Search results for: Process mining
4933 Performance Assessment of Carbon Nano Tube Based Cutting Fluid in Machining Process
Authors: Alluru Gopala Krishna, Thella Babu Rao
Abstract:
In machining, there is always a problem with heat generation and friction produced during the process as they consequently affect tool wear and surface finish. An instant heat transfer mechanism could protect the cutting tool edge and enhance the tool life by cooling the cutting edge of the tool. In the present work, carbon nanotube (CNT) based nano-cutting fluid is proposed for machining a hard-to-cut material. Tool wear and surface roughness are considered for the evaluation of the nano-cutting fluid in turning process. The performance of nanocoolant is assessed against the conventional coolant and dry machining conditions and it is observed that the proposed nanocoolant has produced better performance than the conventional coolant.Keywords: CNT based nanocoolant, turning, tool wear, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17284932 Evaluation of Produced Water Treatment Using Advanced Oxidation Processes and Sodium Ferrate(VI)
Authors: Erica T. R. Mendonça, Caroline M. B. de Araujo, Filho, Osvaldo Chiavone, Sobrinho, Maurício A. da Motta
Abstract:
Oil and gas exploration is an essential activity for modern society, although the supply of its global demand has caused enough damage to the environment, mainly due to produced water generation, which is an effluent associated with the oil and gas produced during oil extraction. It is the aim of this study to evaluate the treatment of produced water, in order to reduce its oils and greases content (OG), by using flotation as a pre-treatment, combined with oxidation for the remaining organic load degradation. Thus, there has been tested Advanced Oxidation Process (AOP) using both Fenton and photo-Fenton reactions, as well as a chemical oxidation treatment using sodium ferrate(VI), Na2[FeO4], as a strong oxidant. All the studies were carried out using real samples of produced water from petroleum industry. The oxidation process using ferrate(VI) ion was studied based on factorial experimental designs. The factorial design was used in order to study how the variables pH, temperature and concentration of Na2[FeO4] influences the O&G levels. For the treatment using ferrate(VI) ion, the results showed that the best operating point is obtained when the temperature is 28 °C, pH 3, and a 2000 mg.L-1 solution of Na2[FeO4] is used. This experiment has achieved a final O&G level of 4.7 mg.L-1, which means 94% percentage removal efficiency of oils and greases. Comparing Fenton and photo-Fenton processes, it was observed that the Fenton reaction did not provide good reduction of O&G (around 20% only). On the other hand, a degradation of approximately 80.5% of oil and grease was obtained after a period of seven hours of treatment using photo-Fenton process, which indicates that the best process combination has occurred between the flotation and the photo-Fenton reaction using solar radiation, with an overall removal efficiency of O&G of approximately 89%.
Keywords: Advanced oxidation process, ferrate(VI) ion, oils and greases removal, produced water treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17944931 Intelligent Temperature Controller for Water-Bath System
Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar
Abstract:
Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.
To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.
It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.
Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55484930 An Overview of the Advice Process and the Scientific Production of the Adviser-Advised Relationship in the Areas of Engineering
Authors: Tales H. J. Moreira, Thiago M. R. Dias, Gray F. Moita
Abstract:
The adviser-advised relationship, in addition to the evident propagation of knowledge, can provide an increase in the scientific production of the advisors. Specifically, in post-graduate programs, in which the advised submit diverse papers in different means of publication, these end up boosting the production of their advisor, since in general the advisors appear as co-authors, responsible for instructing and assisting in the development of the work. Therefore, to visualize the orientation process and the scientific production resulting from this relation is another important way of analyzing the scientific collaboration in the different areas of knowledge. In this work, are used the data of orientations and postgraduate supervisions from the Lattes curricula, from the main advisors who work in the Engineering area, to obtain an overview of the process of orientation of this group, and even, to produce Academic genealogical trees, where it is possible to verify how knowledge has spread in the diverse areas of engineering.Keywords: Academic genealogy, advice, engineering, lattes platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7654929 Experimental Analysis and Optimization of Process Parameters in Plasma Arc Cutting Machine of EN-45A Material Using Taguchi and ANOVA Method
Authors: Sahil Sharma, Mukesh Gupta, Raj Kumar, N. S Bindra
Abstract:
This paper presents an experimental investigation on the optimization and the effect of the cutting parameters on Material Removal Rate (MRR) in Plasma Arc Cutting (PAC) of EN-45A Material using Taguchi L 16 orthogonal array method. Four process variables viz. cutting speed, current, stand-off-distance and plasma gas pressure have been considered for this experimental work. Analysis of variance (ANOVA) has been performed to get the percentage contribution of each process parameter for the response variable i.e. MRR. Based on ANOVA, it has been observed that the cutting speed, current and the plasma gas pressure are the major influencing factors that affect the response variable. Confirmation test based on optimal setting shows the better agreement with the predicted values.Keywords: Analysis of variance, Material removal rate, plasma arc cutting, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12544928 The Investigation of the Possible Connections between Acculturation and the Acquisition of a Second Language on Libyan Teenage Students
Authors: Hamza M. A. Muftah
Abstract:
The study investigates the possible connections between acculturation and the acquisition of a second language on Libyan teenage students in Australia. Specifically, the study examined how various socio-psychological variables influenced English oral proficiency (oral communicative competence and native-like pronunciation) of the participants. In addition, it looked at whether or not SLA affects acculturation towards the target language group. This is achieved by analysing data obtained from semi-structured interviews and oral proficiency interviews. The present study found a definite link between the students’ acculturation process and their oral communicative competence but not native-like pronunciation. The results also provided evidence that SLL process has an impact on integration into the host society as well as the acquisition of a second language culture. Yet, it did not draw a clear conclusion with respect to how such a process affects these aspects.
Keywords: Acculturation, Native-like pronunciation, Oral communicative competence, Second language acquisition, Second language learners.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26824927 Using Pattern Search Methods for Minimizing Clustering Problems
Authors: Parvaneh Shabanzadeh, Malik Hj Abu Hassan, Leong Wah June, Maryam Mohagheghtabar
Abstract:
Clustering is one of an interesting data mining topics that can be applied in many fields. Recently, the problem of cluster analysis is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the cluster analysis problem based on nonsmooth optimization techniques is developed. This optimization problem has a number of characteristics that make it challenging: it has many local minimum, the optimization variables can be either continuous or categorical, and there are no exact analytical derivatives. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges. These methods do not explicitly use derivatives, an important feature that has not been addressed in previous studies. Results of numerical experiments are presented which demonstrate the effectiveness of the proposed method.Keywords: Clustering functions, Non-smooth Optimization, Nonconvex Optimization, Pattern Search Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16414926 Mammogram Image Size Reduction Using 16-8 bit Conversion Technique
Authors: Ayman A. AbuBaker, Rami S.Qahwaji, Musbah J. Aqel, Mohmmad H. Saleh
Abstract:
Two algorithms are proposed to reduce the storage requirements for mammogram images. The input image goes through a shrinking process that converts the 16-bit images to 8-bits by using pixel-depth conversion algorithm followed by enhancement process. The performance of the algorithms is evaluated objectively and subjectively. A 50% reduction in size is obtained with no loss of significant data at the breast region.Keywords: Breast cancer, Image processing, Image reduction, Mammograms, Image enhancement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20354925 Analytic Network Process in Location Selection and Its Application to a Real Life Problem
Authors: Eylem Koç, Hasan Arda Burhan
Abstract:
Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.
Keywords: Analytic Network Process, BOCR, location selection, multi-actor decision making, multi-criteria decision making, real life problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20884924 The Spiral_OWL Model – Towards Spiral Knowledge Engineering
Authors: Hafizullah A. Hashim, Aniza. A
Abstract:
The Spiral development model has been used successfully in many commercial systems and in a good number of defense systems. This is due to the fact that cost-effective incremental commitment of funds, via an analogy of the spiral model to stud poker and also can be used to develop hardware or integrate software, hardware, and systems. To support adaptive, semantic collaboration between domain experts and knowledge engineers, a new knowledge engineering process, called Spiral_OWL is proposed. This model is based on the idea of iterative refinement, annotation and structuring of knowledge base. The Spiral_OWL model is generated base on spiral model and knowledge engineering methodology. A central paradigm for Spiral_OWL model is the concentration on risk-driven determination of knowledge engineering process. The collaboration aspect comes into play during knowledge acquisition and knowledge validation phase. Design rationales for the Spiral_OWL model are to be easy-to-implement, well-organized, and iterative development cycle as an expanding spiral.Keywords: Domain Expert, Knowledge Base, Ontology, Software Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17684923 The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries: A Case Study
Authors: A. M. Qahtani, G. B. Wills, A. M. Gravell
Abstract:
Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time.
Keywords: Customisation Software Products, Global Software Engineering, Local Decision Making, Requirement Engineering, Simulation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18984922 Impovement of a Label Extraction Method for a Risk Search System
Authors: Shigeaki Sakurai, Ryohei Orihara
Abstract:
This paper proposes an improvement method of classification efficiency in a classification model. The model is used in a risk search system and extracts specific labels from articles posted at bulletin board sites. The system can analyze the important discussions composed of the articles. The improvement method introduces ensemble learning methods that use multiple classification models. Also, it introduces expressions related to the specific labels into generation of word vectors. The paper applies the improvement method to articles collected from three bulletin board sites selected by users and verifies the effectiveness of the improvement method.Keywords: Text mining, Risk search system, Corporate reputation, Bulletin board site, Ensemble learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13254921 Prediction the Deformation in Upsetting Process by Neural Network and Finite Element
Authors: H.Mohammadi Majd, M.Jalali Azizpour , Foad Saadi
Abstract:
In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting processKeywords: Back-propagation artificial neural network(BPANN), prediction, upsetting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15524920 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart
Abstract:
Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.Keywords: Data mining, information retrieval system, multi-label, problem transformation, histogram of gradients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13164919 Concept for a Multidisciplinary Design Process–An Application on High Lift Systems
Authors: P. Zamov, H. Spangenberg
Abstract:
Presents a concept for a multidisciplinary process supporting effective task transitions between different technical domains during the architectural design stage. A system configuration challenge is the multifunctional driven increased solution space. As a consequence, more iteration is needed to find a global optimum, i.e. a compromise between involved disciplines without negative impact on development time. Since state of the art standards like ISO 15288 and VDI 2206 do not provide a detailed methodology on multidisciplinary design process, higher uncertainties regarding final specifications arise. This leads to the need of more detailed and standardized concepts or processes which could mitigate risks. The performed work is based on analysis of multidisciplinary interaction, of modeling and simulation techniques. To demonstrate and prove the applicability of the presented concept, it is applied to the design of aircraft high lift systems, in the context of the engineering disciplines kinematics, actuation, monitoring, installation and structure design.Keywords: Systems engineering, multidisciplinary, architectural design, high lift system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23044918 Advanced Information Extraction with n-gram based LSI
Authors: Ahmet Güven, Ö. Özgür Bozkurt, Oya Kalıpsız
Abstract:
Number of documents being created increases at an increasing pace while most of them being in already known topics and little of them introducing new concepts. This fact has started a new era in information retrieval discipline where the requirements have their own specialties. That is digging into topics and concepts and finding out subtopics or relations between topics. Up to now IR researches were interested in retrieving documents about a general topic or clustering documents under generic subjects. However these conventional approaches can-t go deep into content of documents which makes it difficult for people to reach to right documents they were searching. So we need new ways of mining document sets where the critic point is to know much about the contents of the documents. As a solution we are proposing to enhance LSI, one of the proven IR techniques by supporting its vector space with n-gram forms of words. Positive results we have obtained are shown in two different application area of IR domain; querying a document database, clustering documents in the document database.Keywords: Document clustering, Information Extraction, Information Retrieval, LSI, n-gram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18034917 Leaching Characteristics of Upgraded Copper Flotation Tailings
Authors: Mercy M. Ramakokovhu, Henry Kasaini, Richard K.K. Mbaya
Abstract:
The copper flotation tailings from Konkola Copper mine in Nchanga, Zambia were used in the study. The purpose of this study was to determine the leaching characteristics of the tailings material prior and after the physical beneficiation process is employed. The Knelson gravity concentrator (KC-MD3) was used for the beneficiation process. The copper leaching efficiencies and impurity co-extraction percentages in both the upgraded and the raw feed material were determined at different pH levels and temperature. It was observed that the copper extraction increased with an increase in temperature and a decrease in pH levels. In comparison to the raw feed sample, the upgraded sample reported a maximum copper extraction of 69% which was 9%, higher than raw feed % extractions. The impurity carry over was reduced from 18% to 4 % on the upgraded sample. The reduction in impurity co-extraction was as a result of the removal of the reactive gangue elements during the upgrading process, this minimized the number of side reaction occurring during leaching.Keywords: Atmospheric leaching, Copper, Iron, Knelson concentrator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29064916 A Method to Improve Test Process in Federal Enterprise Architecture Framework Using ISTQB Framework
Authors: Hamideh Mahdavifar, Ramin Nassiri, Alireza Bagheri
Abstract:
Enterprise Architecture (EA) is a framework for description, coordination and alignment of all activities across the organization in order to achieve strategic goals using ICT enablers. A number of EA-compatible frameworks have been developed. We, in this paper, mainly focus on Federal Enterprise Architecture Framework (FEAF) since its reference models are plentiful. Among these models we are interested here in its business reference model (BRM). The test process is one important subject of an EA project which is to somewhat overlooked. This lack of attention may cause drawbacks or even failure of an enterprise architecture project. To address this issue we intend to use International Software Testing Qualification Board (ISTQB) framework and standard test suites to present a method to improve EA testing process. The main challenge is how to communicate between the concepts of EA and ISTQB. In this paper, we propose a method for integrating these concepts.
Keywords: Business Reference Model (BRM), Federal Enterprise Architecture (FEA), ISTQB, Test Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19684915 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)
Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi
Abstract:
Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14314914 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: Case-based reasoning, decision tree, stock selection, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17054913 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis
Authors: Kuvshinov, D., Siswanto, A., Zimmerman, W. B.
Abstract:
A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil might also be used as a foodstuff due to its significant nutrition content. The limitations for utilizing the oil as a foodstuff are mainly due to a toxicity of PE. Currently, a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence.
Ozone is considered as a strong oxidative agent. It reacts with PE by attacking the carbon-carbon double bond of PE. This modification of PE molecular structure yields a non toxic ester with high lipid content.
This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is an application for a new microscale plasma unit to ozone production and the technology permits ozone injection to the water-TPA mixture in form of microbubbles.
The efficacy of a heterogeneous process depends on the diffusion coefficient which can be controlled by contact time and interfacial area. The low velocity of rising microbubbles and high surface to volume ratio allow efficient mass transfer to be achieved during the process. Direct injection of ozone is the most efficient way to process with such highly reactive and short lived chemical.
Data on the plasma unit behavior are presented and the influence of gas oscillation technology on the microbubble production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.
Keywords: Microbubble, ozonolysis, synthetic phorbol ester.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23754912 An Intelligent Approach of Rough Set in Knowledge Discovery Databases
Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das
Abstract:
Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23364911 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network
Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard
Abstract:
Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the point specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.
Keywords: Milling process, rotational speed, Artificial Neural Networks, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23324910 Titanium-Aluminum Oxide Coating on Aluminized Steel
Authors: Fuyan Sun, Guang Wang, Xueyuan Nie
Abstract:
In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behavior of the coating material.
Keywords: Corrosion, plasma electrolytic oxidation, thermal property, titanium-aluminum oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35834909 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.
Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9614908 Networked Implementation of Milling Stability Optimization with Bayesian Learning
Authors: C. Ramsauer, J. Karandikar, D. Leitner, T. Schmitz, F. Bleicher
Abstract:
Machining instability, or chatter, can impose an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the TU Wien, Vienna, Austria. The recorded data from a milling test cut were used to classify the cut as stable or unstable based on a frequency analysis. The test cut result was used in a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculated the probability of stability as a function of axial depth of cut and spindle speed based on the test result and recommended parameters for the next test cut. The iterative process between two transatlantic locations was repeated until convergence to a stable optimal process parameter set was achieved.
Keywords: Bayesian learning, instrumented tool holder, machining stability, optimization strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5394907 Purity Monitor Studies in Medium Liquid Argon TPC
Authors: I. Badhrees
Abstract:
This paper is an attempt to describe some of the results that had been found through a journey of study in the field of particle physics. This study consists of two parts, one about the measurement of the cross section of the decay of the Z particle in two electrons, and the other deals with the measurement of the cross section of the multi-photon absorption process using a beam of Laser in the Liquid Argon Time Projection Chamber.
The first part of the paper concerns the results based on the analysis of a data sample containing 8120 ee candidates to reconstruct the mass of the Z particle for each event where each event has an ee pair with PT(e) > 20GeV, and η(e) < 2.5. Monte Carlo templates of the reconstructed Z particle were produced as a function of the Z mass scale. The distribution of the reconstructed Z mass in the data was compared to the Monte Carlo templates, where the total cross section is calculated to be equal to 1432pb.
The second part concerns the Liquid Argon Time Projection Chamber, LAr TPC, the results of the interaction of the UV Laser, Nd-YAG with λ= 266mm, with LAr and through the study of the multi-photon ionization process as a part of the R&D at Bern University. The main result of this study was the cross section of the process of the multi-photon ionization process of the LAr, σe = 1.24±0.10stat±0.30sys.10 -56cm4.
Keywords: ATLAS, CERN, KACST, LArTPC, Particle Physics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17124906 On the use of Ionic Liquids for CO2 Capturing
Authors: Emad Ali, Inas Alnashef, Abdelhamid Ajbar, Mohamed HadjKali, Sarwono Mulyono
Abstract:
In this work, ionic liquids (ILs) for CO2 capturing in typical absorption/stripper process are considered. The use of ionic liquids is considered to be cost-effective because it requires less energy for solvent recovery compared to other conventional processes. A mathematical model is developed for the process based on Peng-Robinson (PR) equation of state (EoS) which is validated with experimental data for various solutions involving CO2. The model is utilized to study the sorbent and energy demand for three types of ILs at specific CO2 capturing rates. The energy demand is manifested by the vapor-liquid equilibrium temperature necessary to remove the captured CO2 from the used solvent in the regeneration step. It is found that higher recovery temperature is required for solvents with higher solubility coefficient. For all ILs, the temperature requirement is less than that required by the typical monoethanolamine (MEA) solvent. The effect of the CO2 loading in the sorbent stream on the process performance is also examined.
Keywords: Ionic liquid, CO2 capturing, CO2 solubility, Vaporliquid equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27134905 Enhancing Predictive Accuracy in Pharmaceutical Sales Through an Ensemble Kernel Gaussian Process Regression Approach
Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf
Abstract:
This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matérn, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matérn, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.
Keywords: Gaussian Process Regression, Ensemble Kernels, Bayesian Optimization, Pharmaceutical Sales Analysis, Time Series Forecasting, Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1114904 A Study on Barreling Behavior during Upsetting Process using Artificial Neural Networks with Levenberg Algorithm
Authors: H.Mohammadi Majd, M.Jalali Azizpour
Abstract:
In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting processKeywords: Back-propagation artificial neural network(BPANN), prediction, upsetting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789