Search results for: Multi-State Flow Network (MSFN)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4844

Search results for: Multi-State Flow Network (MSFN)

3884 Q-Net: A Novel QoS Aware Routing Algorithm for Future Data Networks

Authors: Maassoumeh Javadi Baygi, Abdul Rahman B Ramli, Borhanuddin Mohd Ali, Syamsiah Mashohor

Abstract:

The expectation of network performance from the early days of ARPANET until now has been changed significantly. Every day, new advancement in technological infrastructure opens the doors for better quality of service and accordingly level of perceived quality of network services have been increased over the time. Nowadays for many applications, late information has no value or even may result in financial or catastrophic loss, on the other hand, demands for some level of guarantee in providing and maintaining quality of service are ever increasing. Based on this history, having a QoS aware routing system which is able to provide today's required level of quality of service in the networks and effectively adapt to the future needs, seems as a key requirement for future Internet. In this work we have extended the traditional AntNet routing system to support QoS with multiple metrics such as bandwidth and delay which is named Q-Net. This novel scalable QoS routing system aims to provide different types of services in the network simultaneously. Each type of service can be provided for a period of time in the network and network nodes do not need to have any previous knowledge about it. When a type of quality of service is requested, Q-Net will allocate required resources for the service and will guarantee QoS requirement of the service, based on target objectives.

Keywords: Quality of Service, Routing, Ant Colony Optimization, Ant-based algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
3883 Wireless Control for an Induction Motor

Authors: Benmabrouk. Zaineb, Ben Hamed. Mouna, Lassaad. Sbita

Abstract:

This paper discusses the development of wireless structure control of an induction motor scalar drives. This was realised up on the wireless WiFi networks. This strategy of control is ensured by the use of Wireless ad hoc networks and a virtual network interface based on VNC which is used to make possible to take the remote control of a PC connected on a wireless Ethernet network. Verification of the proposed strategy of control is provided by experimental realistic tests on scalar controlled induction motor drives. The experimental results of the implementations with their analysis are detailed.

Keywords: Digital drives, Induction motor, Remote control, Virtual Network Computing VNC, Wireless Local Area NetworkWiFi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722
3882 Development of an Implicit Physical Influence Upwind Scheme for Cell-Centered Finite Volume Method

Authors: Shidvash Vakilipour, Masoud Mohammadi, Rouzbeh Riazi, Scott Ormiston, Kimia Amiri, Sahar Barati

Abstract:

An essential component of a finite volume method (FVM) is the advection scheme that estimates values on the cell faces based on the calculated values on the nodes or cell centers. The most widely used advection schemes are upwind schemes. These schemes have been developed in FVM on different kinds of structured and unstructured grids. In this research, the physical influence scheme (PIS) is developed for a cell-centered FVM that uses an implicit coupled solver. Results are compared with the exponential differencing scheme (EDS) and the skew upwind differencing scheme (SUDS). Accuracy of these schemes is evaluated for a lid-driven cavity flow at Re = 1000, 3200, and 5000 and a backward-facing step flow at Re = 800. Simulations show considerable differences between the results of EDS scheme with benchmarks, especially for the lid-driven cavity flow at high Reynolds numbers. These differences occur due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results for the backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in the lid-driven cavity flow can be related to its lack of sensitivity to the pressure difference between cell face and upwind points, which is critical for the prediction of such vortex dominant flows.

Keywords: Cell-centered finite volume method, physical influence scheme, exponential differencing scheme, skew upwind differencing scheme, false diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
3881 A Transform-Free HOC Scheme for Incompressible Viscous Flow past a Rotationally Oscillating Circular Cylinder

Authors: Rajendra K. Ray, H. V. R. Mittal

Abstract:

A numerical study is made of laminar, unsteady flow behind a rotationally oscillating circular cylinder using a recently developed higher order compact (HOC) scheme. The stream function vorticity formulation of Navier-Stokes (N-S) equations in cylindrical polar coordinates are considered as the governing equations. The temporal behaviour of vortex formation and relevant streamline patterns of the flow are scrutinized over broad ranges of two externally specified parameters namely dimensionless forced oscillating frequency Sf and dimensionless peak rotation rate αm for the Reynolds-s number Re = 200. Excellent agreements are found both qualitatively and quantitatively with the existing experimental and standard numerical results.

Keywords: HOC, Navier-Stokes, non-uniform polar grids, rotationally oscillating cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
3880 Two Dimensional Simulation of Fluid Flow and Heat Transfer in the Transition Flow Regime using a Lattice Boltzmann Approach

Authors: Mehdi Shamshiri, Mahmud Ashrafizaadeh

Abstract:

The significant effects of the interactions between the system boundaries and the near wall molecules in miniaturized gaseous devices lead to the formation of the Knudsen layer in which the Navier-Stokes-Fourier (NSF) equations fail to predict the correct associated phenomena. In this paper, the well-known lattice Boltzmann method (LBM) is employed to simulate the fluid flow and heat transfer processes in rarefied gaseous micro media. Persuaded by the problematic deficiency of the LBM in capturing the Knudsen layer phenomena, present study tends to concentrate on the effective molecular mean free path concept the main essence of which is to compensate the incapability of this mesoscopic method in dealing with the momentum and energy transport within the above mentioned kinetic boundary layer. The results show qualitative and quantitative accuracy comparable to the solutions of the linearized Boltzmann equation or the DSMC data for the Knudsen numbers of O (1) .

Keywords: Fluid flow and Heat transfer, Knudsen layer, Lattice Boltzmann method (LBM), Micro-scale numerical simulation, Transition regime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
3879 Decision Making under Strict Uncertainty: Case Study in Sewer Network Planning

Authors: Zhen Wu, David Lupien St-Pierre, Georges Abdul-Nour

Abstract:

In decision making under strict uncertainty, decision makers have to choose a decision without any information about the states of nature. The classic criteria of Laplace, Wald, Savage, Hurwicz and Starr are introduced and compared in a case study of sewer network planning. Furthermore, results from different criteria are discussed and analyzed. Moreover, this paper discusses the idea that decision making under strict uncertainty (DMUSU) can be viewed as a two-player game and thus be solved by a solution concept in game theory: Nash equilibrium.

Keywords: Decision criteria, decision making, sewer network planning, strict uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
3878 An Overview of Energy Efficient Routing Protocols for Acoustic Sensor Network

Authors: V. P. Dhivya, R. Arthi

Abstract:

Underwater acoustic network is one of the rapidly growing areas of research and finds different applications for monitoring and collecting various data for environmental studies. The communication among dynamic nodes and high error probability in an acoustic medium forced to maximize energy consumption in Underwater Sensor Networks (USN) than in traditional sensor networks. Developing energy-efficient routing protocol is the fundamental and a curb challenge because all the sensor nodes are powered by batteries, and they cannot be easily replaced in UWSNs. This paper surveys the various recent routing techniques that mainly focus on energy efficiency.

Keywords: Acoustic channels, Energy efficiency, Routing in sensor networks, Underwater Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
3877 Influence of a Pulsatile Electroosmotic Flow on the Dispersivity of a Non-Reactive Solute through a Microcapillary

Authors: Jaime Muñoz, José Arcos, Oscar Bautista Federico Méndez

Abstract:

The influence of a pulsatile electroosmotic flow (PEOF) at the rate of spread, or dispersivity, for a non-reactive solute released in a microcapillary with slippage at the boundary wall (modeled by the Navier-slip condition) is theoretically analyzed. Based on the flow velocity field developed under such conditions, the present study implements an analytical scheme of scaling known as the Theory of Homogenization, in order to obtain a mathematical expression for the dispersivity, valid at a large time scale where the initial transients have vanished and the solute spreads under the Taylor dispersion influence. Our results show the dispersivity is a function of a slip coefficient, the amplitude of the imposed electric field, the Debye length and the angular Reynolds number, highlighting the importance of the latter as an enhancement/detrimental factor on the dispersivity, which allows to promote the PEOF as a strong candidate for chemical species separation at lab-on-a-chip devices.

Keywords: Dispersivity, microcapillary, Navier-slip condition, pulsatile electroosmotic flow, Taylor dispersion, Theory of Homogenization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
3876 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
3875 A Study on Barreling Behavior during Upsetting Process using Artificial Neural Networks with Levenberg Algorithm

Authors: H.Mohammadi Majd, M.Jalali Azizpour

Abstract:

In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
3874 Fuzzy Based Particle Swarm Optimization Routing Technique for Load Balancing in Wireless Sensor Networks

Authors: S. Balaji, E. Golden Julie, M. Rajaram, Y. Harold Robinson

Abstract:

Network lifetime improvement and uncertainty in multiple systems are the issues of wireless sensor network routing. This paper presents fuzzy based particle swarm optimization routing technique to improve the network scalability. Significantly, in the cluster formation procedure, fuzzy based system is used to solve the uncertainty and network balancing. Cluster heads play an important role to reduce the energy consumption using particle swarm optimization algorithm, the cluster head sends its information along data packets to the heads with link. The simulation results show that the presented routing protocol can perform load balancing effectively and reduce the energy consumption of cluster heads.

Keywords: Wireless sensor networks, fuzzy logic, PSO, LEACH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
3873 Influence of Turbulence Model, Grid Resolution and Free-Stream Turbulence Intensity on the Numerical Simulation of the Flow Field around an Inclined Flat Plate

Authors: M. Raciti Castelli, P. Cioppa, E. Benini

Abstract:

The flow field around a flat plate of infinite span has been investigated for several values of the angle of attack. Numerical predictions have been compared to experimental measurements, in order to examine the effect of turbulence model and grid resolution on the resultant aerodynamic forces acting on the plate. Also the influence of the free-stream turbulence intensity, at the entrance of the computational domain, has been investigated. A full campaign of simulations has been conducted for three inclination angles (9°, 15° and 30°), in order to obtain some practical guidelines to be used for the simulation of the flow field around inclined plates and discs.

Keywords: CFD, lift, drag, flat plate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
3872 A Comparative Study of Turbulence Models Performance for Turbulent Flow in a Planar Asymmetric Diffuser

Authors: Samy M. El-Behery, Mofreh H. Hamed

Abstract:

This paper presents a computational study of the separated flow in a planer asymmetric diffuser. The steady RANS equations for turbulent incompressible fluid flow and six turbulence closures are used in the present study. The commercial software code, FLUENT 6.3.26, was used for solving the set of governing equations using various turbulence models. Five of the used turbulence models are available directly in the code while the v2-f turbulence model was implemented via User Defined Scalars (UDS) and User Defined Functions (UDF). A series of computational analysis is performed to assess the performance of turbulence models at different grid density. The results show that the standard k-ω, SST k-ω and v2-f models clearly performed better than other models when an adverse pressure gradient was present. The RSM model shows an acceptable agreement with the velocity and turbulent kinetic energy profiles but it failed to predict the location of separation and attachment points. The standard k-ε and the low-Re k- ε delivered very poor results.

Keywords: Turbulence models, turbulent flow, wall functions, separation, reattachment, diffuser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3768
3871 Parametric Analysis of Effective Factors on the Seismic Rehabilitation of the Foundations by Network Micropile

Authors: Keivan Abdollahi, Alireza Mortezaei

Abstract:

The main objective of seismic rehabilitation in the foundations is decreasing the range of horizontal and vertical vibrations and omitting high frequencies contents under the seismic loading. In this regard, the advantages of micropiles network is utilized. Reduction in vibration range of foundation can be achieved by using high dynamic rigidness module such as deep foundations. In addition, natural frequency of pile and soil system increases in regard to rising of system rigidness. Accordingly, the main strategy is decreasing of horizontal and vertical seismic vibrations of the structure. In this case, considering the impact of foundation, pile and improved soil foundation is a primary concern. Therefore, in this paper, effective factors are studied on the seismic rehabilitation of foundations applying network micropiles in sandy soils with nonlinear reaction.

Keywords: Micropile network, rehabilitation, vibration, seismic load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
3870 Wireless Sensor Networks for Long Distance Pipeline Monitoring

Authors: Augustine C. Azubogu, Victor E. Idigo, Schola U. Nnebe, Obinna S. Oguejiofor, Simon E.

Abstract:

The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are previewed. These are wired sensor networks, RF wireless sensor networks, integrated wired and wireless sensor networks. The reliability of these architectures is discussed. Three reliability factors are used to compare the architectures in terms of network connectivity, continuity of power supply for the network, and the maintainability of the network. The constraints and challenges of wireless sensor networks for monitoring and protecting long distance pipeline infrastructure are discussed.

Keywords: Connectivity, maintainability, reliability, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5139
3869 A Complexity-Based Approach in Image Compression using Neural Networks

Authors: Hadi Veisi, Mansour Jamzad

Abstract:

In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.

Keywords: Adaptive image compression, Image complexity, Multi-layer perceptron neural network, JPEG Standard, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
3868 A Fitted Random Sampling Scheme for Load Distribution in Grid Networks

Authors: O. A. Rahmeh, P. Johnson, S. Lehmann

Abstract:

Grid networks provide the ability to perform higher throughput computing by taking advantage of many networked computer-s resources to solve large-scale computation problems. As the popularity of the Grid networks has increased, there is a need to efficiently distribute the load among the resources accessible on the network. In this paper, we present a stochastic network system that gives a distributed load-balancing scheme by generating almost regular networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node is refers to its free resources, and job assignment and resource discovery processes required for load balancing is accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources accessible on Grid networks.

Keywords: Complex networks, grid networks, load-balancing, random sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
3867 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations

Authors: K. Noah, F.-S. Lien

Abstract:

In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.

Keywords: Compressible lattice Boltzmann metho-, large eddy simulation, turbulent jet flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
3866 The Impact of Size of the Regional Economic Blocs to the Country’s Flows of Trade: Evidence from COMESA, EAC and Tanzania

Authors: Mosses E. Lufuke, Lorna M. Kamau

Abstract:

This paper attempted to assess whether the size of the regional economic bloc has an impact to the flow of trade to a particular country. Two different sized blocs (COMESA and EAC) and one country (Tanzania) have been used as the point of references. Using the results from of the analyses, the paper also was anticipated to establish whether it was rational for Tanzania to withdraw its membership from COMESA (the larger bloc) to join EAC (the small one). Gravity model has been used to estimate the relationship between the variables, from which the bilateral trade flows between Tanzania and the eighteen member countries of the two blocs (COMESA and EAC) was employed for the time between 2000 and 2013. In the model, the dummy variable for regional bloc (bloc) at which the Tanzania trade partner countries belong are also added to the model to understand which trade bloc exhibit higher trade flow with Tanzania. From the findings, it was noted that over the period of study (2000-2013) Tanzania acknowledged more than 257% of trade volume in EAC than in COMESA. Conclusive, it was noted that the flow of trade is explained by many other variables apart from the size of regional bloc; and that the size by itself offer insufficient evidence in causality relationship. The paper therefore remain neutral on such staggered switching decision since more analyses are required to establish the country’s trade flow, especially when if it had been in multiple membership of COMESA and EAC.

Keywords: Economic Bloc, Flow of Trade, Size of Bloc, Switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
3865 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market

Authors: Zahra Hatami, Hesham Ali, David Volkman

Abstract:

Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios was compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.

Keywords: Portfolio management performance, network analysis, centrality measurements, Sharpe ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407
3864 Grid Learning; Computer Grid Joins to e- Learning

Authors: A. Nassiry, A. Kardan

Abstract:

According to development of communications and web-based technologies in recent years, e-Learning has became very important for everyone and is seen as one of most dynamic teaching methods. Grid computing is a pattern for increasing of computing power and storage capacity of a system and is based on hardware and software resources in a network with common purpose. In this article we study grid architecture and describe its different layers. In this way, we will analyze grid layered architecture. Then we will introduce a new suitable architecture for e-Learning which is based on grid network, and for this reason we call it Grid Learning Architecture. Various sections and layers of suggested architecture will be analyzed; especially grid middleware layer that has key role. This layer is heart of grid learning architecture and, in fact, regardless of this layer, e-Learning based on grid architecture will not be feasible.

Keywords: Distributed learning, Grid Learning, Grid network, SCORM standard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
3863 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: Multiclass classification, convolution neural network, OpenCV, Data Augmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
3862 Effect of Inertia on the Fractal Dimension of Particle Line in three-dimensional Turbulent Flows using Kinematic Simulation

Authors: A. Abou El-Azm Aly, F. Nicolleau, T. M. Michelitsch, A. F. Nowakowski

Abstract:

The dispersion of heavy particles line in an isotropic and incompressible three-dimensional turbulent flow has been studied using the Kinematic Simulation techniques to find out the evolution of the line fractal dimension. In this study, the fractal dimension of the line is found for different cases of heavy particles inertia (different Stokes numbers) in the absence of the particle gravity with a comparison with the fractal dimension obtained in the diffusion case of material line at the same Reynolds number. It can be concluded for the dispersion of heavy particles line in turbulent flow that the particle inertia affect the fractal dimension of a line released in a turbulent flow for Stokes numbers 0.02 < St < 2. At the beginning for small times, most of the different cases are not affected by the inertia until a certain time, the particle response time τa, with larger time as the particles inertia increases, the fractal dimension of the line increases owing to the particles becoming more sensitive to the small scales which cause the change in the line shape during its journey.

Keywords: Heavy particles, two-phase flow, Kinematic Simulation, Fractal dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
3861 An Advanced Method for Speech Recognition

Authors: Meysam Mohamad pour, Fardad Farokhi

Abstract:

In this paper in consideration of each available techniques deficiencies for speech recognition, an advanced method is presented that-s able to classify speech signals with the high accuracy (98%) at the minimum time. In the presented method, first, the recorded signal is preprocessed that this section includes denoising with Mels Frequency Cepstral Analysis and feature extraction using discrete wavelet transform (DWT) coefficients; Then these features are fed to Multilayer Perceptron (MLP) network for classification. Finally, after training of neural network effective features are selected with UTA algorithm.

Keywords: Multilayer perceptron (MLP) neural network, Discrete Wavelet Transform (DWT) , Mels Scale Frequency Filter , UTA algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
3860 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
3859 Comparison of Experimental Relationships to Determine Flow Discharge in Meandering Compound Channels Using M5 Decision Tree Model

Authors: Mehdi Kheradmand, Mehdi Azhdary Moghaddam, Abdolreza Zahiri, Khalil Ghorbani

Abstract:

This research compares results of major methods of determining the flow discharge using experimental relationships with results from the M5 decision tree model in meandering compound sections in several laboratory channels. It was found that the M5 decision tree model enjoyed greater accuracy of statistical parameters compared to methods to the said methods. This suggested that the M5 decision tree model has highly improved the calculated accuracy of the flow discharge in meandering compound channels.

Keywords: Stage-discharge relationship, M5 decision tree model, compound section, meandering compound channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228
3858 Effect of Reynolds Number on Flow past a Square Cylinder in Presence of Upstream and Downstream Flat Plate at Small Gap Spacing

Authors: Shams-ul-Islam, Raheela Manzoor, Zhou Chao Ying

Abstract:

A two-dimensional numerical study for flow past a square cylinder in presence of flat plate both at upstream and downstream position is carried out using the single-relaxation-time lattice Boltzmann method for gap spacing 0.5 and 1. We select Reynolds numbers from 80 to 200. The wake structure mechanism within gap spacing and near wake region, vortex structures around and behind the main square cylinder in presence of flat plate are studied and compared with flow pattern around a single square cylinder. The results are obtained in form of vorticity contour, streamlines, power spectra analysis, time trace analysis of drag and lift coefficients. Four different types of flow patterns were observed in both configurations, named as (i) Quasi steady flow (QSF), (ii) steady flow (SF), (iii) shear layer reattachment (SLR), (iv) single bluff body (SBB). It is observed that upstream flat plate plays a vital role in significant drag reduction. On the other hand, rate of suppression of vortex shedding is high for downstream flat plate case at low Reynolds numbers. The reduction in mean drag force and root mean square value of drag force for upstream flat plate case are89.1% and 86.3% at (Re, g) = (80, 0.5d) and (120, 1d) and reduction for downstream flat plate case for mean drag force and root mean square value of drag force are 11.10% and 97.6% obtained at (180, 1d) and (180, 0.5d).

Keywords: Detached flat plates, drag and lift coefficients, Reynolds numbers, square cylinder, Strouhal number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
3857 Modeling of Surface Roughness for Flow over a Complex Vegetated Surface

Authors: Wichai Pattanapol, Sarah J. Wakes, Michael J. Hilton, Katharine J.M. Dickinson

Abstract:

Turbulence modeling of large-scale flow over a vegetated surface is complex. Such problems involve large scale computational domains, while the characteristics of flow near the surface are also involved. In modeling large scale flow, surface roughness including vegetation is generally taken into account by mean of roughness parameters in the modified law of the wall. However, the turbulence structure within the canopy region cannot be captured with this method, another method which applies source/sink terms to model plant drag can be used. These models have been developed and tested intensively but with a simple surface geometry. This paper aims to compare the use of roughness parameter, and additional source/sink terms in modeling the effect of plant drag on wind flow over a complex vegetated surface. The RNG k-ε turbulence model with the non-equilibrium wall function was tested with both cases. In addition, the k-ω turbulence model, which is claimed to be computationally stable, was also investigated with the source/sink terms. All numerical results were compared to the experimental results obtained at the study site Mason Bay, Stewart Island, New Zealand. In the near-surface region, it is found that the results obtained by using the source/sink term are more accurate than those using roughness parameters. The k-ω turbulence model with source/sink term is more appropriate as it is more accurate and more computationally stable than the RNG k-ε turbulence model. At higher region, there is no significant difference amongst the results obtained from all simulations.

Keywords: CFD, canopy flow, surface roughness, turbulence models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
3856 An Efficient Spam Mail Detection by Counter Technique

Authors: Raheleh Kholghi, Soheil Behnam Roudsari, Alireza Nemaney Pour

Abstract:

Spam mails are unwanted mails sent to large number of users. Spam mails not only consume the network resources, but cause security threats as well. This paper proposes an efficient technique to detect, and to prevent spam mail in the sender side rather than the receiver side. This technique is based on a counter set on the sender server. When a mail is transmitted to the server, the mail server checks the number of the recipients based on its counter policy. The counter policy performed by the mail server is based on some pre-defined criteria. When the number of recipients exceeds the counter policy, the mail server discontinues the rest of the process, and sends a failure mail to sender of the mail; otherwise the mail is transmitted through the network. By using this technique, the usage of network resources such as bandwidth, and memory is preserved. The simulation results in real network show that when the counter is set on the sender side, the time required for spam mail detection is 100 times faster than the time the counter is set on the receiver side, and the network resources are preserved largely compared with other anti-spam mail techniques in the receiver side.

Keywords: Anti-spam, Mail server, Sender side, Spam mail

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
3855 A Cognitive Model for Frequency Signal Classification

Authors: Rui Antunes, Fernando V. Coito

Abstract:

This article presents the development of a neural network cognitive model for the classification and detection of different frequency signals. The basic structure of the implemented neural network was inspired on the perception process that humans generally make in order to visually distinguish between high and low frequency signals. It is based on the dynamic neural network concept, with delays. A special two-layer feedforward neural net structure was successfully implemented, trained and validated, to achieve minimum target error. Training confirmed that this neural net structure descents and converges to a human perception classification solution, even when far away from the target.

Keywords: Neural Networks, Signal Classification, Adaptative Filters, Cognitive Neuroscience

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663