Search results for: learning of categories
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2348

Search results for: learning of categories

1388 Convergence of ICT and Education

Authors: Raju Kumar

Abstract:

Information and communication technology (ICT) has become, within a very short time, one of the basic building blocks of modern society. Many countries now understanding the importance of ICT and mastering the basic skills and concepts of it as part of the core of education. Organizations, experts and practitioners in the education sector increasingly recognizing the importance of ICT in supporting educational improvement and reform. This paper addresses the convergence of ICT and education. When two technologies are converging to each other, together they will generate some great opportunities and challenges. This paper focuses on these issues. In introduction section, it explains the ICT, education, and ICT-enhanced education. In next section it describes need of ICT in education, relationship between ICT skills and education, and stages of teaching learning process. The next two sections describe opportunities and challenges in integrating ICT in education. Finally the concluding section summaries the idea and its usefulness.

Keywords: Education, Information and CommunicationTechnology, Learning, Teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3596
1387 Attribution Theory and Perceived Reliability of Cellphones for Teaching and Learning

Authors: Mayowa A. Sofowora, Seraphim D. Eyono Obono

Abstract:

The use of information and communication technologies such as computers, mobile phones and the Internet is becoming prevalent in today’s world; and it is facilitating access to a vast amount of data, services and applications for the improvement of people’s lives. However, this prevalence of ICTs is hampered by the problem of low income levels in developing countries to the point where people cannot timeously replace or repair their ICT devices when damaged or lost; and this problem serves as a motivation for this study whose aim is to examine the perceptions of teachers on the reliability of cellphones when used for teaching and learning purposes. The research objectives unfolding this aim are of two types: Objectives on the selection and design of theories and models, and objectives on the empirical testing of these theories and models. The first type of objectives is achieved using content analysis in an extensive literature survey: and the second type of objectives is achieved through a survey of high school teachers from the ILembe and UMgungundlovu districts in the KwaZulu-Natal province of South Africa. Data collected from this questionnaire based survey is analysed in SPSS using descriptive statistics and Pearson correlations after checking the reliability and validity of the questionnaires. The main hypothesis driving this study is that there is a relationship between the demographics and the attribution identity of teachers on one hand, and their perceptions on the reliability of cellphones on the other hand, as suggested by existing literature; except that attribution identities are considered in this study under three angles: intention, knowledge and ability, and action. The results of this study confirm that the perceptions of teachers on the reliability of cellphones for teaching and learning are affected by the school location of these teachers, and by their perceptions on learners’ cellphones usage intentions and actual use.

Keywords: Attribution, Cellphones, E-learning, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
1386 Design and Simulation of a New Self-Learning Expert System for Mobile Robot

Authors: Rabi W. Yousif, Mohd Asri Hj Mansor

Abstract:

In this paper, we present a novel technique called Self-Learning Expert System (SLES). Unlike Expert System, where there is a need for an expert to impart experiences and knowledge to create the knowledge base, this technique tries to acquire the experience and knowledge automatically. To display this technique at work, a simulation of a mobile robot navigating through an environment with obstacles is employed using visual basic. The mobile robot will move through this area without colliding with any obstacle and save the path that it took. If the mobile robot has to go through a similar environment again, then it will apply this experience to help it move through quicker without having to check for collision.

Keywords: Expert system, knowledge base, mobile robot, visual basic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
1385 Teacher Trainers’ Motivation in Transformation of Teaching and Learning: The Fun Way Approach

Authors: Malathi Balakrishnan, Gananthan M. Nadarajah, Noraini Abd Rahim, Amy Wong On Mei

Abstract:

The purpose of the study is to investigate the level of intrinsic motivation of trainers after attending a Continuous Professional Development Course (CPD) organized by Institute of Teacher Training Malaysia titled, “Transformation of Teaching and Learning the Fun Way”. This study employed a survey whereby 96 teacher trainers were given Situational Intrinsic Motivational Scale (SIMS) Instruments. Confirmatory factor analysis was carried out to get the validity of this instrument in local setting. Data were analyzed with SPSS for descriptive statistic. Semi- structured interviews were also administrated to collect qualitative data on participants’ experiences after participating in the two-day fun-filled program. The findings showed that the participants’ level of intrinsic motivation showed higher mean than the amotivation. The results revealed that the intrinsic motivation mean is 19.0 followed by Identified regulation with a mean of 17.4, external regulation 9.7 and amotivation 6.9. The interview data also revealed that the participants were motivated after attending this training program. It can be concluded that this program, which was organized by Institute of Teacher Training Malaysia, was able to enhance participants’ level of motivation. Self-Determination Theory (SDT) as a multidimensional approach to motivation was utilized. Therefore, teacher trainers may have more success using the “The fun way approach” in conducting training program in future.

Keywords: Teaching and Learning, Motivation, Teacher Trainer, SDT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
1384 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: T. Aydin, M. F. Alaeddinoglu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatiotemporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newlyformed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: Apriori algorithm, association rules, data mining, spatio-temporal data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
1383 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network

Authors: O. Siriporn, S. Benjawan

Abstract:

This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.

Keywords: Unsupervised, clustering, anomaly, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
1382 Learning of Class Membership Values by Ellipsoidal Decision Regions

Authors: Leehter Yao, Chin-Chin Lin

Abstract:

A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.

Keywords: Ellipsoid, genetic algorithm, decision regions, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
1381 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.

Keywords: Computer vision, human motion analysis, random forest, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31
1380 Enhancing Teaching of Engineering Mathematics

Authors: Tajinder Pal Singh

Abstract:

Teaching of mathematics to engineering students is an open ended problem in education. The main goal of mathematics learning for engineering students is the ability of applying a wide range of mathematical techniques and skills in their engineering classes and later in their professional work. Most of the undergraduate engineering students and faculties feels that no efforts and attempts are made to demonstrate the applicability of various topics of mathematics that are taught thus making mathematics unavoidable for some engineering faculty and their students. The lack of understanding of concepts in engineering mathematics may hinder the understanding of other concepts or even subjects. However, for most undergraduate engineering students, mathematics is one of the most difficult courses in their field of study. Most of the engineering students never understood mathematics or they never liked it because it was too abstract for them and they could never relate to it. A right balance of application and concept based teaching can only fulfill the objectives of teaching mathematics to engineering students. It will surely improve and enhance their problem solving and creative thinking skills. In this paper, some practical (informal) ways of making mathematics-teaching application based for the engineering students is discussed. An attempt is made to understand the present state of teaching mathematics in engineering colleges. The weaknesses and strengths of the current teaching approach are elaborated. Some of the causes of unpopularity of mathematics subject are analyzed and a few pragmatic suggestions have been made. Faculty in mathematics courses should spend more time discussing the applications as well as the conceptual underpinnings rather than focus solely on strategies and techniques to solve problems. They should also introduce more ‘word’ problems as these problems are commonly encountered in engineering courses. Overspecialization in engineering education should not occur at the expense of (or by diluting) mathematics and basic sciences. The role of engineering education is to provide the fundamental (basic) knowledge and to teach the students simple methodology of self-learning and self-development. All these issues would be better addressed if mathematics and engineering faculty join hands together to plan and design the learning experiences for the students who take their classes. When faculties stop competing against each other and start competing against the situation, they will perform better. Without creating any administrative hassles these suggestions can be used by any young inexperienced faculty of mathematics to inspire engineering students to learn engineering mathematics effectively.

Keywords: Application based learning, conceptual learning, engineering mathematics, word problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
1379 Communication Engineering Curriculum (Past, Present and the Future)

Authors: Abdurazzag Ali Aburas, Indira Rustempasic, Indira Muhic, Busra Gheith Yildiz

Abstract:

At present time, competition, unpredictable fluctuations have made communication engineering education in the global sphere really difficult. Confront with new situation in the engineering education sector. Communication engineering education has to be reformed and ready to use more advanced technologies. We realized that one of the general problems of student`s education is that after graduating from their universities, they are not prepared to face the real life challenges and full skilled to work in industry. They are prepared only to think like engineers and professionals but they also need to possess some others non-technical skills. In today-s environment, technical competence alone is not sufficient for career success. Employers want employees (graduate engineers) who have good oral and written communication (soft) skills. It does require for team work, business awareness, organization, management skills, responsibility, initiative, problem solving and IT competency. This proposed curriculum brings interactive, creative, interesting, effective learning methods, which includes online education, virtual labs, practical work, problem-based learning (PBL), and lectures given by industry experts. Giving short assignments, presentations, reports, research papers and projects students can significantly improve their non-technical skills. Also, we noticed the importance of using ICT technologies in engineering education which used by students and teachers, and included that into proposed teaching and learning methods. We added collaborative learning between students through team work which builds theirs skills besides course materials. The prospective on this research that we intent to update communication engineering curriculum in order to get fully constructed engineer students to ready for real industry work.

Keywords: communication engineering, curriculum education, ICT, industry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
1378 Extraction of Significant Phrases from Text

Authors: Yuan J. Lui

Abstract:

Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.

Keywords: classification, keyphrase extraction, machine learning, summarization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
1377 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: Attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
1376 Collaborative Team Work in Higher Education: A Case Study

Authors: Swapna Bhargavi Gantasala

Abstract:

If teamwork is the key to organizational learning, productivity and growth, then, why do some teams succeed in achieving these, while others falter at different stages? Building teams in higher education institutions has been a challenge and an open-ended constructivist approach was considered on an experimental basis for this study to address this challenge. For this research, teams of students from the MBA program were chosen to study the effect of teamwork in learning, the motivation levels among student team members, and the effect of collaboration in achieving team goals. The teams were built on shared vision and goals, cohesion was ensured, positive induction in the form of faculty mentoring was provided for each participating team and the results have been presented with conclusions and suggestions.

Keywords: Collaboration, Leadership, Motivation, Reinforcement Teamwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3021
1375 Bounds on Reliability of Parallel Computer Interconnection Systems

Authors: Ranjan Kumar Dash, Chita Ranjan Tripathy

Abstract:

The evaluation of residual reliability of large sized parallel computer interconnection systems is not practicable with the existing methods. Under such conditions, one must go for approximation techniques which provide the upper bound and lower bound on this reliability. In this context, a new approximation method for providing bounds on residual reliability is proposed here. The proposed method is well supported by two algorithms for simulation purpose. The bounds on residual reliability of three different categories of interconnection topologies are efficiently found by using the proposed method

Keywords: Parallel computer network, reliability, probabilisticgraph, interconnection networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
1374 ECG-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
1373 An Integrated Predictor for Cis-Regulatory Modules

Authors: Darby Tien-Hao Chang, Guan-Yu Shiu, You-Jie Sun

Abstract:

Various cis-regulatory module (CRM) predictors have been proposed in the last decade. Several well-established CRM predictors adopted different categories of prediction strategies, including window clustering, probabilistic modeling and phylogenetic footprinting. Appropriate integration of them has a potential to achieve high quality CRM prediction. This study analyzed four existing CRM predictors (ClusterBuster, MSCAN, CisModule and MultiModule) to seek a predictor combination that delivers a higher accuracy than individual CRM predictors. 465 CRMs across 140 Drosophila melanogaster genes from the RED fly database were used to evaluate the integrated CRM predictor proposed in this study. The results show that four predictor combinations achieved superior performance than the best individual CRM predictor.

Keywords: Cis-regulatory module, transcription factor binding site.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1372 Learning to Order Terms: Supervised Interestingness Measures in Terminology Extraction

Authors: Jérôme Azé, Mathieu Roche, Yves Kodratoff, Michèle Sebag

Abstract:

Term Extraction, a key data preparation step in Text Mining, extracts the terms, i.e. relevant collocation of words, attached to specific concepts (e.g. genetic-algorithms and decisiontrees are terms associated to the concept “Machine Learning" ). In this paper, the task of extracting interesting collocations is achieved through a supervised learning algorithm, exploiting a few collocations manually labelled as interesting/not interesting. From these examples, the ROGER algorithm learns a numerical function, inducing some ranking on the collocations. This ranking is optimized using genetic algorithms, maximizing the trade-off between the false positive and true positive rates (Area Under the ROC curve). This approach uses a particular representation for the word collocations, namely the vector of values corresponding to the standard statistical interestingness measures attached to this collocation. As this representation is general (over corpora and natural languages), generality tests were performed by experimenting the ranking function learned from an English corpus in Biology, onto a French corpus of Curriculum Vitae, and vice versa, showing a good robustness of the approaches compared to the state-of-the-art Support Vector Machine (SVM).

Keywords: Text-mining, Terminology Extraction, Evolutionary algorithm, ROC Curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
1371 Training Undergraduate Engineering Students in Robotics and Automation through Model-Based Design Training: A Case Study at Assumption University of Thailand

Authors: Sajed A. Habib

Abstract:

Problem-based learning (PBL) is a student-centered pedagogy that originated in the medical field and has also been used extensively in other knowledge disciplines with recognized advantages and limitations. PBL has been used in various undergraduate engineering programs with mixed outcomes. The current fourth industrial revolution (digital era or Industry 4.0) has made it essential for many science and engineering students to receive effective training in advanced courses such as industrial automation and robotics. This paper presents a case study at Assumption University of Thailand, where a PBL-like approach was used to teach some aspects of automation and robotics to selected groups of undergraduate engineering students. These students were given some basic level training in automation prior to participating in a subsequent training session in order to solve technical problems with increased complexity. The participating students’ evaluation of the training sessions in terms of learning effectiveness, skills enhancement, and incremental knowledge following the problem-solving session was captured through a follow-up survey consisting of 14 questions and a 5-point scoring system. From the most recent training event, an overall 70% of the respondents indicated that their skill levels were enhanced to a much greater level than they had had before the training, whereas 60.4% of the respondents from the same event indicated that their incremental knowledge following the session was much greater than what they had prior to the training. The instructor-facilitator involved in the training events suggested that this method of learning was more suitable for senior/advanced level students than those at the freshmen level as certain skills to effectively participate in such problem-solving sessions are acquired over a period of time, and not instantly.

Keywords: Automation, industry 4.0, model-based design training, problem-based learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
1370 SolarSPELL Case Study: Pedagogical Quality Indicators to Evaluate Digital Library Resources

Authors: Lorena Alemán de la Garza, Marcela Georgina Gómez-Zermeño

Abstract:

This paper presents the SolarSPELL case study that aims to generate information on the use of indicators that help evaluate the pedagogical quality of a digital library resources. SolarSPELL is a solar-powered digital library with WiFi connectivity. It offers a variety of open educational resources selected for their potential for the digital transformation of educational practices and the achievement of the 2030 Agenda for Sustainable Development, adopted by all United Nations Member States. The case study employed a quantitative methodology and the research instrument was applied to 55 teachers, directors and librarians. The results indicate that it is possible to strengthen the pedagogical quality of open educational resources, through actions focused on improving temporal and technological parameters. They also reveal that users believe that SolarSPELL improves the teaching-learning processes and motivates the teacher to improve his or her development. This study provides valuable information on a tool that supports teaching-learning processes and facilitates connectivity with renewable energies that improves the teacher training in active methodologies for ecosystem learning.

Keywords: Educational innovation, digital library, pedagogical quality, solar energy, teacher training, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
1369 Accessible Business Process Modelling

Authors: D. D. Vaziri, D. DeOliveira

Abstract:

This article concerns with the accessibility of Business process modelling tools (BPMo tools) and business process modelling languages (BPMo languages). Therefore the reader will be introduced to business process management and the authors' motivation behind this inquiry. Afterwards, the paper will reflect problems when applying inaccessible BPMo tools. To illustrate these problems the authors distinguish between two different categories of issues and provide practical examples. Finally the article will present three approaches to improve the accessibility of BPMo tools and BPMo languages.

Keywords: Accessibility, Business Process Management, BPM, Event Process Chains, Modelling Languages

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
1368 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm

Authors: Essam Al Daoud

Abstract:

This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.

Keywords: Least squares, neighbor joining, phylogenetic tree, wild dogpack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
1367 Teaching Method in Situational Crisis Communication Theory: A Literature Review

Authors: Proud Arunrangsiwed

Abstract:

Crisis management strategies could be found in various curriculums, not only in schools of business, but also schools of communication. Young students, such as freshmen and sophomores of undergraduate schools, may not care about learning crisis management strategies. Moreover, crisis management strategies are not a topic art students are familiar with. The current paper discusses a way to adapt entertainment media into a crisis management lesson, and the importance of learning crisis management strategies in the school of animation. Students could learn crisis management strategies by watching movies with content about a crisis and responding to crisis responding. The students should then participate in follow up discussions related to the strategies that were used to address the crisis, as well as their success in solving the crisis.

Keywords: Situational crisis communication theory, crisis response strategies, media effect, unintentional effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1366 The Effect of Realizing Emotional Synchrony with Teachers or Peers on Children’s Linguistic Proficiency: The Case Study of Uji Elementary School

Authors: Reiko Yamamoto

Abstract:

This paper reports on a joint research project in which a researcher in applied linguistics and elementary school teachers in Japan explored new ways to realize emotional synchrony in a classroom in childhood education. The primary purpose of this project was to develop a cross-curriculum of the first language (L1) and second language (L2) based on the concept of plurilingualism. This concept is common in Europe, and can-do statements are used in forming the standard of linguistic proficiency in any language; these are attributed to the action-oriented approach in the Common European Framework of Reference for Languages (CEFR). CEFR has a basic tenet of language education: improving communicative competence. Can-do statements are classified into five categories based on the tenet: reading, writing, listening, speaking/ interaction, and speaking/ speech. The first approach of this research was to specify the linguistic proficiency of the children, who are still developing their L1. Elementary school teachers brainstormed and specified the linguistic proficiency of the children as the competency needed to synchronize with others – teachers or peers – physically and mentally. The teachers formed original can-do statements in language proficiency on the basis of the idea that emotional synchrony leads to understanding others in communication. The research objectives are to determine the effect of language education based on the newly developed curriculum and can-do statements. The participants of the experiment were 72 third-graders in Uji Elementary School, Japan. For the experiment, 17 items were developed from the can-do statements formed by the teachers and divided into the same five categories as those of CEFR. A can-do checklist consisting of the items was created. The experiment consisted of three steps: first, the students evaluated themselves using the can-do checklist at the beginning of the school year. Second, one year of instruction was given to the students in Japanese and English classes (six periods a week). Third, the students evaluated themselves using the same can-do checklist at the end of the school year. The results of statistical analysis showed an enhancement of linguistic proficiency of the students. The average results of the post-check exceeded that of the pre-check in 12 out of the 17 items. Moreover, significant differences were shown in four items, three of which belonged to the same category: speaking/ interaction. It is concluded that children can get to understand others’ minds through physical and emotional synchrony. In particular, emotional synchrony is what teachers should aim at in childhood education.

Keywords: Elementary school education, emotional synchrony, language proficiency, sympathy with others.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
1365 Ensemble Approach for Predicting Student's Academic Performance

Authors: L. A. Muhammad, M. S. Argungu

Abstract:

Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
1364 Estimation of Methane from Hydrocarbon Exploration and Production in India

Authors: A. K. Pathak, K. Ojha

Abstract:

Methane is the second most important greenhouse gas (GHG) after carbon dioxide. Amount of methane emission from energy sector is increasing day by day with various activities. In present work, various sources of methane emission from upstream, middle stream and downstream of oil & gas sectors are identified and categorised as per IPCC-2006 guidelines. Data were collected from various oil & gas sector like (i) exploration & production of oil & gas (ii) supply through pipelines (iii) refinery throughput & production (iv) storage & transportation (v) usage. Methane emission factors for various categories were determined applying Tier-II and Tier-I approach using the collected data. Total methane emission from Indian Oil & Gas sectors was thus estimated for the year 1990 to 2007.

Keywords: Carbon credit, Climate change, Methane emission, Oil & Gas production

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
1363 Software Model for a Computer Based Training for an HVDC Control Desk Simulator

Authors: José R. G. Braga, Joice B. Mendes, Guilherme H. Caponetto, Alexandre C. B. Ramos

Abstract:

With major technological advances and to reduce the cost of training apprentices for real-time critical systems, it was necessary the development of Intelligent Tutoring Systems for training apprentices in these systems. These systems, in general, have interactive features so that the learning is actually more efficient, making the learner more familiar with the mechanism in question. In the home stage of learning, tests are performed to obtain the student's income, a measure on their use. The aim of this paper is to present a framework to model an Intelligent Tutoring Systems using the UML language. The various steps of the analysis are considered the diagrams required to build a general model, whose purpose is to present the different perspectives of its development.

Keywords: Computer based training, Hypermedia, Software modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
1362 Effects of an Educative Model in Socially Responsible Behavior and Other Psychological Variables

Authors: Gracia V. Navarro, Maria V. Gonzalez, Carlos G. Reed

Abstract:

The eudaimonic perspective in philosophy and psychology suggests that a good life is closely related to developing oneself in order to contribute to the well-being and happiness of other people and of the world as a whole. Educational psychology can help to achieve this through the design and validation of educative models. Since 2004, the University of Concepcion and other Chilean universities apply an educative model to train socially responsible professionals, people that in the exercise of their profession contribute to generate equity for the development and assess the impacts of their decisions, opting for those that serve the common good. The main aim is to identify if a relationship exists between achieved learning, attitudes toward social responsibility, self-attribution of socially responsible behavior, value type, professional behavior observed and, participation in a specific model to train socially responsible (SR) professionals. The Achieved Learning and Attitudes Toward Social Responsibility Questionnaire, interview with employers and Values Questionnaire and Self-attribution of SR Behavior Questionnaire is applied to 394 students and graduates, divided into experimental and control groups (trained and not trained under the educative model), in order to identify the professional behavior of the graduates. The results show that students and graduates perceive cognitive, affective and behavioral learning, with significant differences in attitudes toward social responsibility and self-attribution of SR behavior, between experimental and control. There are also differences in employers' perceptions about the professional practice of those who were trained under the model and those who were not. It is concluded that the educative model has an impact on the learning of social responsibility and educates for a full life. It is also concluded that it is necessary to identify mediating variables of the model effect.

Keywords: Educative model, good life, professional social responsibility (SR), values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
1361 Royal Mound “Baygetobe“ from the Burial Ground Shilikty

Authors: Abdesh Toleubayev, Rinat Zhumatayev, Kulzhazira Toleubayeva

Abstract:

Mounds are one of the most valuable sources of information on various aspects of life, household skills, rituals and beliefs of the ancient peoples of Kazakhstan. Moreover, the objects associated with the cult of the burial of the dead are the most informative, and often the only source of knowledge about past eras. The present study is devoted to some results of the excavations carried out on the mound "Baygetobe" of Shilikti burial ground. The purpose of the work is associated with certain categories of grave goods and reading "Fine Text" of Shilikti graves, whose structure is the same for burials of nobles and ordinary graves. The safety of a royal burial mounds, the integrity and completeness of the source are of particular value for studying.

Keywords: Animal style, barrow, Baygetobe, dromos, Shilikty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
1360 A Hybrid Machine Learning System for Stock Market Forecasting

Authors: Rohit Choudhry, Kumkum Garg

Abstract:

In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators of highly correlated stocks, not only the stock to be predicted. The genetic algorithm is used to select the set of most informative input features from among all the technical indicators. The results show that the hybrid GA-SVM system outperforms the stand alone SVM system.

Keywords: Genetic Algorithms, Support Vector Machines, Stock Market Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9317
1359 Usability and Affordances: Examinations of Object-Naming and Object-Task Performance in Haptic Interfaces

Authors: Mia Sorensen

Abstract:

The introduction of haptic elements in a graphic user interfaces are becoming more widespread. Since haptics are being introduced rapidly into computational tools, investigating how these models affect Human-Computer Interaction would help define how to integrate and model new modes of interaction. The interest of this paper is to discuss and investigate the issues surrounding Haptic and Graphic User Interface designs (GUI) as separate systems, as well as understand how these work in tandem. The development of these systems is explored from a psychological perspective, based on how usability is addressed through learning and affordances, defined by J.J. Gibson. Haptic design can be a powerful tool, aiding in intuitive learning. The problems discussed within the text is how can haptic interfaces be integrated within a GUI without the sense of frivolity. Juxtaposing haptics and Graphic user interfaces has issues of motivation; GUI tends to have a performatory process, while Haptic Interfaces use affordances to learn tool use. In a deeper view, it is noted that two modes of perception, foveal and ambient, dictate perception. These two modes were once thought to work in tandem, however it has been discovered that these processes work independently from each other. Foveal modes interpret orientation is space which provide for posture, locomotion, and motor skills with variations of the sensory information, which instructs perceptions of object-task performance. It is contended, here, that object-task performance is a key element in the use of Haptic Interfaces because exploratory learning uses affordances in order to use an object, without meditating an experience cognitively. It is a direct experience that, through iteration, can lead to skill-sets. It is also indicated that object-task performance will not work as efficiently without the use of exploratory or kinesthetic learning practices. Therefore, object-task performance is not as congruently explored in GUI than it is practiced in Haptic interfaces.

Keywords: Affordances, Graphic User Interface, HapticInterfaces, Tool-Use, Object-Naming, Object-Task Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750