Search results for: CRRM algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1501

Search results for: CRRM algorithms

541 An Automatic Feature Extraction Technique for 2D Punch Shapes

Authors: Awais Ahmad Khan, Emad Abouel Nasr, H. M. A. Hussein, Abdulrahman Al-Ahmari

Abstract:

Sheet-metal parts have been widely applied in electronics, communication and mechanical industries in recent decades; but the advancement in sheet-metal part design and manufacturing is still behind in comparison with the increasing importance of sheet-metal parts in modern industry. This paper presents a methodology for automatic extraction of some common 2D internal sheet metal features. The features used in this study are taken from Unipunch ™ catalogue. The extraction process starts with the data extraction from STEP file using an object oriented approach and with the application of suitable algorithms and rules, all features contained in the catalogue are automatically extracted. Since the extracted features include geometry and engineering information, they will be effective for downstream application such as feature rebuilding and process planning.

Keywords: Feature Extraction, Internal Features, Punch Shapes, Sheet metal, STEP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
540 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data

Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez

Abstract:

Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.

Keywords: Feature Selection Stability, Spectral data, Data visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
539 Trust Management for an Authentication System in Ubiquitous Computing

Authors: Malika Yaici, Anis Oussayah, Mohamed Ahmed Takerrabet

Abstract:

Security of context-aware ubiquitous systems is paramount, and authentication plays an important aspect in cloud computing and ubiquitous computing. Trust management has been identified as vital component for establishing and maintaining successful relational exchanges between trading partners in cloud and ubiquitous systems. Establishing trust is the way to build good relationship with both client and provider which positive activates will increase trust level, otherwise destroy trust immediately. We propose a new context-aware authentication system using a trust management system between client and server, and between servers, a trust which induces partnership, thus to a close cooperation between these servers. We defined the rules (algorithms), as well as the formulas to manage and calculate the trusting degrees depending on context, in order to uniquely authenticate a user, thus a single sign-on, and to provide him better services.

Keywords: Ubiquitous computing, context-awareness, authentication, trust management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
538 A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem

Authors: Mohsen Ziaee

Abstract:

In this paper, a mixed integer linear programming (MILP) model is presented to solve the flexible job shop scheduling problem (FJSP). This problem is one of the hardest combinatorial problems. The objective considered is the minimization of the makespan. The computational results of the proposed MILP model were compared with those of the best known mathematical model in the literature in terms of the computational time. The results show that our model has better performance with respect to all the considered performance measures including relative percentage deviation (RPD) value, number of constraints, and total number of variables. By this improved mathematical model, larger FJS problems can be optimally solved in reasonable time, and therefore, the model would be a better tool for the performance evaluation of the approximation algorithms developed for the problem.

Keywords: Scheduling, flexible job shop, makespan, mixed integer linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
537 Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance

Authors: Sepehr Aslani, Homayoun Mahdavi-Nasab

Abstract:

Automated motion detection and tracking is a challenging task in traffic surveillance. In this paper, a system is developed to gather useful information from stationary cameras for detecting moving objects in digital videos. The moving detection and tracking system is developed based on optical flow estimation together with application and combination of various relevant computer vision and image processing techniques to enhance the process. To remove noises, median filter is used and the unwanted objects are removed by applying thresholding algorithms in morphological operations. Also the object type restrictions are set using blob analysis. The results show that the proposed system successfully detects and tracks moving objects in urban videos.

Keywords: Optical flow estimation, moving object detection, tracking, morphological operation, blob analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10156
536 Authentication of Physical Objects with Dot-Based 2D Code

Authors: Michał Glet, Kamil Kaczyński

Abstract:

Counterfeit goods and documents are a global problem, which needs more and more sophisticated methods of resolving it. Existing techniques using watermarking or embedding symbols on objects are not suitable for all use cases. To address those special needs, we created complete system allowing authentication of paper documents and physical objects with flat surface. Objects are marked using orientation independent and resistant to camera noise 2D graphic codes, named DotAuth. Based on the identifier stored in 2D code, the system is able to perform basic authentication and allows to conduct more sophisticated analysis methods, e.g., relying on augmented reality and physical properties of the object. In this paper, we present the complete architecture, algorithms and applications of the proposed system. Results of the features comparison of the proposed solution and other products are presented as well, pointing to the existence of many advantages that increase usability and efficiency in the means of protecting physical objects.

Keywords: Authentication, paper documents, security, anti-forgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635
535 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
534 Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm

Authors: T. Vigneswari, M. A. Maluk Mohamed

Abstract:

Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Heterogeneous Earliest First Min- Min Artificial Bee Colony (CHMM-ABC), to optimally schedule jobs for the available resources. The proposed model utilizes a novel Heterogeneous Earliest Finish Time (HEFT) Heuristic Algorithm along with Min-Min algorithm to identify the initial food source. Simulation results show the performance improvement of the proposed algorithm over other swarm intelligence techniques.

Keywords: Grid Computing, Grid Scheduling, Heterogeneous Earliest Finish Time (HEFT), Artificial Bee colony (ABC) Algorithm, Resource Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3104
533 A Blockchain-Based Privacy-Preserving Physical Delivery System

Authors: Shahin Zanbaghi, Saeed Samet

Abstract:

The internet has transformed the way we shop. Previously, most of our purchases came in the form of shopping trips to a nearby store. Now, it is as easy as clicking a mouse. We have to be constantly vigilant about our personal information. In this work, our proposed approach is to encrypt the information printed on the physical packages, which include personal information in plain text using a symmetric encryption algorithm; then, we store that encrypted information into a Blockchain network rather than storing them in companies or corporations centralized databases. We present, implement and assess a blockchain-based system using Ethereum smart contracts. We present detailed algorithms that explain the details of our smart contract. We present the security, cost and performance analysis of the proposed method. Our work indicates that the proposed solution is economically attainable and provides data integrity, security, transparency and data traceability.

Keywords: Blockchain, Ethereum, smart contract, commit-reveal scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 471
532 Vision Based Robotic Interception in Industrial Manipulation Tasks

Authors: Ahmet Denker, Tuğrul Adıgüzel

Abstract:

In this paper, a solution is presented for a robotic manipulation problem in industrial settings. The problem is sensing objects on a conveyor belt, identifying the target, planning and tracking an interception trajectory between end effector and the target. Such a problem could be formulated as combining object recognition, tracking and interception. For this purpose, we integrated a vision system to the manipulation system and employed tracking algorithms. The control approach is implemented on a real industrial manipulation setting, which consists of a conveyor belt, objects moving on it, a robotic manipulator, and a visual sensor above the conveyor. The trjectory for robotic interception at a rendezvous point on the conveyor belt is analytically calculated. Test results show that tracking the raget along this trajectory results in interception and grabbing of the target object.

Keywords: robotics, robot vision, rendezvous planning, self organizingmaps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
531 Near Perfect Reconstruction Quadrature Mirror Filter

Authors: A. Kumar, G. K. Singh, R. S. Anand

Abstract:

In this paper, various algorithms for designing quadrature mirror filter are reviewed and a new algorithm is presented for the design of near perfect reconstruction quadrature mirror filter bank. In the proposed algorithm, objective function is formulated using the perfect reconstruction condition or magnitude response condition of prototype filter at frequency (ω = 0.5π) in ideal condition. The cutoff frequency is iteratively changed to adjust the filters coefficients using optimization algorithm. The performances of the proposed algorithm are evaluated in term of computation time, reconstruction error and number of iterations. The design examples illustrate that the proposed algorithm is superior in term of peak reconstruction error, computation time, and number of iterations. The proposed algorithm is simple, easy to implement, and linear in nature.

Keywords: Aliasing cancellations filter bank, Filter banks, quadrature mirror filter (QMF), subband coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
530 Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software

Authors: M. Khal, Ab. Algouti, A. Algouti

Abstract:

Water erosion is the major cause of the erosion that shapes the earth's surface. Modeling water erosion requires the use of software and GIS programs, commercial or closed source. The very high prices for commercial GIS licenses, motivates users and researchers to find open source software as relevant and applicable as the proprietary GIS. The objective of this study is the modeling of water erosion and the hydrogeological and morphophysical characterization of the Oued M'Goun watershed (southern flank of the Central High Atlas) developed by free programs of GIS. The very pertinent results are obtained by executing tasks and algorithms in a simple and easy way. Thus, the various geoscientific and geostatistical analyzes of a digital elevation model (SRTM 30 m resolution) and their combination with the treatments and interpretation of satellite imagery information allowed us to characterize the region studied and to map the area most vulnerable to water erosion.

Keywords: Central High-Atlas, hydrogeology, M’Goun watershed, OpenGIS, water erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
529 UAV Position Estimation Using Remote Radio Head With Adaptive Power Control

Authors: Hyeon-Cheol Lee

Abstract:

The adaptive power control of Code Division Multiple Access (CDMA) communications using Remote Radio Head (RRH) between multiple Unmanned Aerial Vehicles (UAVs) with a link-budget based Signal-to-Interference Ratio (SIR) estimate is applied to four inner loop power control algorithms. It is concluded that Base Station (BS) can calculate not only UAV distance using linearity between speed and Consecutive Transmit-Power-Control Ratio (CTR) of Adaptive Step-size Closed Loop Power Control (ASCLPC), Consecutive TPC Ratio Step-size Closed Loop Power Control (CS-CLPC), Fixed Step-size Power Control (FSPC), but also UAV position with Received Signal Strength Indicator (RSSI) ratio of RRHs.

Keywords: speed estimation, adaptive power control, link-budget, SIR, multi-bit quantizer, RRH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
528 Particle Swarm Optimization with Reduction for Global Optimization Problems

Authors: Michiharu Maeda, Shinya Tsuda

Abstract:

This paper presents an algorithm of particle swarm optimization with reduction for global optimization problems. Particle swarm optimization is an algorithm which refers to the collective motion such as birds or fishes, and a multi-point search algorithm which finds a best solution using multiple particles. Particle swarm optimization is so flexible that it can adapt to a number of optimization problems. When an objective function has a lot of local minimums complicatedly, the particle may fall into a local minimum. For avoiding the local minimum, a number of particles are initially prepared and their positions are updated by particle swarm optimization. Particles sequentially reduce to reach a predetermined number of them grounded in evaluation value and particle swarm optimization continues until the termination condition is met. In order to show the effectiveness of the proposed algorithm, we examine the minimum by using test functions compared to existing algorithms. Furthermore the influence of best value on the initial number of particles for our algorithm is discussed.

Keywords: Particle swarm optimization, Global optimization, Metaheuristics, Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
527 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: WSN, random deployment, clustering, isolated nodes, network lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
526 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data

Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala

Abstract:

Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.

Keywords: Databases, data mining, multi-agent, spatial datamart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
525 Delay and Packet Loss Analysis for Handovers between MANETs and NEMO Networks

Authors: Jirawat Thaenthong, Steven Gordon

Abstract:

MANEMO is the integration of Network Mobility (NEMO) and Mobile Ad Hoc Network (MANET). A MANEMO node has an interface to both a MANET and NEMO network, and therefore should choose the optimal interface for packet delivery, however such a handover between interfaces will introduce packet loss. We define the steps necessary for a MANEMO handover, using Mobile IP and NEMO to signal the new binding to the relevant Home Agent(s). The handover steps aim to minimize the packet loss by avoiding waiting for Duplicate Address Detection and Neighbour Unreachability Detection. We present expressions for handover delay and packet loss, and then use numerical examples to evaluate a MANEMO handover. The analysis shows how the packet loss depends on level of nesting within NEMO, the delay between Home Agents and the load on the MANET, and hence can be used to developing optimal MANEMO handover algorithms.

Keywords: IP mobility, handover, MANET, network mobility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
524 Region-Based Image Fusion with Artificial Neural Network

Authors: Shuo-Li Hsu, Peng-Wei Gau, I-Lin Wu, Jyh-Horng Jeng

Abstract:

For most image fusion algorithms separate relationship by pixels in the image and treat them more or less independently. In addition, they have to be adjusted different parameters in different time or weather. In this paper, we propose a region–based image fusion which combines aspects of feature and pixel-level fusion method to replace only by pixel. The basic idea is to segment far infrared image only and to add information of each region from segmented image to visual image respectively. Then we determine different fused parameters according different region. At last, we adopt artificial neural network to deal with the problems of different time or weather, because the relationship between fused parameters and image features are nonlinear. It render the fused parameters can be produce automatically according different states. The experimental results present the method we proposed indeed have good adaptive capacity with automatic determined fused parameters. And the architecture can be used for lots of applications.

Keywords: Image fusion, Region-based fusion, Segmentation, Neural network, Multi-sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
523 Customer Segmentation in Foreign Trade based on Clustering Algorithms Case Study: Trade Promotion Organization of Iran

Authors: Samira Malekmohammadi Golsefid, Mehdi Ghazanfari, Somayeh Alizadeh

Abstract:

The goal of this paper is to segment the countries based on the value of export from Iran during 14 years ending at 2005. To measure the dissimilarity among export baskets of different countries, we define Dissimilarity Export Basket (DEB) function and use this distance function in K-means algorithm. The DEB function is defined based on the concepts of the association rules and the value of export group-commodities. In this paper, clustering quality function and clusters intraclass inertia are defined to, respectively, calculate the optimum number of clusters and to compare the functionality of DEB versus Euclidean distance. We have also study the effects of importance weight in DEB function to improve clustering quality. Lastly when segmentation is completed, a designated RFM model is used to analyze the relative profitability of each cluster.

Keywords: Customers segmentation, Customer relationship management, Clustering, Data Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
522 Performance Evaluation of Wavelet Based Coders on Brain MRI Volumetric Medical Datasets for Storage and Wireless Transmission

Authors: D. Dhouib, A. Naït-Ali, C. Olivier, M. S. Naceur

Abstract:

In this paper, we evaluate the performance of some wavelet based coding algorithms such as 3D QT-L, 3D SPIHT and JPEG2K. In the first step we achieve an objective comparison between three coders, namely 3D SPIHT, 3D QT-L and JPEG2K. For this purpose, eight MRI head scan test sets of 256 x 256x124 voxels have been used. Results show superior performance of 3D SPIHT algorithm, whereas 3D QT-L outperforms JPEG2K. The second step consists of evaluating the robustness of 3D SPIHT and JPEG2K coding algorithm over wireless transmission. Compressed dataset images are then transmitted over AWGN wireless channel or over Rayleigh wireless channel. Results show the superiority of JPEG2K over these two models. In fact, it has been deduced that JPEG2K is more robust regarding coding errors. Thus we may conclude the necessity of using corrector codes in order to protect the transmitted medical information.

Keywords: Image coding, medical imaging, wavelet basedcoder, wireless transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
521 Service-Oriented Architecture for Object- Centric Information Fusion

Authors: Jeffrey A. Dunne, Kevin Ligozio

Abstract:

In many applications there is a broad variety of information relevant to a focal “object" of interest, and the fusion of such heterogeneous data types is desirable for classification and categorization. While these various data types can sometimes be treated as orthogonal (such as the hull number, superstructure color, and speed of an oil tanker), there are instances where the inference and the correlation between quantities can provide improved fusion capabilities (such as the height, weight, and gender of a person). A service-oriented architecture has been designed and prototyped to support the fusion of information for such “object-centric" situations. It is modular, scalable, and flexible, and designed to support new data sources, fusion algorithms, and computational resources without affecting existing services. The architecture is designed to simplify the incorporation of legacy systems, support exact and probabilistic entity disambiguation, recognize and utilize multiple types of uncertainties, and minimize network bandwidth requirements.

Keywords: Data fusion, distributed computing, service-oriented architecture, SOA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
520 Location Detection of Vehicular Accident Using Global Navigation Satellite Systems/Inertial Measurement Units Navigator

Authors: Neda Navidi, Rene Jr. Landry

Abstract:

Vehicle tracking and accident recognizing are considered by many industries like insurance and vehicle rental companies. The main goal of this paper is to detect the location of a car accident by combining different methods. The methods, which are considered in this paper, are Global Navigation Satellite Systems/Inertial Measurement Units (GNSS/IMU)-based navigation and vehicle accident detection algorithms. They are expressed by a set of raw measurements, which are obtained from a designed integrator black box using GNSS and inertial sensors. Another concern of this paper is the definition of accident detection algorithm based on its jerk to identify the position of that accident. In fact, the results convinced us that, even in GNSS blockage areas, the position of the accident could be detected by GNSS/INS integration with 50% improvement compared to GNSS stand alone.

Keywords: Driving behavior, integration, IMU, GNSS, monitoring, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
519 Signed Approach for Mining Web Content Outliers

Authors: G. Poonkuzhali, K.Thiagarajan, K.Sarukesi, G.V.Uma

Abstract:

The emergence of the Internet has brewed the revolution of information storage and retrieval. As most of the data in the web is unstructured, and contains a mix of text, video, audio etc, there is a need to mine information to cater to the specific needs of the users without loss of important hidden information. Thus developing user friendly and automated tools for providing relevant information quickly becomes a major challenge in web mining research. Most of the existing web mining algorithms have concentrated on finding frequent patterns while neglecting the less frequent ones that are likely to contain outlying data such as noise, irrelevant and redundant data. This paper mainly focuses on Signed approach and full word matching on the organized domain dictionary for mining web content outliers. This Signed approach gives the relevant web documents as well as outlying web documents. As the dictionary is organized based on the number of characters in a word, searching and retrieval of documents takes less time and less space.

Keywords: Outliers, Relevant document, , Signed Approach, Web content mining, Web documents..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
518 Computer Vision Applied to Flower, Fruit and Vegetable Processing

Authors: Luis Gracia, Carlos Perez-Vidal, Carlos Gracia

Abstract:

This paper presents the theoretical background and the real implementation of an automated computer system to introduce machine vision in flower, fruit and vegetable processing for recollection, cutting, packaging, classification, or fumigation tasks. The considerations and implementation issues presented in this work can be applied to a wide range of varieties of flowers, fruits and vegetables, although some of them are especially relevant due to the great amount of units that are manipulated and processed each year over the world. The computer vision algorithms developed in this work are shown in detail, and can be easily extended to other applications. A special attention is given to the electromagnetic compatibility in order to avoid noisy images. Furthermore, real experimentation has been carried out in order to validate the developed application. In particular, the tests show that the method has good robustness and high success percentage in the object characterization.

Keywords: Image processing, Vision system, Automation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3323
517 Skyline Extraction using a Multistage Edge Filtering

Authors: Byung-Ju Kim, Jong-Jin Shin, Hwa-Jin Nam, Jin-Soo Kim

Abstract:

Skyline extraction in mountainous images can be used for navigation of vehicles or UAV(unmanned air vehicles), but it is very hard to extract skyline shape because of clutters like clouds, sea lines and field borders in images. We developed the edge-based skyline extraction algorithm using a proposed multistage edge filtering (MEF) technique. In this method, characteristics of clutters in the image are first defined and then the lines classified as clutters are eliminated by stages using the proposed MEF technique. After this processing, we select the last line using skyline measures among the remained lines. This proposed algorithm is robust under severe environments with clutters and has even good performance for infrared sensor images with a low resolution. We tested this proposed algorithm for images obtained in the field by an infrared camera and confirmed that the proposed algorithm produced a better performance and faster processing time than conventional algorithms.

Keywords: MEF, mountainous image, navigation, skyline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
516 Edge Detection Using Multi-Agent System: Evaluation on Synthetic and Medical MR Images

Authors: A. Nachour, L. Ouzizi, Y. Aoura

Abstract:

Recent developments on multi-agent system have brought a new research field on image processing. Several algorithms are used simultaneously and improved in deferent applications while new methods are investigated. This paper presents a new automatic method for edge detection using several agents and many different actions. The proposed multi-agent system is based on parallel agents that locally perceive their environment, that is to say, pixels and additional environmental information. This environment is built using Vector Field Convolution that attract free agent to the edges. Problems of partial, hidden or edges linking are solved with the cooperation between agents. The presented method was implemented and evaluated using several examples on different synthetic and medical images. The obtained experimental results suggest that this approach confirm the efficiency and accuracy of detected edge.

Keywords: Edge detection, medical MR images, multi-agent systems, vector field convolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
515 A Program for Solving problems in Inorganic Chemistry based on Knowledge Base

Authors: Nhon Van Do, Nam Hoai Le, Vien Chan Luong

Abstract:

The Model for Knowledge Base of Computational Objects (KBCO model) has been successfully applied to represent the knowledge of human like Plane Geometry, Physical, Calculus. However, the original model cannot easyly apply in inorganic chemistry field because of the knowledge specific problems. So, the aim of this article is to introduce how we extend the Computional Object (Com-Object) in KBCO model, kinds of fact, problems model, and inference algorithms to develop a program for solving problems in inorganic chemistry. Our purpose is to develop the application that can help students in their study inorganic chemistry at schools. This application was built successful by using Maple, C# and WPF technology. It can solve automatically problems and give human readable solution agree with those writting by students and teachers.

Keywords: artificial intelligence, automated problem solving, knowledge base system, knowledge representation, reasoning strategy, education software/educational applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
514 Queen-bee Algorithm for Energy Efficient Clusters in Wireless Sensor Networks

Authors: Z. Pooranian, A. Barati, A. Movaghar

Abstract:

Wireless sensor networks include small nodes which have sensing ability; calculation and connection extend themselves everywhere soon. Such networks have source limitation on connection, calculation and energy consumption. So, since the nodes have limited energy in sensor networks, the optimized energy consumption in these networks is of more importance and has created many challenges. The previous works have shown that by organizing the network nodes in a number of clusters, the energy consumption could be reduced considerably. So the lifetime of the network would be increased. In this paper, we used the Queen-bee algorithm to create energy efficient clusters in wireless sensor networks. The Queen-bee (QB) is similar to nature in that the queen-bee plays a major role in reproduction process. The QB is simulated with J-sim simulator. The results of the simulation showed that the clustering by the QB algorithm decreases the energy consumption with regard to the other existing algorithms and increases the lifetime of the network.

Keywords: Queen-bee, sensor network, energy efficient, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
513 A Decision Boundary based Discretization Technique using Resampling

Authors: Taimur Qureshi, Djamel A Zighed

Abstract:

Many supervised induction algorithms require discrete data, even while real data often comes in a discrete and continuous formats. Quality discretization of continuous attributes is an important problem that has effects on speed, accuracy and understandability of the induction models. Usually, discretization and other types of statistical processes are applied to subsets of the population as the entire population is practically inaccessible. For this reason we argue that the discretization performed on a sample of the population is only an estimate of the entire population. Most of the existing discretization methods, partition the attribute range into two or several intervals using a single or a set of cut points. In this paper, we introduce a technique by using resampling (such as bootstrap) to generate a set of candidate discretization points and thus, improving the discretization quality by providing a better estimation towards the entire population. Thus, the goal of this paper is to observe whether the resampling technique can lead to better discretization points, which opens up a new paradigm to construction of soft decision trees.

Keywords: Bootstrap, discretization, resampling, soft decision trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
512 Underneath Vehicle Inspection Using Fuzzy Logic, Subsumption and OpenCV Library

Authors: Hazim Abdulsada

Abstract:

The inspection of underneath vehicle system has been given significant attention by governments after the threat of terrorism become more prevalent. New technologies such as mobile robots and computer vision are led to have more secure environment. This paper proposed that a mobile robot like Aria robot can be used to search and inspect the bombs under parking a lot vehicle. This robot is using fuzzy logic and subsumption algorithms to control the robot that movies underneath the vehicle. An OpenCV library and laser Hokuyo are added to Aria robot to complete the experiment for under vehicle inspection. This experiment was conducted at the indoor environment to demonstrate the efficiency of our methods to search objects and control the robot movements under vehicle. We got excellent results not only by controlling the robot movement but also inspecting object by the robot camera at same time. This success allowed us to know the requirement to construct a new cost effective robot with more functionality.

Keywords: Fuzzy logic, Mobile robots, OpenCV, Subsumption, Under vehicle inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812