Search results for: computation fluid dynamics.
1031 An Optimal Feature Subset Selection for Leaf Analysis
Authors: N. Valliammal, S.N. Geethalakshmi
Abstract:
This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22421030 Expected Present Value of Losses in the Computation of Optimum Seismic Design Parameters
Authors: J. García-Pérez
Abstract:
An approach to compute optimum seismic design parameters is presented. It is based on the optimization of the expected present value of the total cost, which includes the initial cost of structures as well as the cost due to earthquakes. Different types of seismicity models are considered, including one for characteristic earthquakes. Uncertainties are included in some variables to observe the influence on optimum values. Optimum seismic design coefficients are computed for three different structural types representing high, medium and low rise buildings, located near and far from the seismic sources. Ordinary and important structures are considered in the analysis. The results of optimum values show an important influence of seismicity models as well as of uncertainties on the variables.
Keywords: Importance factors, optimum parameters, seismic losses, seismic risk, total cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13541029 Computation of the Filtering Properties of Photonic Crystal Waveguide Discontinuities Using the Mode Matching Method
Authors: Athanasios Theoharidis, Thomas Kamalakis, Ioannis Neokosmidis, Thomas Sphicopoulos
Abstract:
In this paper, the application of the Mode Matching (MM) method in the case of photonic crystal waveguide discontinuities is presented. The structure under consideration is divided into a number of cells, which supports a number of guided and evanescent modes. These modes can be calculated numerically by an alternative formulation of the plane wave expansion method for each frequency. A matrix equation is then formed relating the modal amplitudes at the beginning and at the end of the structure. The theory is highly efficient and accurate and can be applied to study the transmission sensitivity of photonic crystal devices due to fabrication tolerances. The accuracy of the MM method is compared to the Finite Difference Frequency Domain (FDFD) and the Adjoint Variable Method (AVM) and good agreement is observed.Keywords: Optical Communications, Integrated Optics, Photonic Crystals, Optical Waveguide Discontinuities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15781028 Pulsed Multi-Layered Image Filtering: A VLSI Implementation
Authors: Christian Mayr, Holger Eisenreich, Stephan Henker, René Schüffny
Abstract:
Image convolution similar to the receptive fields found in mammalian visual pathways has long been used in conventional image processing in the form of Gabor masks. However, no VLSI implementation of parallel, multi-layered pulsed processing has been brought forward which would emulate this property. We present a technical realization of such a pulsed image processing scheme. The discussed IC also serves as a general testbed for VLSI-based pulsed information processing, which is of interest especially with regard to the robustness of representing an analog signal in the phase or duration of a pulsed, quasi-digital signal, as well as the possibility of direct digital manipulation of such an analog signal. The network connectivity and processing properties are reconfigurable so as to allow adaptation to various processing tasks.Keywords: Neural image processing, pulse computation application, pulsed Gabor convolution, VLSI pulse routing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13921027 Effect of the Machine Frame Structures on the Frequency Responses of Spindle Tool
Authors: Yuan L. Lai, Yong R. Chen, Jui P. Hung, Tzuo L. Luo, Hsi H. Hsiao
Abstract:
Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process. Therefore the dynamic vibration behavior of spindle tool system greatly determines the performance of machine tool. The purpose of this study is to investigate the influences of the machine frame structure on the dynamic frequency of spindle tool unit through finite element modeling approach. To this end, a realistic finite element model of the vertical milling system was created by incorporated the spindle-bearing model into the spindle head stock of the machine frame. Using this model, the dynamic characteristics of the milling machines with different structural designs of spindle head stock and identical spindle tool unit were demonstrated. The results of the finite element modeling reveal that the spindle tool unit behaves more compliant when the excited frequency approaches the natural mode of the spindle tool; while the spindle tool show a higher dynamic stiffness at lower frequency that may be initiated by the structural mode of milling head. Under this condition, it is concluded that the structural configuration of spindle head stock associated with the vertical column of milling machine plays an important role in determining the machining dynamics of the spindle unit.Keywords: Machine tools, Compliance, Frequency response function, Machine frame structure, Spindle unit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28181026 Variation of Metrological Parameters as They Affect the Tropospheric Radio Refractivity for Akure South-West Nigeria
Authors: Famoriji J.Oluwole
Abstract:
This research work examines the effect of variations of metrological parameters on the tropospheric radio refractivity during dry and raining seasons for Akure in 2013. The daily averages of radio refractivity during dry (January) and raining (August) seasons were calculated from the data obtained from the Nigeria Metrological Agency (NIMET). The data that was used for the computation of radio refractivity is a daily interval of the variations of metrological parameters for each day in the troposphere for Akure. Consequently, the daily averages of radio refractivity during raining season (August) were greater than the results in dry season (January) as a result of the variations in meteorological parameters such as temperature, humidity and atmospheric pressure in the lower troposphere.
Keywords: Troposphere, Radio refractivity, Akure, Meteorological parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23811025 Conceptual Multidimensional Model
Authors: Manpreet Singh, Parvinder Singh, Suman
Abstract:
The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.Keywords: Multidimensional, data precision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14581024 Social Aggravations during the Period of Medieval Wars in Europe
Authors: Nurmukhambetov Ardak
Abstract:
This article makes and attempt to disclose the dynamics of development of social interactions in an aggravated environment in relation to the distinctive features of religious wars and their negative impact to the society. Crisis situations that took place in all spheres of social life are described, on the grounds of which the author comes to specific conclusions.Keywords: War, medieval period, social relations, nation, Europe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14191023 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics
Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim
Abstract:
A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.
Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5851022 Emotion Recognition Using Neural Network: A Comparative Study
Authors: Nermine Ahmed Hendy, Hania Farag
Abstract:
Emotion recognition is an important research field that finds lots of applications nowadays. This work emphasizes on recognizing different emotions from speech signal. The extracted features are related to statistics of pitch, formants, and energy contours, as well as spectral, perceptual and temporal features, jitter, and shimmer. The Artificial Neural Networks (ANN) was chosen as the classifier. Working on finding a robust and fast ANN classifier suitable for different real life application is our concern. Several experiments were carried out on different ANN to investigate the different factors that impact the classification success rate. Using a database containing 7 different emotions, it will be shown that with a proper and careful adjustment of features format, training data sorting, number of features selected and even the ANN type and architecture used, a success rate of 85% or even more can be achieved without increasing the system complicity and the computation time
Keywords: Classification, emotion recognition, features extraction, feature selection, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46981021 Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing
Authors: Saad Al-Baddai, Karema Al-Subari, Elmar Lang, Bernd Ludwig
Abstract:
Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50.Keywords: Empirical mode decomposition, mode mixing, sifting process, over-sifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9921020 Entropy based Expeditive Methodology for Rating Curves Assessment
Authors: D. Mirauda, M. Greco, P. Moscarelli
Abstract:
The river flow forecasting represents a crucial point to employ for improving a management policy addressed to the right use of water resources as well as for conjugating prevention and defense actions against environmental degradation. The difficulties occurring during the field activities encourage the development and implementation of operative computation and measuring methods addressed to time reduction for data acquisition and processing maintaining a good level of accuracy. Therefore, the aim of the present work is to test a new entropy based expeditive methodology for the evaluation of the rating curves on three gauged sections with different geometric and morphological characteristics. The methodology requires the choice of only three verticals along the measure section and the sampling of only the maximum velocity. The results underline how in most conditions the rating curves drawn can replace those built with classic methodologies, simplifying thus the procedures of data monitoring and calculation.
Keywords: gauged station, entropic approach, expeditive methodology, rating curves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14111019 Grid–SVC: An Improvement in SVC Algorithm, Based On Grid Based Clustering
Authors: Farhad Hadinejad, Hasan Saberi, Saeed Kazem
Abstract:
Support vector clustering (SVC) is an important kernelbased clustering algorithm in multi applications. It has got two main bottle necks, the high computation price and labeling piece. In this paper, we presented a modified SVC method, named Grid–SVC, to improve the original algorithm computationally. First we normalized and then we parted the interval, where the SVC is processing, using a novel Grid–based clustering algorithm. The algorithm parts the intervals, based on the density function of the data set and then applying the cartesian multiply makes multi-dimensional grids. Eliminating many outliers and noise in the preprocess, we apply an improved SVC method to each parted grid in a parallel way. The experimental results show both improvement in time complexity order and the accuracy.
Keywords: Grid–based clustering, SVC, Density function, Radial basis function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17441018 Numerical Analysis of Rapid Gas Decompression in Pure Nitrogen using 1D and 3D Transient Mathematical Models of Gas Flow in Pipes
Authors: Evgeniy Burlutskiy
Abstract:
The paper presents a numerical investigation on the rapid gas decompression in pure nitrogen which is made by using the one-dimensional (1D) and three-dimensional (3D) mathematical models of transient compressible non-isothermal fluid flow in pipes. A 1D transient mathematical model of compressible thermal multicomponent fluid mixture flow in pipes is presented. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multicomponent gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. This model is successfully validated on the experimental data [1] and shows a good agreement with measurements. A 3D transient mathematical model of compressible thermal single-component gas flow in pipes, which is built by using the CFD Fluent code (ANSYS), is presented in the paper. The set of unsteady Reynolds-averaged conservation equations for gas phase is solved. Thermo-physical properties of single-component gas are calculated by solving the Real Gas Equation of State (EOS) model. The simplest case of gas decompression in pure nitrogen is simulated using both 1D and 3D models. The ability of both models to simulate the process of rapid decompression with a high order of agreement with each other is tested. Both, 1D and 3D numerical results show a good agreement between each other. The numerical investigation shows that 3D CFD model is very helpful in order to validate 1D simulation results if the experimental data is absent or limited.Keywords: Mathematical model, Rapid Gas Decompression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22211017 Flat Miniature Heat Pipes for Electronics Cooling: State of the Art, Experimental and Theoretical Analysis
Authors: M.C. Zaghdoudi, S. Maalej, J. Mansouri, M.B.H. Sassi
Abstract:
An experimental study is realized in order to verify the Mini Heat Pipe (MHP) concept for cooling high power dissipation electronic components and determines the potential advantages of constructing mini channels as an integrated part of a flat heat pipe. A Flat Mini Heat Pipe (FMHP) prototype including a capillary structure composed of parallel rectangular microchannels is manufactured and a filling apparatus is developed in order to charge the FMHP. The heat transfer improvement obtained by comparing the heat pipe thermal resistance to the heat conduction thermal resistance of a copper plate having the same dimensions as the tested FMHP is demonstrated for different heat input flux rates. Moreover, the heat transfer in the evaporator and condenser sections are analyzed, and heat transfer laws are proposed. In the theoretical part of this work, a detailed mathematical model of a FMHP with axial microchannels is developed in which the fluid flow is considered along with the heat and mass transfer processes during evaporation and condensation. The model is based on the equations for the mass, momentum and energy conservation, which are written for the evaporator, adiabatic, and condenser zones. The model, which permits to simulate several shapes of microchannels, can predict the maximum heat transfer capacity of FMHP, the optimal fluid mass, and the flow and thermal parameters along the FMHP. The comparison between experimental and model results shows the good ability of the numerical model to predict the axial temperature distribution along the FMHP.Keywords: Electronics Cooling, Micro Heat Pipe, Mini Heat Pipe, Mini Heat Spreader, Capillary grooves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39361016 Development of Groundwater Management Model Using Groundwater Sustainability Index
Authors: S. S. Rwanga, J. M. Ndambuki, Y. Woyessa
Abstract:
Development of a groundwater management model is an important step in the exploitation and management of any groundwater aquifer as it assists in the long-term sustainable planning of the resource. The current study was conducted in Central Limpopo province of South Africa with the overall objective of determining how much water can be withdrawn from the aquifer without producing nonreversible impacts on the groundwater quantity, hence developing a model which can sustainably protect the aquifer. The development was done through the computation of Groundwater Sustainability Index (GSI). Values of GSI close to unity and above indicated overexploitation. In this study, an index of 0.8 was considered as overexploitation. The results indicated that there is potential for higher abstraction rates compared to the current abstraction rates. GSI approach can be used in the management of groundwater aquifer to sustainably develop the resource and also provides water managers and policy makers with fundamental information on where future water developments can be carried out.
Keywords: Development, groundwater, groundwater sustainability index, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8621015 A Contractor Iteration Method Using Eigenpairs for Positive Solutions of Nonlinear Elliptic Equation
Authors: Hailong Zhu, Zhaoxiang Li, Kejun Zhuang
Abstract:
By means of Contractor Iteration Method, we solve and visualize the Lane-Emden(-Fowler) equation Δu + up = 0, in Ω, u = 0, on ∂Ω. It is shown that the present method converges quadratically as Newton’s method and the computation of Contractor Iteration Method is cheaper than the Newton’s method.
Keywords: Positive solutions, newton's method, contractor iteration method, Eigenpairs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13781014 Parallel Discrete Fourier Transform for Fast FIR Filtering Based on Overlapped-save Block Structure
Authors: Ying-Wen Bai, Ju-Maw Chen
Abstract:
To successfully provide a fast FIR filter with FTT algorithms, overlapped-save algorithms can be used to lower the computational complexity and achieve the desired real-time processing. As the length of the input block increases in order to improve the efficiency, a larger volume of zero padding will greatly increase the computation length of the FFT. In this paper, we use the overlapped block digital filtering to construct a parallel structure. As long as the down-sampling (or up-sampling) factor is an exact multiple lengths of the impulse response of a FIR filter, we can process the input block by using a parallel structure and thus achieve a low-complex fast FIR filter with overlapped-save algorithms. With a long filter length, the performance and the throughput of the digital filtering system will also be greatly enhanced.
Keywords: FIR Filter, Overlapped-save Algorithm, ParallelStructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691013 Sediment Transport Experiments: The Influence of the Furrow Geometry
Authors: S. Haddad, M. Bouhadef
Abstract:
In this experimental work, we have shown that the geometric shape of the grooves (furrows) plays an important role in sediment dynamics. In addition, the rheological behaviour of solid discharge does not depend only on the velocity discharge but also on the geometric shape.Keywords: Laboratory experiments, soil erosion, groove, furrow, sediment transport
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751012 Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Space
Authors: Vichai Rungreunganaun, Chirawat Woarawichai
Abstract:
The objective of this research is to calculate the optimal inventory lot-sizing for each supplier and minimize the total inventory cost which includes joint purchase cost of the products, transaction cost for the suppliers, and holding cost for remaining inventory. Genetic algorithms (GAs) are applied to the multi-product and multi-period inventory lot-sizing problems with supplier selection under storage space. Also a maximum storage space for the decision maker in each period is considered. The decision maker needs to determine what products to order in what quantities with which suppliers in which periods. It is assumed that demand of multiple products is known over a planning horizon. The problem is formulated as a mixed integer programming and is solved with the GAs. The detailed computation results are presented.Keywords: Genetic Algorithms, Inventory lot-sizing, Supplier selection, Storage space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21531011 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model
Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu
Abstract:
The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.
Keywords: CFD, mechanistic model, subcooled boiling flow, two-fluid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12701010 Earth Potential Rise (EPR) Computation for a Fault on Transmission Mains Pole
Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial
Abstract:
The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Conductive structures such as steel or concrete poles are widely used in HV transmission mains. The earth potential rise (EPR) generated by a fault on these structures could result to an unsafe condition. This paper discusses information on the input impedance of the over head earth wire (OHEW) system for finite and infinite transmission mains. The definition of finite and infinite system is discussed, maximum EPR due to pole fault. The simplified equations for EPR assessments are introduced and discussed for the finite and infinite conditions. A case study is also shown.Keywords: Coupling Factor, Earth Grid, EPR, Fault Current Distribution, High Voltage, Line Impedance, OHEW, Split Factor, Transmission Mains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38311009 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach
Authors: Uttam Vijay, Nitin Gupta
Abstract:
Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.
Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24751008 Tree Based Decomposition of Sunspot Images
Authors: Hossein Mirzaee, Farhad Besharati
Abstract:
Solar sunspot rotation, latitudinal bands are studied based on intelligent computation methods. A combination of image fusion method with together tree decomposition is used to obtain quantitative values about the latitudes of trajectories on sun surface that sunspots rotate around them. Daily solar images taken with SOlar and Heliospheric (SOHO) satellite are fused for each month separately .The result of fused image is decomposed with Quad Tree decomposition method in order to achieve the precise information about latitudes of sunspot trajectories. Such analysis is useful for gathering information about the regions on sun surface and coordinates in space that is more expose to solar geomagnetic storms, tremendous flares and hot plasma gases permeate interplanetary space and help human to serve their technical systems. Here sunspot images in September, November and October in 2001 are used for studying the magnetic behavior of sun.Keywords: Quad tree decomposition, sunspot image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12501007 An Approximate Engineering Method for Aerodynamic Heating Solution around Blunt Body Nose
Authors: Sahar Noori, Seyed Amir Hossein, Mohammad Ebrahimi
Abstract:
This paper is devoted to predict laminar and turbulent heating rates around blunt re-entry spacecraft at hypersonic conditions. Heating calculation of a hypersonic body is normally performed during the critical part of its flight trajectory. The procedure is of an inverse method, where a shock wave is assumed, and the body shape that supports this shock, as well as the flowfield between the shock and body, are calculated. For simplicity the normal momentum equation is replaced with a second order pressure relation; this simplification significantly reduces computation time. The geometries specified in this research, are parabola and ellipsoids which may have conical after bodies. An excellent agreement is observed between the results obtained in this paper and those calculated by others- research. Since this method is much faster than Navier-Stokes solutions, it can be used in preliminary design, parametric study of hypersonic vehicles.Keywords: Aerodynamic Heating, Blunt Body, Hypersonic Flow, Laminar, Turbulent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37201006 An Optimal Control Problem for Rigid Body Motions on Lie Group SO(2, 1)
Authors: Nemat Abazari, Ilgin Sager
Abstract:
In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimize the integral of the square norm of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions.
Keywords: Optimal control, Hamiltonian vector field, Darboux vector, maximum principle, lie group, Rigid body motion, Lorentz metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13341005 Adaptive Path Planning for Mobile Robot Obstacle Avoidance
Authors: Rong-Jong Wai, Chia-Ming Liu
Abstract:
Generally speaking, the mobile robot is capable of sensing its surrounding environment, interpreting the sensed information to obtain the knowledge of its location and the environment, planning a real-time trajectory to reach the object. In this process, the issue of obstacle avoidance is a fundamental topic to be challenged. Thus, an adaptive path-planning control scheme is designed without detailed environmental information, large memory size and heavy computation burden in this study for the obstacle avoidance of a mobile robot. In this scheme, the robot can gradually approach its object according to the motion tracking mode, obstacle avoidance mode, self-rotation mode, and robot state selection. The effectiveness of the proposed adaptive path-planning control scheme is verified by numerical simulations of a differential-driving mobile robot under the possible occurrence of obstacle shapes.Keywords: Adaptive Path Planning, Mobile Robot ObstacleAvoidance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21721004 Confidence Intervals for the Difference of Two Normal Population Variances
Authors: Suparat Niwitpong
Abstract:
Motivated by the recent work of Herbert, Hayen, Macaskill and Walter [Interval estimation for the difference of two independent variances. Communications in Statistics, Simulation and Computation, 40: 744-758, 2011.], we investigate, in this paper, new confidence intervals for the difference between two normal population variances based on the generalized confidence interval of Weerahandi [Generalized Confidence Intervals. Journal of the American Statistical Association, 88(423): 899-905, 1993.] and the closed form method of variance estimation of Zou, Huo and Taleban [Simple confidence intervals for lognormal means and their differences with environmental applications. Environmetrics 20: 172-180, 2009]. Monte Carlo simulation results indicate that our proposed confidence intervals give a better coverage probability than that of the existing confidence interval. Also two new confidence intervals perform similarly based on their coverage probabilities and their average length widths.
Keywords: Confidence interval, generalized confidence interval, the closed form method of variance estimation, variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27781003 On the Mathematical Structure and Algorithmic Implementation of Biochemical Network Models
Authors: Paola Lecca
Abstract:
Modeling and simulation of biochemical reactions is of great interest in the context of system biology. The central dogma of this re-emerging area states that it is system dynamics and organizing principles of complex biological phenomena that give rise to functioning and function of cells. Cell functions, such as growth, division, differentiation and apoptosis are temporal processes, that can be understood if they are treated as dynamic systems. System biology focuses on an understanding of functional activity from a system-wide perspective and, consequently, it is defined by two hey questions: (i) how do the components within a cell interact, so as to bring about its structure and functioning? (ii) How do cells interact, so as to develop and maintain higher levels of organization and functions? In recent years, wet-lab biologists embraced mathematical modeling and simulation as two essential means toward answering the above questions. The credo of dynamics system theory is that the behavior of a biological system is given by the temporal evolution of its state. Our understanding of the time behavior of a biological system can be measured by the extent to which a simulation mimics the real behavior of that system. Deviations of a simulation indicate either limitations or errors in our knowledge. The aim of this paper is to summarize and review the main conceptual frameworks in which models of biochemical networks can be developed. In particular, we review the stochastic molecular modelling approaches, by reporting the principal conceptualizations suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D. T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O. Wolkenhauer, P. S. Jöberg and by the author.
Keywords: Mathematical structure, algorithmic implementation, biochemical network models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571002 Virtual Machines Cooperation for Impatient Jobs under Cloud Paradigm
Authors: Nawfal A. Mehdi, Ali Mamat, Hamidah Ibrahim, Shamala K. Syrmabn
Abstract:
The increase on the demand of IT resources diverts the enterprises to use the cloud as a cheap and scalable solution. Cloud computing promises achieved by using the virtual machine as a basic unite of computation. However, the virtual machine pre-defined settings might be not enough to handle jobs QoS requirements. This paper addresses the problem of mapping jobs have critical start deadlines to virtual machines that have predefined specifications. These virtual machines hosted by physical machines and shared a fixed amount of bandwidth. This paper proposed an algorithm that uses the idle virtual machines bandwidth to increase the quote of other virtual machines nominated as executors to urgent jobs. An algorithm with empirical study have been given to evaluate the impact of the proposed model on impatient jobs. The results show the importance of dynamic bandwidth allocation in virtualized environment and its affect on throughput metric.Keywords: Insufficient bandwidth, virtual machine, cloudprovider, impatient jobs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680