Search results for: seismic behavior
1430 Overview Studies of High Strength Self-Consolidating Concrete
Authors: Raya Harkouss, Bilal Hamad
Abstract:
Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology.
At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete.
A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure.
The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.
Keywords: Self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29741429 Predictions and Comparisons of Thermohydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer-Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings (GFBs) are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional (3D) fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.
Keywords: Fluid structure interaction multi-physics simulations, gas foil bearing, oil-free, transient thermohydrodynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4711428 Soil-Structure Interaction Models for the Reinforced Foundation System: A State-of-the-Art Review
Authors: Ashwini V. Chavan, Sukhanand S. Bhosale
Abstract:
Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of it over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation, respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model’. The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. A flow-chart showing procedure for compution of deformation and mobilized tension is also incorporated in the paper. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models.
Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6631427 Measuring the Influence of Functional Proximity on Environmental Urban Performance via Integrated Modification Methodology: Four Study Cases in Milan
Authors: M. Tadi, M. Hadi Mohammad Zadeh, Ozge Ogut
Abstract:
Although how cities’ forms are structured is studied, more efforts are needed on systemic comprehensions and evaluations of the urban morphology through quantitative metrics that are able to describe the performance of a city in relation to its formal properties. More research is required in this direction in order to better describe the urban form characteristics and their impact on the environmental performance of cities and to increase their sustainability stewardship. With the aim of developing a better understanding of the built environment’s systemic structure, the intention of this paper is to present a holistic methodology for studying the behavior of the built environment and investigate the methods for measuring the effect of urban structure to the environmental performance. This goal will be pursued through an inquiry into the morphological components of the urban systems and the complex relationships between them. Particularly, this paper focuses on proximity, referring to the proximity of different land-uses, is a concept with which Integrated Modification Methodology (IMM) explains how land-use allocation might affect the choice of mobility in neighborhoods, and especially, encourage or discourage non-motived mobility. This paper uses proximity to demonstrate that the structure attributes can quantifiably relate to the performing behavior in the city. The target is to devise a mathematical pattern from the structural elements and correlate it directly with urban performance indicators concerned with environmental sustainability. The paper presents some results of this rigorous investigation of urban proximity and its correlation with performance indicators in four different areas in the city of Milan, each of them characterized by different morphological features.
Keywords: Built environment, ecology, sustainable indicators, sustainability, urban morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6401426 Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed
Authors: A. Soria-Verdugo, A. Morato-Godino, L. M. García-Gutiérrez, N. García-Hernando
Abstract:
The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge.
Keywords: Bubbling fluidized bed, pyrolysis time, segregation effects, sewage sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11301425 Dynamic of Aggressive Behavior at the Context of Reflective Process
Authors: Elena Chernyshkova
Abstract:
The paper which is dedicated to describing the effect made by the “significant other", presents the new model of interrelation between self-reflection, the “significant other" phenomenon and aggression. Tendencies of direction and type frustration response developments in detail are discussed. New results have been received through designing of the original experiment. It is based on modifications of the “Picture – Frustration Study" test by S. Rosenzweig.Keywords: Reflection, reflective process, aggression, aggressivereactions, "significant other"
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9581424 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading
Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui
Abstract:
Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.Keywords: Blast loading, finite element modeling, steel honeycomb sandwich panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17101423 Fatigue Behavior of Friction Stir Welded EN AW 5754 Aluminum Alloy Using Load Increase Procedure
Authors: A. B. Chehreh, M. Grätzel, M. Klein, J. P. Bergmann, F. Walther
Abstract:
Friction stir welding (FSW) is an advantageous method in the thermal joining processes, featuring the welding of various dissimilar and similar material combinations, joining temperatures below the melting point which prevents irregularities such as pores and hot cracks as well as high strengths mechanical joints near the base material. The FSW process consists of a rotating tool which is made of a shoulder and a probe. The welding process is based on a rotating tool which plunges in the workpiece under axial pressure. As a result, the material is plasticized by frictional heat which leads to a decrease in the flow stress. During the welding procedure, the material is continuously displaced by the tool, creating a firmly bonded weld seam behind the tool. However, the mechanical properties of the weld seam are affected by the design and geometry of the tool. These include in particular microstructural and surface properties which can favor crack initiation. Following investigation compares the dynamic properties of FSW weld seams with conventional and stationary shoulder geometry based on load increase test (LIT). Compared to classical Woehler tests, it is possible to determine the fatigue strength of the specimens after a short amount of time. The investigations were carried out on a robotized welding setup on 2 mm thick EN AW 5754 aluminum alloy sheets. It was shown that an increased tensile and fatigue strength can be achieved by using the stationary shoulder concept. Furthermore, it could be demonstrated that the LIT is a valid method to describe the fatigue behavior of FSW weld seams.
Keywords: Aluminum alloy, fatigue performance, fracture, friction stir welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8591422 Importance of Simulation in Manufacturing
Authors: F. Hosseinpour, H. Hajihosseini
Abstract:
Simulation is a very helpful and valuable work tool in manufacturing. It can be used in industrial field allowing the system`s behavior to be learnt and tested. Simulation provides a low cost, secure and fast analysis tool. It also provides benefits, which can be reached with many different system configurations. Topics to be discussed include: Applications, Modeling, Validating, Software and benefits of simulation. This paper provides a comprehensive literature review on research efforts in simulation.Keywords: Manufacturing, modeling, simulation, training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80181421 Changes in Behavior and Learning Ability of Rats Intoxicated with Lead
Authors: Amira, A. Goma, U. E. Mahrous
Abstract:
Measuring the effect of perinatal lead exposure on learning ability of offspring is considered as a sensitive and selective index for providing an early marker for central nervous system damage produced by this toxic metal. A total of 35 Sprague-Dawley adult rats were used to investigate the effect of lead acetate toxicity on behavioral patterns of adult female rats and learning ability of offspring. Rats were allotted into 4 groups, group one received 1g/l lead acetate (n=10), group two received 1.5g/l lead acetate (n=10), group three received 2g/l lead acetate in drinking water (n=10) and control group did not receive lead acetate (n=5) from 8th day of pregnancy till weaning of pups.
The obtained results revealed a dose dependent increase in the feeding time, drinking frequency, licking frequency, scratching frequency, licking litters, nest building and retrieving frequencies, while standing time increased significantly in rats treated with 1.5g/l lead acetate than other treated groups and control, on contrary lying time decreased gradually in a dose dependent manner. Moreover, movement activities were higher in rats treated with 1g/l lead acetate than other treated groups and control. Furthermore, time spent in closed arms was significantly lower in rats given 2g/l lead acetate than other treated groups, while, they spent significantly much time spent in open arms than other treated groups which could be attributed to occurrence of adaptation. Furthermore, number of entries in open arms was dose dependent. However, the ratio between open/closed arms revealed a significant decrease in rats treated with 2g/l lead acetate than control group.
Keywords: Lead toxicity, rats, learning ability, behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26921420 Mechanical Behavior of Recycled Pet Fiber Reinforced Concrete Matrix
Authors: Comingstarful Marthong, Deba Kumar Sarma
Abstract:
Concrete is strong in compression however weak in tension. The tensile strength as well as ductile property of concrete could be improved by addition of short dispersed fibers. Polyethylene terephthalate (PET) fiber obtained from hand cutting or mechanical slitting of plastic sheets generally used as discrete reinforcement in substitution of steel fiber. PET fiber obtained from the former process is in the form of straight slit sheet pattern that impart weaker mechanical bonding behavior in the concrete matrix. To improve the limitation of straight slit sheet fiber the present study considered two additional geometry of fiber namely (a) flattened end slit sheet and (b) deformed slit sheet. The mix for plain concrete was design for a compressive strength of 25 MPa at 28 days curing time with a watercement ratio of 0.5. Cylindrical and beam specimens with 0.5% fibers volume fraction and without fibers were cast to investigate the influence of geometry on the mechanical properties of concrete. The performance parameters mainly studied include flexural strength, splitting tensile strength, compressive strength and ultrasonic pulse velocity (UPV). Test results show that geometry of fiber has a marginal effect on the workability of concrete. However, it plays a significant role in achieving a good compressive and tensile strength of concrete. Further, significant improvement in term of flexural and energy dissipation capacity were observed from other fibers as compared to the straight slit sheet pattern. Also, the inclusion of PET fiber improved the ability in absorbing energy in the post-cracking state of the specimen as well as no significant porous structures.Keywords: Concrete matrix, polyethylene terephthalate (PET) fibers, mechanical bonding, mechanical properties, UPV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20571419 Quality Fed-Batch Bioprocess Control A Case Study
Authors: Mihai Caramihai, Irina Severin
Abstract:
Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.
Keywords: Fed batch bioprocess, mass-balance model, fuzzy control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731418 Characterization and Behavior of Level and Flow Transmitters Available on the Market
Authors: V. A. C. Vale, E. T. L. Cöuras Ford
Abstract:
In view of the requirements of the current industrial processes, the instrumentation plays a critical role. In this context, this work aims to raise some the operating characteristics of the level and flow transmitters, in addition to observing their similarities and possible limitations configurations.Keywords: Flow, level, instrumentation, configurations of meters, method of choice of the meters, instrumentation in the industrial processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14131417 Structural Characteristics of HPDSP Concrete on Beam Column Joints
Authors: Sushil Kumar Swar, Sanjay Kumar Sharma, Hari Krishan Sharma, Sushil Kumar
Abstract:
The seriously damaged structures during earthquakes show the need and importance of design of reinforced concrete structures with high ductility. Reinforced concrete beam-column joints have an important function in all structures. Under seismic excitation, the beam column joint region is subjected to horizontal and vertical shear forces whose magnitude is many times higher than the adjacent beam and column. Strength and ductility of structures depends mainly on proper detailing of the reinforcement in beamcolumn joints and the old structures were found ductility deficient. DSP materials are obtained by using high quantities of super plasticizers and high volumes of micro silica. In the case of High Performance Densified Small Particle Concrete (HPDSPC), since concrete is dense even at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. This in turn will improve cracking behaviour, ductility and energy absorption capacity of composites in addition to durability. The fine fibers used in our mix are 0.3mm diameter and 10 mm which can be easily placed with high percentage. These fibers easily transfer stresses and act as a composite concrete unit to take up extremely high loads with high compressive strength. HPDSPC placed in the beam column joints helps in safety of human life due to prolonged failure.Keywords: High Performance Densified Small Particle Concrete (HPDSPC), Steel Fıber Reinforced Concrete (SFRC), Slurry Infiltrated Concrete (SIFCON), Slurry Infiltrated Mat Concrete (SIMCON).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21701416 An Efficient Approach for Shear Behavior Definition of Plant Stalk
Authors: M. R. Kamandar, J. Massah
Abstract:
The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.
Keywords: Buxus, privet, impact cutting, shear energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8361415 Neural Network Evaluation of FRP Strengthened RC Buildings Subjected to Near-Fault Ground Motions having Fling Step
Authors: Alireza Mortezaei, Kimia Mortezaei
Abstract:
Recordings from recent earthquakes have provided evidence that ground motions in the near field of a rupturing fault differ from ordinary ground motions, as they can contain a large energy, or “directivity" pulse. This pulse can cause considerable damage during an earthquake, especially to structures with natural periods close to those of the pulse. Failures of modern engineered structures observed within the near-fault region in recent earthquakes have revealed the vulnerability of existing RC buildings against pulse-type ground motions. This may be due to the fact that these modern structures had been designed primarily using the design spectra of available standards, which have been developed using stochastic processes with relatively long duration that characterizes more distant ground motions. Many recently designed and constructed buildings may therefore require strengthening in order to perform well when subjected to near-fault ground motions. Fiber Reinforced Polymers are considered to be a viable alternative, due to their relatively easy and quick installation, low life cycle costs and zero maintenance requirements. The objective of this paper is to investigate the adequacy of Artificial Neural Networks (ANN) to determine the three dimensional dynamic response of FRP strengthened RC buildings under the near-fault ground motions. For this purpose, one ANN model is proposed to estimate the base shear force, base bending moments and roof displacement of buildings in two directions. A training set of 168 and a validation set of 21 buildings are produced from FEA analysis results of the dynamic response of RC buildings under the near-fault earthquakes. It is demonstrated that the neural network based approach is highly successful in determining the response.
Keywords: Seismic evaluation, FRP, neural network, near-fault ground motion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17441414 Bioprocess Intelligent Control: A Case Study
Authors: Mihai Caramihai Ana A Chirvase, Irina Severin
Abstract:
Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.
Keywords: Fed batch bioprocess, mass-balance model, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671413 Behavior of Ice Melting in Natural Convention
Authors: N. Dizadji, P. Entezar
Abstract:
In this paper, the ice melting in rectangular, cylindrical and conical forms, which are erected vertically against air flow, are experimentally studied in the free convection regime.The results obtained are: Nusslet Number, heat transfer coefficient andGrashof Number, and the variations of the said numbers in relation to the time. The variations of ice slab area and volume are measured, too.Keywords: Nusselt Number, Heat Transfer, Grashof Number, Heat Transfer Coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24641412 Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading
Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali
Abstract:
Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.Keywords: Deflection profiles, foamed concrete, load-strain relationships, precast foamed concrete sandwich panel, slenderness ratio, vertical in-plane shear strength capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26551411 Physical and Microbiological Evaluation of Chitosan Films: Effect of Essential Oils and Storage
Authors: N. Valderrama, W. Albarracín, N. Algecira
Abstract:
The effect of the inclusion of thyme and rosemary essential oils into chitosan films, as well as the microbiological and physical properties when storing chitosan film with and without the mentioned inclusion was studied. The film forming solution was prepared by dissolving chitosan (2%, w/v), polysorbate 80 (4% w/w CH) and glycerol (16% w/w CH) in aqueous lactic acid solutions (control). The thyme (TEO) and rosemary (REO) essential oils (EOs) were included 1:1 w/w (EOs:CH) on their combination 50/50 (TEO:REO). The films were stored at temperatures of 5, 20, 33°C and a relative humidity of 75% during four weeks. The films with essential oil inclusion did not show an antimicrobial activity against strains. This behavior could be explained because the chitosan only inhibits the growth of microorganisms in direct contact with the active sites. However, the inhibition capacity of TEO was higher than the REO and a synergic effect between TEO:REO was found for S. enteritidis strains in the chitosan solution. Some physical properties were modified by the inclusion of essential oils. The addition of essential oils does not affect the mechanical properties (tensile strength, elongation at break, puncture deformation), the water solubility, the swelling index nor the DSC behavior. However, the essential oil inclusion can significantly decrease the thickness, the moisture content, and the L* value of films whereas the b* value increased due to molecular interactions between the polymeric matrix, the loosing of the structure, and the chemical modifications. On the other hand, the temperature and time of storage changed some physical properties on the chitosan films. This could have occurred because of chemical changes, such as swelling in the presence of high humidity air and the reacetylation of amino groups. In the majority of cases, properties such as moisture content, tensile strength, elongation at break, puncture deformation, a*, b*, chrome, 7E increased whereas water resistance, swelling index, L*, and hue angle decreased.
Keywords: Chitosan, food additives, modified films, polymers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29961410 The Role of Cultural Transformation in Telco Strategy
Abstract:
This paper describes the complex nature of organizational culture and its role in telecom organizations. To set the stage for culture change, the literature is reviewed for perspective on the role and function of culture in organizations. Organizational theorists as well as business consultants report that a strong organizational culture is essential for success because the shared assumptions, values and culture of an organization influence the behavior of its individual members.
Keywords: Component, Telecommunication, Management, Cultural, Transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16971409 An Experimental Investigation on the Behavior of Pressure Tube under Symmetrical and Asymmetrical Heating Conditions in an Indian PHWR
Authors: Ashwini K. Yadav, Ravi Kumar, Akhilesh Gupta, P. Majumdar, B. Chatterjee, D. Mukhopadhyay
Abstract:
Thermal behavior of fuel channel under loss of coolant accident (LOCA) is a major concern for nuclear reactor safety. LOCA along with failure of emergency cooling water system (ECC) may leads to mechanical deformations like sagging and ballooning. In order to understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of Indian Pressurized Heavy Water Reactor (IPHWR) under symmetrical and asymmetrical heat-up conditions. For simulating the fully voided scenario, symmetrical heating of pressure was carried out by injecting 13.2 KW (2 % of nominal power) to all the 19 pins and the temperatures of pressure tube, calandria tube and clad tubes were measured. During symmetrical heating the sagging of fuel channel was initiated at 460 °C and the highest temperature attained by PT was 650 °C . The decay heat from clad tubes was dissipated to moderator mainly by radiation and natural convection. The highest temperature of 680 °C was observed over the outer ring of clad tubes of fuel simulator. Again, to simulate partially voided condition, asymmetrical heating of pressure was carried out by supplying 8.0 kW power to upper 8 pins of fuel simulator and temperature profiles were measured. Along the circumference of pressure tube (PT) the highest temperature difference of 320 °C was observed, which highlights the magnitude of thermal stresses under partially voided conditions.
Keywords: LOCA, ECCS, PHWR, ballooning, channel heat-up, pressure tube, calandria tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20071408 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites
Authors: J. R. Büttler, T. Pham
Abstract:
Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.
Keywords: Dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite, T-peel test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7361407 Factors Influencing Intention to Engage in Long-term Care Services among Nursing Aide Trainees and the General Public
Authors: Ju-Chun Chien
Abstract:
Rapid aging and depopulation could lead to serious problems, including workforce shortages and health expenditure costs. The current and predicted future LTC workforce shortages could be a real threat to Taiwan’s society. By means of comparison of data from 144 nursing aide trainees and 727 general public, the main purpose of the present study was to determine whether there were any notable differences between the two groups toward engaging in LTC services. Moreover, this study focused on recognizing the attributes of the general public who had the willingness to take LTC jobs but continue to ride the fence. A self-developed questionnaire was designed based on Ajzen’s Theory of Planned Behavior model. After conducting exploratory factor analysis (EFA) and reliability analysis, the questionnaire was a reliable and valid instrument for both nursing aide trainees and the general public. The main results were as follows: Firstly, nearly 70% of nursing aide trainees showed interest in LTC jobs. Most of them were middle-aged female (M = 46.85, SD = 9.31), had a high school diploma or lower, had unrelated work experience in healthcare, and were mostly unemployed. The most common reason for attending the LTC training program was to gain skills in a particular field. The second most common reason was to obtain the license. The third and fourth reasons were to be interested in caring for people and to increase income. The three major reasons that might push them to leave LTC jobs were physical exhaustion, payment is bad, and being looked down on. Secondly, the variables that best-predicted nursing aide trainees’ intention to engage in LTC services were having personal willingness, perceived behavior control, with high school diploma or lower, and supported from family and friends. Finally, only 11.80% of the general public reported having interest in LTC jobs (the disapproval rating was 50% for the general public). In comparison to nursing aide trainees who showed interest in LTC settings, 64.8% of the new workforce for LTC among the general public was male and had an associate degree, 54.8% had relevant healthcare experience, 67.1% was currently employed, and they were younger (M = 32.19, SD = 13.19) and unmarried (66.3%). Furthermore, the most commonly reason for the new workforce to engage in LTC jobs were to gain skills in a particular field. The second priority was to be interested in caring for people. The third and fourth most reasons were to give back to society and to increase income, respectively. The top five most commonly reasons for the new workforce to quitting LTC jobs were listed as follows: physical exhaustion, being looked down on, excessive working hours, payment is bad, and excessive job stress.
Keywords: Long-term care services, nursing aide trainees, Taiwanese people, theory of planned behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9091406 Influencing Attitude Change for Sustainability through Persuasion
Authors: Chia-Hsin Wu, Chen-Hao Wuang, Yu-Hung Chou, Chia-Chih Chen, Pei-Ju Chen, Hsiao-Chen You, Yi-Shin Deng
Abstract:
Food mileage is one of the important issues concerning environmental sustainability. In this research we have utilized a prototype platform with iterative user-centered testing. With these findings we successfully demonstrate the use of the context of persuasive methods to influence users- attitudes towards the sustainable concept.
Keywords: Behavior change, food mileage, persuasive technology, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16831405 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI
Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K. Rao, S. Ganesh Kamath
Abstract:
The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and hemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The hemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveal that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the hemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.Keywords: Fluid-Structure Interaction, arterial stenosis, Wall Shear Stress, Carotid Artery Bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23001404 Ratio-Dependent Food Chain Models with Three Trophic Levels
Abstract:
In this paper we study a food chain model with three trophic levels and Michaelis-Menten type ratio-dependent functional response. Distinctive feature of this model is the sensitive dependence of the dynamical behavior on the initial populations and parameters of the real world. The stability of the equilibrium points are also investigated.
Keywords: Food chain, Ratio dependent models, Three level models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15271403 On Bianchi Type Cosmological Models in Lyra’s Geometry
Authors: R. K. Dubey
Abstract:
Bianchi type cosmological models have been studied on the basis of Lyra’s geometry. Exact solution has been obtained by considering a time dependent displacement field for constant deceleration parameter and varying cosmological term of the universe. The physical behavior of the different models has been examined for different cases.Keywords: Bianchi type-I cosmological model, variable gravitational coupling (G) and Cosmological Constant term (β).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12531402 Dust Acoustic Shock Waves in Coupled Dusty Plasmas with Kappa-Distributed Ions
Authors: Hamid Reza Pakzad
Abstract:
We have considered an unmagnetized dusty plasma system consisting of ions obeying superthermal distribution and strongly coupled negatively charged dust. We have used reductive perturbation method and derived the Kordeweg-de Vries-Burgers (KdV-Burgers) equation. The behavior of the shock waves in the plasma has been investigated.
Keywords: Shock, Soliton, Coupling, Superthermal ions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19051401 Study of Real Gas Behavior in a Single-Stage Gas Gun
Authors: A. Moradi, S. Khodadadiyan
Abstract:
In this paper, one-dimensional analysis of flow in a single-stage gas gun is conducted. The compressible inviscid flow equations are numerically solved by the second-order Roe TVD method, by using moving boundaries. For investigation of real gas effect the Noble-Able equation is applied. The numerical results are compared with the experimental data to validate the numerical scheme. The results show that with using the Noble-Able equation, the muzzle velocity decreases.Keywords: Gas gun, Roe, projectile, muzzle velocity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316