence model, SST k-omega. With the fillet configuration, predicted film cooling effectiveness results indicated that fillet radius size influences to enhance film cooling effectiveness. Predicted film cooling effectiveness results at forward facing step configuration indicated that step height influences to enhance film cooling effectiveness. We suggested that designer change a combustor-turbine interface configuration which was varied by fillet radius size near endwall gap when there was a step at combustor-turbine interface. Gap shape was modified by increasing fillet radius size near nozzle endwall. Also, fillet radius and step height were interacted with the film cooling effectiveness and heat transfer on endwall surface.
Keywords: Gas turbine, film cooling effectiveness, endwall, fillet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15461199 Client Importance and Audit Quality under Civil Law versus Common Law Societies
Authors: Kelly Grani Yuen
Abstract:
Accounting scandals and auditing frauds are perceived to be driven by aggressive companies and misrepresentation of audit reports. However, local legal systems and law enforcements may affect the services auditors provide to their ‘important’ clients. Under the civil law and common law jurisdictions, the standard setters, the government, and the regulatory bodies treat cases differently. As such, whether or not different forms of legal systems and extent of law enforcement plays an important role in auditor’s Audit Quality is a question this paper attempts to explore. The paper focuses on the investigation in Asia, where Hong Kong represents the common-law jurisdiction, while Taiwan and China represent the civil law jurisdiction. Only the ten reputable accounting firms are used in this study due to the differences in rankings and establishments of some of the small local audit firms. This will also contribute to the data collected between the years 2007-2013. By focusing on the use of multiple regression based on the dependent (Audit Quality) and independent variables (Client Importance, Law Enforcement, and Press Freedom), six different models are established. Results demonstrate that since different jurisdictions have different legal systems and market regulations, auditor’s treatment on ‘important’ clients will vary. However, with the moderators in place (law enforcement and press freedom), the relationship between client importance and audit quality may be smoothed out. With that in mind, this study contributes to local governments and standard setters’ consideration on legal reform and proper law enforcement in the market. Perhaps, with such modifications on the economic systems, collusion between companies and auditors can finally be put to a halt.
Keywords: Audit quality, client importance, jurisdiction, modified audit opinions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11191198 On the Design of Shape Memory Alloy Locking Mechanism: A Novel Solution for Laparoscopic Ligation Process
Authors: Reza Yousefian, Michael A. Kia, Mehrdad Hosseini Zadeh
Abstract:
The blood ducts must be occluded to avoid loss of blood from vessels in laparoscopic surgeries. This paper presents a locking mechanism to be used in a ligation laparoscopic procedure (LigLAP I), as an alternative solution for a stapling procedure. Currently, stapling devices are being used to occlude vessels. Using these devices may result in some problems, including injury of bile duct, taking up a great deal of space behind the vessel, and bile leak. In this new procedure, a two-layer suture occludes a vessel. A locking mechanism is also required to hold the suture. Since there is a limited space at the device tip, a Shape Memory Alloy (SMA) actuator is used in this mechanism. Suitability for cleanroom applications, small size, and silent performance are among the advantages of SMA actuators in biomedical applications. An experimental study is conducted to examine the function of the locking mechanism. To set up the experiment, a prototype of a locking mechanism is built using nitinol, which is a nickel-titanium shape memory alloy. The locking mechanism successfully locks a polymer suture for all runs of the experiment. In addition, the effects of various surface materials on the applied pulling forces are studied. Various materials are mounted at the mechanism tip to compare the maximum pulling forces applied to the suture for each material. The results show that the various surface materials on the device tip provide large differences in the applied pulling forces.Keywords: Laparoscopic surgery, ligation process, locking mechanism, Shape Memory Alloy (SMA) actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24371197 Unsteady Flow of an Incompressible Viscous Electrically Conducting Fluid in Tube of Elliptical Cross Section under the Influence of Magnetic Field
Authors: Sanjay Baburao Kulkarni
Abstract:
Exact solution of an unsteady flow of elastico-viscous electrically conducting fluid through a porous media in a tube of elliptical cross section under the influence of constant pressure gradient and magnetic field has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the transverse magnetic field and porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K), magnetic parameter (m) and elastico-viscosity parameter (β), which depends on the Non- Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, magnetic parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.
Keywords: Elastico-viscous fluid, Elliptic cross-section, Porous media, Second order fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932