Search results for: Distributed intrusion detection system
8891 Artificial Intelligence Techniques applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.Keywords: Computer Aided Detection, mammary tumor, pattern recognition, thalassemia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14258890 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.
Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10108889 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Viktor M. Denisov
Abstract:
A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.Keywords: Guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19488888 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities
Authors: Kung-Jen Tu, Danny Vernatha
Abstract:
To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.Keywords: Sensor, electricity sub-meters, database, energy anomaly detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22858887 A Distributed Cognition Framework to Compare E-Commerce Websites Using Data Envelopment Analysis
Authors: C. lo Storto
Abstract:
This paper presents an approach based on the adoption of a distributed cognition framework and a non parametric multicriteria evaluation methodology (DEA) designed specifically to compare e-commerce websites from the consumer/user viewpoint. In particular, the framework considers a website relative efficiency as a measure of its quality and usability. A website is modelled as a black box capable to provide the consumer/user with a set of functionalities. When the consumer/user interacts with the website to perform a task, he/she is involved in a cognitive activity, sustaining a cognitive cost to search, interpret and process information, and experiencing a sense of satisfaction. The degree of ambiguity and uncertainty he/she perceives and the needed search time determine the effort size – and, henceforth, the cognitive cost amount – he/she has to sustain to perform his/her task. On the contrary, task performing and result achievement induce a sense of gratification, satisfaction and usefulness. In total, 9 variables are measured, classified in a set of 3 website macro-dimensions (user experience, site navigability and structure). The framework is implemented to compare 40 websites of businesses performing electronic commerce in the information technology market. A questionnaire to collect subjective judgements for the websites in the sample was purposely designed and administered to 85 university students enrolled in computer science and information systems engineering undergraduate courses.Keywords: Website, e-commerce, DEA, distributed cognition, evaluation, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17068886 Satellite Sensing for Evaluation of an Irrigation System in Cotton - Wheat Zone
Authors: Sadia Iqbal, Faheem Iqbal, Furqan Iqbal
Abstract:
Efficient utilization of existing water is a pressing need for Pakistan. Due to rising population, reduction in present storage capacity and poor delivery efficiency of 30 to 40% from canal. A study to evaluate an irrigation system in the cotton-wheat zone of Pakistan, after the watercourse lining was conducted. The study is made on the basis of cropping pattern and salinity to evaluate the system. This study employed an index-based approach of using Geographic information system with field data. The satellite images of different years were use to examine the effective area. Several combinations of the ratio of signals received in different spectral bands were used for development of this index. Near Infrared and Thermal IR spectral bands proved to be most effective as this combination helped easy detection of salt affected area and cropping pattern of the study area. Result showed that 9.97% area under salinity in 1992, 9.17% in 2000 and it left 2.29% in year 2005. Similarly in 1992, 45% area is under vegetation it improves to 56% and 65% in 2000 and 2005 respectively. On the basis of these results evaluation is done 30% performance is increase after the watercourse improvement.Keywords: Salinity, remote sensing index, salinity index, cropping pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16798885 Community Detection-based Analysis of the Human Interactome Network
Authors: Razvan Bocu, Sabin Tabirca
Abstract:
The study of proteomics reached unexpected levels of interest, as a direct consequence of its discovered influence over some complex biological phenomena, such as problematic diseases like cancer. This paper presents a new technique that allows for an accurate analysis of the human interactome network. It is basically a two-step analysis process that involves, at first, the detection of each protein-s absolute importance through the betweenness centrality computation. Then, the second step determines the functionallyrelated communities of proteins. For this purpose, we use a community detection technique that is based on the edge betweenness calculation. The new technique was thoroughly tested on real biological data and the results prove some interesting properties of those proteins that are involved in the carcinogenesis process. Apart from its experimental usefulness, the novel technique is also computationally effective in terms of execution times. Based on the analysis- results, some topological features of cancer mutated proteins are presented and a possible optimization solution for cancer drugs design is suggested.Keywords: Betweenness centrality, interactome networks, proteinprotein interactions, protein communities, cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12938884 Development of an Immunoassay Platform for Diagnosis of Acute Kidney Injury
Authors: T. Bovornvirakit, K. Viravaidya
Abstract:
Acute kidney injury (AKI) is a new worldwide public health problem. A diagnosis of this disease using creatinine is still a problem in clinical practice. Therefore, a measurement of biomarkers responsible for AKI has received much attention in the past couple years. Cytokine interleukin-18 (IL-18) was reported as one of the early biomarkers for AKI. The most commonly used method to detect this biomarker is an immunoassay. This study used a planar platform to perform an immunoassay using fluorescence for detection. In this study, anti-IL-18 antibody was immobilized onto a microscope slide using a covalent binding method. Make-up samples were diluted at the concentration between 10 to 1000 pg/ml to create a calibration curve. The precision of the system was determined using a coefficient of variability (CV), which was found to be less than 10%. The performance of this immunoassay system was compared with the measurement from ELISA.Keywords: Acute kidney injury, Acute renal failure, Antibody immobilization, Interleukin-18
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16068883 Trend Analysis of Annual Total Precipitation Data in Konya
Authors: Naci Büyükkaracığan
Abstract:
Hydroclimatic observation values are used in the planning of the project of water resources. Climate variables are the first of the values used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.Keywords: Trend analysis, precipitation, hydroclimatology, Konya, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10108882 Langmuir–Blodgett Films of Polyaniline for Efficient Detection of Uric Acid
Authors: Kashima Arora, Monika Tomar, Vinay Gupta
Abstract:
Langmuir–Blodgett (LB) films of polyaniline (PANI) grown onto ITO coated glass substrates were utilized for the fabrication of Uric acid biosensor for efficient detection of uric acid by immobilizing Uricase via EDC–NHS coupling. The modified electrodes were characterized by atomic force microscopy (AFM). The response characteristics after immobilization of uricase were studied using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The uricase/PANI/ITO/glass bioelectrode studied by CV and EIS techniques revealed detection of uric acid in a wide range of 0.05 mM to 1.0 mM, covering the physiological range in blood. A low Michaelis–Menten constant (Km) of 0.21 mM indicates the higher affinity of immobilized Uricase towards its analyte (uric acid). The fabricated uric acid biosensor based on PANI LB films exhibits excellent sensitivity of 0.21 mA/mM with a response time of 4 s, good reproducibility, long shelf life (8 weeks) and high selectivity.
Keywords: Uric acid; biosensor, PANI, Langmuir Blodgett films deposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21368881 Managing Legal, Consumers and Commerce Risks in Phishing
Authors: Dinna N. M. N., Leau Y. B., Habeeb S. A. H., Yanti A. S.
Abstract:
Phishing scheme is a new emerged security issue of E-Commerce Crime in globalization. In this paper, the legal scaffold of Malaysia, United States and United Kingdom are analyzed and followed by discussion on critical issues that rose due to phishing activities. The result revealed that inadequacy of current legal framework is the main challenge to govern this epidemic. However, lack of awareness among consumers, crisis on merchant-s responsibility and lack of intrusion reports and incentive arrangement contributes to phishing proliferating. Prevention is always better than curb. By the end of this paper, some best practices for consumers and corporations are suggested.Keywords: Phishing, Online Fraud, Business risks, Consumers privacy, Legal Issue, Cyber law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22538880 Enabling Automated Deployment for Cluster Computing in Distributed PC Classrooms
Authors: Shuen-Tai Wang, Ying-Chuan Chen, Hsi-Ya Chang
Abstract:
The rapid improvement of the microprocessor and network has made it possible for the PC cluster to compete with conventional supercomputers. Lots of high throughput type of applications can be satisfied by using the current desktop PCs, especially for those in PC classrooms, and leave the supercomputers for the demands from large scale high performance parallel computations. This paper presents our development on enabling an automated deployment mechanism for cluster computing to utilize the computing power of PCs such as reside in PC classroom. After well deployment, these PCs can be transformed into a pre-configured cluster computing resource immediately without touching the existing education/training environment installed on these PCs. Thus, the training activities will not be affected by this additional activity to harvest idle computing cycles. The time and manpower required to build and manage a computing platform in geographically distributed PC classrooms also can be reduced by this development.
Keywords: PC cluster, automated deployment, cluster computing, PC classroom.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15308879 Variability of Hydrological Modeling of the Blue Nile
Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm
Abstract:
The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.
Keywords: Blue Nile Basin, Climate Change, Hydrological Modeling, Watershed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30738878 Performance Evaluation of Purely Mechanical Wireless In-Mould Sensor for Injection Moulding
Authors: Florian Müller, Christian Kukla, Thomas Lucyshyn, Clemens Holzer
Abstract:
In this paper, the influencing parameters of a novel purely mechanical wireless in-mould injection moulding sensor were investigated. The sensor is capable of detecting the melt front at predefined locations inside the mould. The sensor comprises a movable pin which acts as the sensor element generating structure-borne sound triggered by the passing melt front. Due to the sensor design, melt pressure is the driving force. For pressure level measurement during pin movement a pressure transducer located at the same position as the movable pin. By deriving a mathematical model for the mechanical movement, dominant process parameters could be investigated towards their impact on the melt front detection characteristic. It was found that the sensor is not affected by the investigated parameters enabling it for reliable melt front detection. In addition, it could be proved that the novel sensor is in comparable range to conventional melt front detection sensors.
Keywords: Injection Moulding, In-Mould Sensor, Structure-Borne Sound, Wireless Sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20698877 Distributed Manufacturing (DM) - Smart Units and Collaborative Processes
Authors: Hermann Kuehnle
Abstract:
Applications of the Hausdorff space and its mappings into tangent spaces are outlined, including their fractal dimensions and self-similarities. The paper details this theory set up and further describes virtualizations and atomization of manufacturing processes. It demonstrates novel concurrency principles that will guide manufacturing processes and resources configurations. Moreover, varying levels of details may be produced by up folding and breaking down of newly introduced generic models. This choice of layered generic models for units and systems aspects along specific aspects allows research work in parallel to other disciplines with the same focus on all levels of detail. More credit and easier access are granted to outside disciplines for enriching manufacturing grounds. Specific mappings and the layers give hints for chances for interdisciplinary outcomes and may highlight more details for interoperability standards, as already worked on the international level. The new rules are described, which require additional properties concerning all involved entities for defining distributed decision cycles, again on the base of self-similarity. All properties are further detailed and assigned to a maturity scale, eventually displaying the smartness maturity of a total shopfloor or a factory. The paper contributes to the intensive ongoing discussion in the field of intelligent distributed manufacturing and promotes solid concepts for implementations of Cyber Physical Systems and the Internet of Things into manufacturing industry, like industry 4.0, as discussed in German-speaking countries.
Keywords: Autonomous unit, Networkability, Smart manufacturing unit, Virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20748876 Automated Service Scene Detection for Badminton Game Analysis Using CHLAC and MRA
Authors: Fumito Yoshikawa, Takumi Kobayashi, Kenji Watanabe, Nobuyuki Otsu
Abstract:
Extracting in-play scenes in sport videos is essential for quantitative analysis and effective video browsing of the sport activities. Game analysis of badminton as of the other racket sports requires detecting the start and end of each rally period in an automated manner. This paper describes an automatic serve scene detection method employing cubic higher-order local auto-correlation (CHLAC) and multiple regression analysis (MRA). CHLAC can extract features of postures and motions of multiple persons without segmenting and tracking each person by virtue of shift-invariance and additivity, and necessitate no prior knowledge. Then, the specific scenes, such as serve, are detected by linear regression (MRA) from the CHLAC features. To demonstrate the effectiveness of our method, the experiment was conducted on video sequences of five badminton matches captured by a single ceiling camera. The averaged precision and recall rates for the serve scene detection were 95.1% and 96.3%, respectively.Keywords: Badminton, CHLAC, MRA, Video-based motiondetection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27148875 Financial Statement Fraud: The Need for a Paradigm Shift to Forensic Accounting
Authors: Ifedapo Francis Awolowo
Abstract:
The unrelenting series of embarrassing audit failures should stimulate a paradigm shift in accounting. And in this age of information revolution, there is need for a constant improvement on the products or services one offers to the market in order to be relevant. This study explores the perceptions of external auditors, forensic accountants and accounting academics on whether a paradigm shift to forensic accounting can reduce financial statement frauds. Through Neo-empiricism/inductive analytical approach, findings reveal that a paradigm shift to forensic accounting might be the right step in the right direction in order to increase the chances of fraud prevention and detection in the financial statement. This research has implication on accounting education on the need to incorporate forensic accounting into present day accounting curriculum. Accounting professional bodies, accounting standard setters and accounting firms all have roles to play in incorporating forensic accounting education into accounting curriculum. Particularly, there is need to alter the ISA 240 to make the prevention and detection of frauds the responsibilities of bot those charged with the management and governance of companies and statutory auditors.Keywords: Financial statement fraud, forensic accounting, fraud prevention and detection, auditing, audit expectation gap, corporate governance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36438874 Scheduling Multiple Workflow Using De-De Dodging Algorithm and PBD Algorithm in Cloud: Detailed Study
Authors: B. Arun Kumar, T. Ravichandran
Abstract:
Workflow scheduling is an important part of cloud computing and based on different criteria it decides cost, execution time, and performances. A cloud workflow system is a platform service facilitating automation of distributed applications based on new cloud infrastructure. An aspect which differentiates cloud workflow system from others is market-oriented business model, an innovation which challenges conventional workflow scheduling strategies. Time and Cost optimization algorithm for scheduling Hybrid Clouds (TCHC) algorithm decides which resource should be chartered from public providers is combined with a new De-De algorithm considering that every instance of single and multiple workflows work without deadlocks. To offset this, two new concepts - De-De Dodging Algorithm and Priority Based Decisive Algorithm - combine with conventional deadlock avoidance issues by proposing one algorithm that maximizes active (not just allocated) resource use and reduces Makespan.Keywords: Workflow Scheduling, cloud workflow, TCHC algorithm, De-De Dodging Algorithm, Priority Based Decisive Algorithm (PBD), Makespan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27968873 Geoelectical Resistivity Method in Aquifer Characterization at Opic Estate, Isheri-Osun River Basin, South Western Nigeria
Authors: B. R. Faleye, M. I. Titocan, M. P. Ibitola
Abstract:
Investigation was carried out at Opic Estate in Isheri-Osun River Basin environment using Electrical Resistivity method to study saltwater intrusion into a fresh water aquifer system from the proximal estuarine water body. The investigation is aimed at aquifer characterisation using electrical resistivity method in order to provide the depth to which fresh water fit for both domestic and industrial consumption. The 2D Electrical Resistivity and Vertical Electrical Resistivity techniques alongside Laboratory analysis of water samples obtained from the boreholes were adopted. Three traverses were investigated using Wenner and Pole-Dipole array with multi-electrode system consisting of 84 electrodes and a spread of 581 m, 664 m and 830 m were attained on the traverses. The main lithologies represented in the study area are Sand, Clay and Clayey Sand of which Sand constitutes the aquifer in the study area. Vertical Electrical Sounding data obtained at different lateral distance on the traverses have indicated that the water in the aquifer in the subsurface is brackish. Brackish water is represented by lowelectrical resistivity value signature while fresh water is characterized by relatively high electrical resistivity and in some regionfresh water is existent at depth greater than 200 m. Results of laboratory analysis of samples showed that the pH, Salinity, Total Dissolved Solid and Conductivity indicated existence of water with poor quality, indicating that salinity, TDS and Conductivity is higher in the Northern part of the study area. The 2D electrical resistivity and Vertical Electrical Sounding methods indicate that fresh water region is at ≥200m depth. Aquifers not fit for domestic use in the study area occur downwards to about 200 m in depth. In conclusion, it is recommended that wells should be sunkbeyond 220 m for the possible procurement of portable fresh water.
Keywords: 2D electrical resistivity, aquifer, brackish water, lithologies, freshwater, opic estate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9338872 Automatic Detection of Syllable Repetition in Read Speech for Objective Assessment of Stuttered Disfluencies
Authors: K. M. Ravikumar, Balakrishna Reddy, R. Rajagopal, H. C. Nagaraj
Abstract:
Automatic detection of syllable repetition is one of the important parameter in assessing the stuttered speech objectively. The existing method which uses artificial neural network (ANN) requires high levels of agreement as prerequisite before attempting to train and test ANNs to separate fluent and nonfluent. We propose automatic detection method for syllable repetition in read speech for objective assessment of stuttered disfluencies which uses a novel approach and has four stages comprising of segmentation, feature extraction, score matching and decision logic. Feature extraction is implemented using well know Mel frequency Cepstra coefficient (MFCC). Score matching is done using Dynamic Time Warping (DTW) between the syllables. The Decision logic is implemented by Perceptron based on the score given by score matching. Although many methods are available for segmentation, in this paper it is done manually. Here the assessment by human judges on the read speech of 10 adults who stutter are described using corresponding method and the result was 83%.Keywords: Assessment, DTW, MFCC, Objective, Perceptron, Stuttering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28128871 A Fault Tolerant Token-based Algorithm for Group Mutual Exclusion in Distributed Systems
Authors: Abhishek Swaroop, Awadhesh Kumar Singh
Abstract:
The group mutual exclusion (GME) problem is a variant of the mutual exclusion problem. In the present paper a token-based group mutual exclusion algorithm, capable of handling transient faults, is proposed. The algorithm uses the concept of dynamic request sets. A time out mechanism is used to detect the token loss; also, a distributed scheme is used to regenerate the token. The worst case message complexity of the algorithm is n+1. The maximum concurrency and forum switch complexity of the algorithm are n and min (n, m) respectively, where n is the number of processes and m is the number of groups. The algorithm also satisfies another desirable property called smooth admission. The scheme can also be adapted to handle the extended group mutual exclusion problem.Keywords: Dynamic request sets, Fault tolerance, Smoothadmission, Transient faults.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16738870 Performance Analysis of a Combined Ordered Successive and Interference Cancellation Using Zero-Forcing Detection over Rayleigh Fading Channels in MIMO Systems
Authors: Jamal R. Elbergali
Abstract:
Multiple Input Multiple Output (MIMO) systems are wireless systems with multiple antenna elements at both ends of the link. Wireless communication systems demand high data rate and spectral efficiency with increased reliability. MIMO systems have been popular techniques to achieve these goals because increased data rate is possible through spatial multiplexing scheme and diversity. Spatial Multiplexing (SM) is used to achieve higher possible throughput than diversity. In this paper, we propose a Zero- Forcing (ZF) detection using a combination of Ordered Successive Interference Cancellation (OSIC) and Zero Forcing using Interference Cancellation (ZF-IC). The proposed method used an OSIC based on Signal to Noise Ratio (SNR) ordering to get the estimation of last symbol, then the estimated last symbol is considered to be an input to the ZF-IC. We analyze the Bit Error Rate (BER) performance of the proposed MIMO system over Rayleigh Fading Channel, using Binary Phase Shift Keying (BPSK) modulation scheme. The results show better performance than the previous methods.Keywords: SNR, BER, BPSK, MIMO, Modulation, Zero forcing (ZF), OSIC, ZF-IC, Spatial Multiplexing (SM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16958869 H∞ State Estimation of Neural Networks with Discrete and Distributed Delays
Abstract:
In this paper, together with some improved Lyapunov-Krasovskii functional and effective mathematical techniques, several sufficient conditions are derived to guarantee the error system is globally asymptotically stable with H∞ performance, in which both the time-delay and its time variation can be fully considered. In order to get less conservative results of the state estimation condition, zero equalities and reciprocally convex approach are employed. The estimator gain matrix can be obtained in terms of the solution to linear matrix inequalities. A numerical example is provided to illustrate the usefulness and effectiveness of the obtained results.
Keywords: H∞ performance, Neural networks, State estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14468868 A Novel Approach towards Segmentation of Breast Tumors from Screening Mammograms for Efficient Decision Support System
Authors: M.Suganthi, M.Madheswaran
Abstract:
This paper presents a novel approach to finding a priori interesting regions in mammograms. In order to delineate those regions of interest (ROI-s) in mammograms, which appear to be prominent, a topographic representation called the iso-level contour map consisting of iso-level contours at multiple intensity levels and region segmentation based-thresholding have been proposed. The simulation results indicate that the computed boundary gives the detection rate of 99.5% accuracy.Keywords: Breast Cancer, Mammogram, and Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14818867 Dynamic Background Updating for Lightweight Moving Object Detection
Authors: Kelemewerk Destalem, Jungjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo
Abstract:
Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a simple moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.Keywords: Background subtraction, background updating, real time and lightweight algorithm, temporal difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25658866 Detection of Diabetic Symptoms in Retina Images Using Analog Algorithms
Authors: Daniela Matei, Radu Matei
Abstract:
In this paper a class of analog algorithms based on the concept of Cellular Neural Network (CNN) is applied in some processing operations of some important medical images, namely retina images, for detecting various symptoms connected with diabetic retinopathy. Some specific processing tasks like morphological operations, linear filtering and thresholding are proposed, the corresponding template values are given and simulations on real retina images are provided.Keywords: Diabetic retinopathy, pathology detection, cellular neural networks, analog algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20808865 Signal Reconstruction Using Cepstrum of Higher Order Statistics
Authors: Adnan Al-Smadi, Mahmoud Smadi
Abstract:
This paper presents an algorithm for reconstructing phase and magnitude responses of the impulse response when only the output data are available. The system is driven by a zero-mean independent identically distributed (i.i.d) non-Gaussian sequence that is not observed. The additive noise is assumed to be Gaussian. This is an important and essential problem in many practical applications of various science and engineering areas such as biomedical, seismic, and speech processing signals. The method is based on evaluating the bicepstrum of the third-order statistics of the observed output data. Simulations results are presented that demonstrate the performance of this method.
Keywords: Cepstrum, bicepstrum, third order statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20378864 Predicting the Three Major Dimensions of the Learner-s Emotions from Brainwaves
Authors: Alicia Heraz, Claude Frasson
Abstract:
This paper investigates how the use of machine learning techniques can significantly predict the three major dimensions of learner-s emotions (pleasure, arousal and dominance) from brainwaves. This study has adopted an experimentation in which participants were exposed to a set of pictures from the International Affective Picture System (IAPS) while their electrical brain activity was recorded with an electroencephalogram (EEG). The pictures were already rated in a previous study via the affective rating system Self-Assessment Manikin (SAM) to assess the three dimensions of pleasure, arousal, and dominance. For each picture, we took the mean of these values for all subjects used in this previous study and associated them to the recorded brainwaves of the participants in our study. Correlation and regression analyses confirmed the hypothesis that brainwave measures could significantly predict emotional dimensions. This can be very useful in the case of impassive, taciturn or disabled learners. Standard classification techniques were used to assess the reliability of the automatic detection of learners- three major dimensions from the brainwaves. We discuss the results and the pertinence of such a method to assess learner-s emotions and integrate it into a brainwavesensing Intelligent Tutoring System.
Keywords: Algorithms, brainwaves, emotional dimensions, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22058863 Skew Detection Technique for Binary Document Images based on Hough Transform
Authors: Manjunath Aradhya V N, Hemantha Kumar G, Shivakumara P
Abstract:
Document image processing has become an increasingly important technology in the automation of office documentation tasks. During document scanning, skew is inevitably introduced into the incoming document image. Since the algorithm for layout analysis and character recognition are generally very sensitive to the page skew. Hence, skew detection and correction in document images are the critical steps before layout analysis. In this paper, a novel skew detection method is presented for binary document images. The method considered the some selected characters of the text which may be subjected to thinning and Hough transform to estimate skew angle accurately. Several experiments have been conducted on various types of documents such as documents containing English Documents, Journals, Text-Book, Different Languages and Document with different fonts, Documents with different resolutions, to reveal the robustness of the proposed method. The experimental results revealed that the proposed method is accurate compared to the results of well-known existing methods.Keywords: Optical Character Recognition, Skew angle, Thinning, Hough transform, Document processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20958862 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
This paper aims to provide an interpretation of artificial neural networks (ANNs) and explore some of its implications. The interpretation views ANNs as a memory which encodes instances of experience. An experiment explores the behavior of encoding and retrieval of instances from memory. A localised representation ANN is created that allows control over encoding and retrieved memory sample size and is experimented with using the MNIST digits dataset. The relationship between input familiarity, conflict within retrieved samples, and error rates is described and demonstrated to be an effective driver for memory encoding. Results indicate that selective encoding and retrieval samples that allow detection of memory conflicts produce optimal performance, and that error rates are normally distributed with input familiarity and conflict. By using input familiarity and sample consistency to guide memory encoding, the number of encoding trials on the dataset were reduced to 18.33% of the training data while maintaining good recognition performance on the test data.
Keywords: Artificial Neural Networks, ANNs, representation, memory, conflict monitoring, confidence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507