Search results for: Association Rule Mining.
160 Relevance Feedback within CBIR Systems
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.
Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342159 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy
Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao
Abstract:
As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.Keywords: Coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250158 Are Adolescent Girls More Depressive than Adolescent Boys in Turkey?
Authors: Hatice Odacı
Abstract:
Depression is a serious mental health problem that affects people of all ages, including children and adolescents. Studies showed that female gender is one of the risk factors may influence the development of depression in adolescents. However, some of the studies from Turkey suggested that gender does not lead to any significant difference in the youth depression level. Therefore, the presented study investigated whether girls differ from boys in respect of depression. The association between genders and test scores for the adolescents in a population of primary and secondary school students was also evaluated. The study was consisting of 254 adolescents (122 boys and 132 girls) with a mean age of 13.86±1.43 (Mean±SD) ranging from 12-16 years. Psychological assessment was performed using Children-s Depression Inventory (CDI). Chi-square and Student-s t-test statistics were employed to analyze the data. The mean of the CDI scores of the girls were higher than boys- CDI scores (t = -4.580, p = 0.001). Higher ratio appeared for the girls when they compared with boy group-s depression levels using a CDI cut-off point of 19 (p = 0.001, Odds Ratio = 2,603). The findings of the present study suggested that adolescent girls have high level of depression than adolescent boys aged between 12-16 years in Turkey. Although some studies reported that there is no any differences depression level between adolescent boys and girls in Turkey, result of the present study showed that adolescent girls have high level of depression than adolescent boys in Turkey.Keywords: Depression, Adolescent, Turkey, Female Gender, Male Gender.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937157 Sociology Perspective on Emotional Maltreatment: Retrospective Case Study in a Japanese Elementary School
Authors: N. Fujisaka
Abstract:
This sociological case study analyzes a sequence of student maltreatment in an elementary school in Japan, based on narratives from former students. Among various forms of student maltreatment, emotional maltreatment has received less attention. One reason for this is that emotional maltreatment is often considered part of education and is difficult to capture in surveys. To discuss the challenge of recognizing emotional maltreatment, it is necessary to consider the social background in which student maltreatment occurs. Therefore, from the perspective of the sociology of education, this study aims to clarify the process through which emotional maltreatment was embraced by students within a Japanese classroom. The research employs retrospective narrative data collected through interviews and autoethnography. The research results imply a pattern of emotional maltreatment that is challenging to differentiate from education. The finding is analyzed and discussed in conjunction with the cycle of violence theory and the deschooling theory. The cycle of violence theory explains how violence in a specific relationship can be tolerated. The deschooling theory provides a sociological explanation for how emotional maltreatment can be overlooked in society. Analyzing the case in association with these two theories highlights the characteristics of teachers’ behaviors that rationalize maltreatment as education and hinder students from escaping emotional maltreatment. This study deepens our understanding of the causes of student maltreatment and provides a perspective for future qualitative and quantitative research.
Keywords: Emotional maltreatment, education, student maltreatment, Japan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126156 Efficiency in Urban Governance towards Sustainability and Competitiveness of City : A Case Study of Kuala Lumpur
Authors: Hamzah Jusoh, Azmizam Abdul Rashid
Abstract:
Malaysia has successfully applied economic planning to guide the development of the country from an economy of agriculture and mining to a largely industrialised one. Now, with its sights set on attaining the economic level of a fully developed nation by 2020, the planning system must be made even more efficient and focused. It must ensure that every investment made in the country, contribute towards creating the desirable objective of a strong, modern, internationally competitive, technologically advanced, post-industrial economy. Cities in Malaysia must also be fully aware of the enormous competition it faces in a region with rapidly expanding and modernising economies, all contending for the same pool of potential international investments. Efficiency of urban governance is also fundamental issue in development characterized by sustainability, subsidiarity, equity, transparency and accountability, civic engagement and citizenship, and security. As described above, city competitiveness is harnessed through 'city marketing and city management'. High technology and high skilled industries, together with finance, transportation, tourism, business, information and professional services shopping and other commercial activities, are the principal components of the nation-s economy, which must be developed to a level well beyond where it is now. In this respect, Kuala Lumpur being the premier city must play the leading role.Keywords: Economic planning, sustainability, efficiency, urban governance and city competitiveness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239155 Spreading Japan's National Image through China during the Era of Mass Tourism: The Japan National Tourism Organization’s Use of Sina Weibo
Authors: Abigail Qian Zhou
Abstract:
Since China has entered an era of mass tourism, there has been a fundamental change in the way Chinese people approach and perceive the image of other countries. With the advent of the new media era, social networking sites such as Sina Weibo have become a tool for many foreign governmental organizations to spread and promote their national image. Among them, the Japan National Tourism Organization (JNTO) was one of the first foreign official tourism agencies to register with Sina Weibo and actively implement communication activities. Due to historical and political reasons, cognition of Japan's national image by the Chinese has always been complicated and contradictory. However, since 2015, China has become the largest source of tourists visiting Japan. This clearly indicates that the broadening of Japan's national image in China has been effective and has value worthy of reference in promoting a positive Chinese perception of Japan and encouraging Japanese tourism. Within this context and using the method of content analysis in media studies through content mining software, this study analyzed how JNTO’s Sina Weibo accounts have constructed and spread Japan's national image. This study also summarized the characteristics of its content and form, and finally revealed the strategy of JNTO in building its international image. The findings of this study not only add a tourism-based perspective to traditional national image communications research, but also provide some reference for the effective international dissemination of national image in the future.Keywords: National image, tourism, international communication, Japan, China.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994154 Canada Deuterium Uranium Updated Fire Probabilistic Risk Assessment Model for Canadian Nuclear Plants
Authors: Hossam Shalabi, George Hadjisophocleous
Abstract:
The Canadian Nuclear Power Plants (NPPs) use some portions of NUREG/CR-6850 in carrying out Fire Probabilistic Risk Assessment (PRA). An assessment for the applicability of NUREG/CR-6850 to CANDU reactors was performed and a CANDU Fire PRA was introduced. There are 19 operating CANDU reactors in Canada at five sites (Bruce A, Bruce B, Darlington, Pickering and Point Lepreau). A fire load density survey was done for all Fire Safe Shutdown Analysis (FSSA) fire zones in all CANDU sites in Canada. National Fire Protection Association (NFPA) Standard 557 proposes that a fire load survey must be conducted by either the weighing method or the inventory method or a combination of both. The combination method results in the most accurate values for fire loads. An updated CANDU Fire PRA model is demonstrated in this paper that includes the fuel survey in all Canadian CANDU stations. A qualitative screening step for the CANDU fire PRA is illustrated in this paper to include any fire events that can damage any part of the emergency power supply in addition to FSSA cables.
Keywords: Fire safety, CANDU, nuclear, fuel densities, FDS, qualitative analysis, fire probabilistic risk assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741153 Object Identification with Color, Texture, and Object-Correlation in CBIR System
Authors: Awais Adnan, Muhammad Nawaz, Sajid Anwar, Tamleek Ali, Muhammad Ali
Abstract:
Needs of an efficient information retrieval in recent years in increased more then ever because of the frequent use of digital information in our life. We see a lot of work in the area of textual information but in multimedia information, we cannot find much progress. In text based information, new technology of data mining and data marts are now in working that were started from the basic concept of database some where in 1960. In image search and especially in image identification, computerized system at very initial stages. Even in the area of image search we cannot see much progress as in the case of text based search techniques. One main reason for this is the wide spread roots of image search where many area like artificial intelligence, statistics, image processing, pattern recognition play their role. Even human psychology and perception and cultural diversity also have their share for the design of a good and efficient image recognition and retrieval system. A new object based search technique is presented in this paper where object in the image are identified on the basis of their geometrical shapes and other features like color and texture where object-co-relation augments this search process. To be more focused on objects identification, simple images are selected for the work to reduce the role of segmentation in overall process however same technique can also be applied for other images.Keywords: Object correlation, Geometrical shape, Color, texture, features, contents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028152 Quality of Life of the Beneficiaries of the Government’s Bolsa Família Program: A Case Study in Mateiros/TO/Brazil
Authors: Mary L. G. S. Senna, Afonso R. Aquino, Veruska C. Dutra, Carlos H. C. Tolentino
Abstract:
The quality of life index, despite elucidating many discussions, the conceptual subjectivity of the term does not show precision, and consequently, many researchers seek to develop methods aiming to measure this concept, bringing it to a more concrete approach. In this study, the quality of life index method was used to analyze the population of Mateiros, Tocantins, Brazil for quality of life. After data collection, it was compared the quality of life index between the population and the group of beneficiaries of the Brazilian government assistance program Bolsa Família (Family Allowance). Some of the people interviewed receive financial aid from the federal government program Bolsa Família (22%). Comparisons were made among the final score of the quality of life index of the Mateiros population and the following factors: Gender, age, education, those working or not with tourism and those who receive or do not receive the Bolsa Família. It was observed that only the factor, Bolsa Família (p-score 0.0138), shows an association with quality of life improvement, noticing that those who have financial aid had a higher quality of life improvement than the rest of the population. It was concluded that, government assistance has shown a decisive element on the enhancement of Mateiros population quality of life, indicating that similar actions should be maintained.Keywords: Quality of life index, government aid to families, sustainable tourism, Bolsa Familia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794151 Dynamic Features Selection for Heart Disease Classification
Authors: Walid MOUDANI
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532150 Perceptions of Educators on the Learners’ Youngest Age for the Introduction of ICTs in Schools: A Personality Theory Approach
Authors: K. E. Oyetade, S. D. Eyono Obono
Abstract:
Age ratings are very helpful in providing parents with relevant information for the purchase and use of digital technologies by the children; this is why the non-definition of age ratings for the use of ICTs by children in schools is a major concern; and this problem serves as a motivation for this study whose aim is to examine the factors affecting the perceptions of educators on the learners’ youngest age for the introduction of ICTs in schools. This aim is achieved through two types of research objectives: the identification and design of theories and models on age ratings, and the empirical testing of such theories and models in a survey of educators from the Camperdown district of the South African KwaZulu-Natal province. A questionnaire is used for the collection of the data of this survey whose validity and reliability is checked in SPSS prior to its descriptive and correlative quantitative analysis. The main hypothesis supporting this research is the association between the demographics of educators, their personality, and their perceptions on the learners’ youngest age for the introduction of ICTs in schools; as claimed by existing research; except that the present study looks at personality from three dimensions: self-actualized personalities, fully functioning personalities, and healthy personalities. This hypothesis was fully confirmed by the empirical study conducted by this research except for the demographic factor where only the educators’ grade or class was found to be associated with the personality of educators.
Keywords: Age ratings, Educators, E-learning, Personality Theories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842149 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text
Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni
Abstract:
The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.Keywords: Cooccurrence graph, entity relation graph, unstructured text, weighted distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684148 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671147 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948146 Environmental Modeling of Storm Water Channels
Authors: L. Grinis
Abstract:
Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.
Keywords: Baffles, open channel, physical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915145 Comparative Study of Seismic Isolation as Retrofit Method for Historical Constructions
Authors: Carlos H. Cuadra
Abstract:
Seismic isolation can be used as a retrofit method for historical buildings with the advantage that minimum intervention on super-structure is required. However, selection of isolation devices depends on weight and stiffness of upper structure. In this study, two buildings are considered for analyses to evaluate the applicability of this retrofitting methodology. Both buildings are located at Akita prefecture in the north part of Japan. One building is a wooden structure that corresponds to the old council meeting hall of Noshiro city. The second building is a brick masonry structure that was used as house of a foreign mining engineer and it is located at Ani town. Ambient vibration measurements were performed on both buildings to estimate their dynamic characteristics. Then, target period of vibration of isolated systems is selected as 3 seconds is selected to estimate required stiffness of isolation devices. For wooden structure, which is a light construction, it was found that natural rubber isolators in combination with friction bearings are suitable for seismic isolation. In case of masonry building elastomeric isolator can be used for its seismic isolation. Lumped mass systems are used for seismic response analysis and it is verified in both cases that seismic isolation can be used as retrofitting method of historical construction. However, in the case of the light building, most of the weight corresponds to the reinforced concrete slab that is required to install isolation devices.
Keywords: Historical building, finite element method, masonry structure, seismic isolation, wooden structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725144 Measuring the Structural Similarity of Web-based Documents: A Novel Approach
Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian
Abstract:
Most known methods for measuring the structural similarity of document structures are based on, e.g., tag measures, path metrics and tree measures in terms of their DOM-Trees. Other methods measures the similarity in the framework of the well known vector space model. In contrast to these we present a new approach to measuring the structural similarity of web-based documents represented by so called generalized trees which are more general than DOM-Trees which represent only directed rooted trees.We will design a new similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as strings of linear integers, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments to solve a novel and challenging problem: Measuring the structural similarity of generalized trees. More precisely, we first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based documents.
Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557143 Calibration of the Discrete Element Method Using a Large Shear Box
Authors: Corné J. Coetzee, Etienne Horn
Abstract:
One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672142 COVID-19 Pandemic Influence on Toddlers and Preschoolers’ Screen Time
Authors: Juliana da Silva Cardoso, Cláudia Correia, Rita Gomes, Carolina Fraga, Inês Cascais, Sara Monteiro, Beatriz Teixeira, Sandra Ribeiro, Carolina Andrade, Cláudia Oliveira, Diana Gonzaga, Catarina Prior, Inês Vaz Matos
Abstract:
The average daily screen time (ST) has been increasing in children, even at young ages. This seems to be associated with a higher incidence of neurodevelopmental disorders, and as the time of exposure increases, the greater is the functional impact. This study aims to compare the daily ST of toddlers and preschoolers previously and during the COVID-19 pandemic. A questionnaire was applied by telephone to parents/caregivers of children between 1 and 5 years old, followed up at four primary care units belonging to the Group of Primary Health Care Centers of Western Porto, Portugal. A total of 520 children were included: 52.9% male, mean age 39.4 ± 13.9 months. The mean age of first exposure to screens was 13.9 ± 8.0 months, and most of the children were exposed to more than one screen daily. Considering the WHO recommendations, before the COVID-19 pandemic, 385 (74.0%) and 408 (78.5%) children had excessive ST during the week and the weekend, respectively; during the lockdown, these values increased to 495 (95.2%) and 482 (92.7%). Maternal education and both the child's median age and the median age of first exposure to screens had a statistically significant association with excessive ST, with OR 0.2 (p = 0.03, CI 95% 0.07-0.86), OR 1.1 (p = 0.01, 95% CI 1.05-1.14) and OR 0.9 (p = 0.05, 95% CI 0. 87-0.98), respectively. Most children in this sample had a higher than recommended ST, which increased with the onset of the COVID-19 pandemic. These results are worrisome and point to the need for urgent intervention.
Keywords: COVID-19 pandemic, preschoolers, screen time, toddlers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563141 Applying Theory of Inventive Problem Solving to Develop Innovative Solutions: A Case Study
Authors: Y. H. Wang, C. C. Hsieh
Abstract:
Good service design can increase organization revenue and consumer satisfaction while reducing labor and time costs. The problems facing consumers in the original serve model for eyewear and optical industry includes the following issues: 1. Insufficient information on eyewear products 2. Passively dependent on recommendations, insufficient selection 3. Incomplete records on progression of vision conditions 4. Lack of complete customer records. This study investigates the case of Kobayashi Optical, applying the Theory of Inventive Problem Solving (TRIZ) to develop innovative solutions for eyewear and optical industry. Analysis results raise the following conclusions and management implications: In order to provide customers with improved professional information and recommendations, Kobayashi Optical is suggested to establish customer purchasing records. Overall service efficiency can be enhanced by applying data mining techniques to analyze past consumer preferences and purchase histories. Furthermore, Kobayashi Optical should continue to develop a 3D virtual trial service which can allow customers for easy browsing of different frame styles and colors. This 3D virtual trial service will save customer waiting times in during peak service times at stores.Keywords: Theory of inventive problem solving, service design, augmented reality, eyewear and optical industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672140 Physical Exercise Intervention on Hypertension Patients
Authors: Ling-Lih Shen, Feng-Chuan Pan
Abstract:
Chronic diseases prevailed along with economic growth as well as life style changed in recent years in Taiwan. According to the governmental statistics, hypertension related disease is the tenth of death causes with 1,816 died directly from hypertension in 2010. There were more death causes amongst the top ten had been proofed that having strong association with the hypertension, such as heart diseases, cardiovascular diseases, and diabetes. Hypertension or High blood pressure is one of the major indicators for chronic diseases, and was generally perceived as the major causes of mortality. The literature generally suggested that regular physical exercise was helpful to prevent the occurrence or to ease the progress of a hypertension. This paper reported the process and outcomes in detailed of an improvement project of physical exercise intervention specific for hypertension patients. Physical information were measured before and after the project to obtain information such as weight, waistline, cholesterol (HD & LD), blood examination, as well as self-perceived health status. The intervention project involved a six-week exercise program, of which contained three times a week, 30 minutes of tutored physical exercise intervention. The project had achieved several gains in changing the subjects- behavior in terms of many important biophysical indexes. Around 20% of the participants had significantly improved their cholesterols, BMI, and changed unhealthy behaviors. Results from the project were encouraging, and would be good reference for other samples.Keywords: Intervention, biological information, hypertension patients, behavioral changes, chronic disease
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072139 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants
Authors: Malinwo Estone Ayikpa
Abstract:
Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.
Keywords: Distribution system, losses, photovoltaic generation, primal-dual interior point method, reactive power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080138 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.
Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188137 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning
Authors: Angelina A. Tzacheva, Jaishree Ranganathan
Abstract:
Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.Keywords: Actionable pattern discovery, education, emotion, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526136 ZBTB17 Gene rs10927875 Polymorphism in Slovak Patients with Dilated Cardiomyopathy
Authors: I. Boroňová, J. Bernasovská, J. Kmec, E. Petrejčíková
Abstract:
Dilated cardiomyopathy (DCM) is a severe cardiovascular disorder characterized by progressive systolic dysfunction due to cardiac chamber dilatation and inefficient myocardial contractility often leading to chronic heart failure. Recently, a genome-wide association studies (GWASs) on DCM indicate that the ZBTB17 gene rs10927875 single nucleotide polymorphism is associated with DCM. The aim of the study was to identify the distribution of ZBTB17 gene rs10927875 polymorphism in 50 Slovak patients with DCM and 80 healthy control subjects using the Custom Taqman®SNP Genotyping assays. Risk factors detected at baseline in each group included age, sex, body mass index, smoking status, diabetes and blood pressure. The mean age of patients with DCM was 52.9±6.3 years; the mean age of individuals in control group was 50.3±8.9 years. The distribution of investigated genotypes of rs10927875 polymorphism within ZBTB17 gene in the cohort of Slovak patients with DCM was as follows: CC (38.8%), CT (55.1%), TT (6.1%), in controls: CC (43.8%), CT (51.2%), TT (5.0%). The risk allele T was more common among the patients with dilated cardiomyopathy than in normal controls (33.7% versus 30.6%). The differences in genotype or allele frequencies of ZBTB17 gene rs10927875 polymorphism were not statistically significant (p=0.6908; p=0.6098). The results of this study suggest that ZBTB17 gene rs10927875 polymorphism may be a risk factor for susceptibility to DCM in Slovak patients with DCM. Studies of numerous files and additional functional investigations are needed to fully understand the roles of genetic associations.
Keywords: Dilated cardiomyopathy, SNP polymorphism, ZBTB17 gene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141135 Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime
Authors: Hyun-Koo Kim, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.Keywords: Traffic Light Detection, Multi-class Classification, Driving Assistance System, Haar-like Feature, Color SegmentationMethod, Shape Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2780134 Larval Occurrence and Climatic Factors Affecting DHF Incidence in Samui Islands, Thailand
Authors: S. Wongkoon, M. Jaroensutasinee, K. Jaroensutasinee, W. Preechaporn, S. Chumkiew
Abstract:
This study investigated the number of Aedes larvae, the key breeding sites of Aedes sp., and the relationship between climatic factors and the incidence of DHF in Samui Islands. We conducted our questionnaire and larval surveys from randomly selected 105 households in Samui Islands in July-September 2006. Pearson-s correlation coefficient was used to explore the primary association between the DHF incidence and all climatic factors. Multiple stepwise regression technique was then used to fit the statistical model. The results showed that the positive indoor containers were small jars, cement tanks, and plastic tanks. The positive outdoor containers were small jars, cement tanks, plastic tanks, used cans, tires, plastic bottles, discarded objects, pot saucers, plant pots, and areca husks. All Ae. albopictus larval indices (i.e., CI, HI, and BI) were higher than Ae. aegypti larval indices in this area. These larval indices were higher than WHO standard. This indicated a high risk of DHF transmission at Samui Islands. The multiple stepwise regression model was y = –288.80 + 11.024xmean temp. The mean temperature was positively associated with the DHF incidence in this area.Keywords: Dengue vectors, Aedes aegypti, Aedes albopictus, Container Index, House Index, Breteau Index, Aedes indices, Climatic factors, Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759133 The Diet Adherence in Cardiovascular Disease Risk Factors Patients in the North of Iran Based on the Mediterranean Diet Adherence
Authors: Marjan Mahdavi-Roshan, Arsalan Salari, Mahboobeh Gholipour, Moona Naghshbandi
Abstract:
Background and objectives: Before any nutritional intervention, it is necessary to have the prospect of eating habits of people with cardiovascular risk factors. In this study, we assessed the adherence of healthy diet based on Mediterranean dietary pattern and related factors in adults in the north of Iran. Methods: This study was conducted on 550 men and women with cardiovascular risk factors that referred to Heshmat hospital in Rasht, northern Iran. Information was collected by interview and reading medical history and measuring anthropometric indexes. The Mediterranean Diet Adherence Screener was used for assessing dietary adherence, this screener was modified according to religious beliefs and culture of Iran. Results: The mean age of participants was 58±0.38 years. The mean of body mass index was 27±0.01 kg/m2, and the mean of waist circumference was 98±0.2 cm. The mean of dietary adherence was 5.76±0.07. 45% of participants had low adherence, and just 4% had suitable adherence. The mean of dietary adherence in men was significantly higher than women (p=0. 07). Participants in rural area and high educational participants insignificantly had an unsuitable dietary Adherence. There was no significant association between some cardiovascular disease risk factors and dietary adherence. Conclusion: Education to different group about dietary intake correction and using a Mediterranean dietary pattern that is similar to dietary intake in the north of Iran, for controlling cardiovascular disease is necessary.
Keywords: Dietary adherence, Mediterranean dietary pattern, cardiovascular disease, north of Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989132 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems
Authors: Thomas Meier
Abstract:
One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.Keywords: Complex virtual devices, device integration, device interoperability, Internet of Things, smart building platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757131 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups
Authors: Lily Ingsrisawang, Tasanee Nacharoen
Abstract:
The problems arising from unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many researchers have found that the performance of existing classifiers tends to be biased towards the majority class. The k-nearest neighbors’ nonparametric discriminant analysis is a method that was proposed for classifying unbalanced classes with good performance. In this study, the methods of discriminant analysis are of interest in investigating misclassification error rates for classimbalanced data of three diabetes risk groups. The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification of class-imbalanced data of diabetes risk groups. Data from a project maintaining healthy conditions for 599 employees of a government hospital in Bangkok were obtained for the classification problem. The employees were divided into three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data including the variables of diabetes risk group, age, gender, blood glucose, and BMI were analyzed and bootstrapped for 50 and 100 samples, 599 observations per sample, for additional estimation of the misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples showed nonnormality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. Searching the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions of (0.90:0.05:0.05), (0.80: 0.10: 0.10) and (0.70, 0.15, 0.15). The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k=3 or k=4 and the defined prior probabilities of non-risk: risk: diabetic as 0.90: 0.05:0.05 or 0.80:0.10:0.10 gave the smallest error rate of misclassification. The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.Keywords: Bootstrap, diabetes risk groups, error rate, k-nearest neighbors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008