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Abstract—In this paper smooth trajectories are computed in the Lie
group SO(2, 1) as a motion planning problem by assigning a Frenet
frame to the rigid body system to optimize the cost function of the
elastic energy which is spent to track a timelike curve in Minkowski
space. A method is proposed to solve a motion planning problem
that minimize the integral of the square norm of Darboux vector of
a timelike curve. This method uses the coordinate free Maximum
Principle of Optimal control and results in the theory of integrable
Hamiltonian systems. The presence of several conversed quantities
inherent in these Hamiltonian systems aids in the explicit computation
of the rigid body motions.

Keywords—Optimal control, Hamiltonian vector field, Darboux
vector, Maximum Principle, Lie group, Rigid body motion, Lorentz
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I. INTRODUCTION

AN optimal control problem is used for rigid body motions
and formulation on Lie group SO(2, 1) where the cost

function to be minimized is equal to the integral of the norm of
Darboux vector of a timelike curve. This problem is analogous
to the elastic problem in [1], [4]. The coordinate free maximum
principle [2], [3] is applied to solve this problem. In [4]
the author applied an integrable case where the necessary
conditions for optimality can be expressed analitically and the
corresponding optimal motions are expressed in a coordinate
free manner. These optimal motions are showed to trace helical
paths. In this study, the optimal control problem formulation
is considered as the general theory of optimal control for the
motion planning application, framed curves and left-invariant
Hamiltonian systems are applied to this particular setting.
Frenet frame of curve is applied to the Lorentz-Minkowski
space to solve the problem and a particular set of curves is
analyzed that satisfy these necessary conditions and provide
analytic solutions for the corresponding optimal motions.
An application of the Maximum Principle to this problem
results in a system of first order differential equations that
yield coordinate free necessary conditions for optimality. This
system minimizes the cost function of elastic energy which is
spended to track a timelike curve in Minkowski space.

II. FRENET FRAME

The Lorentz-Minkowski space is the metric space E3 =
(R3, <, >) where the metric is given by
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< x, y >= +x1y1 + x2y2 − x3y3 (1)

The exterior product is defined as x × y =
(−y2x3 − x2y3)−→e1 + (y3x1 − x3y1)−→e2 + (y2x1 − x2y1)−→e3

where −→e1 ,−→e2 ,−→e3 is the standard orthonormal frame in R3.
The metric <, > is called as Lorentzian metric.
Let H2 denote the hyperbolioid x2

1 + x2
2 − x2

3 = 1, x1 > 0

The isometry group for a hyperbolic plane H2 is denoted
by SO(2, 1). Recall that SO(2, 1) is the group that leaves the
bilinear form <, > in E3 invariant.

< Ax, y > + < x,Ay >= 0 (2)

is satisfied for any 3 × 3 matrice A on the Lie algebra L of
SO(2, 1).

It is verified that L is equal to the space of matrices

A =

⎡
⎣ 0 −a1 a2

a1 0 a3

a2 a3 0

⎤
⎦ (3)

Definition A vector v ∈ E3 is called

1.Spacelike if < v, v >> 0 or v = 0 (4)
2.Timelike if < v, v >< 0
3.Lightlike if < v, v >= 0 and v �= 0

Definition For a curve α in E3, α is spacelike (resp.
timelike, lightlike) at t if ά(t) is a spacelike (resp. timelike,
lightlike) vector. If it is for any t ∈ I , the curve α is called
spacelike (resp. timelike, lightlike).

In this paper we suppose that α is a spacelike curve, we
call T (s) = ά(s) as the tangent vector at s and we supposed
T́(s)�= 0 is the spacelike vector independent with T(s) .

The curvature of α at s is defined as k (s) = |T́ (s)|. The
normal vector N(s) is defined by

N(s) =
T́ (s)
k (s)

=
α′′(s)
α′′(s)

(5)

Moreover k(s) =< T́́ (s), N(s) > is the curvature of the
curve α . The binormal vector B(s) is defined by

B(s) = T (s) × N(s) (6)

τ(s) = − < Ń(s), B(s) > is the torsion of the curve α.
For each s, {T, N, B} is an orthonormal base of E3 which is
called the Frenet trihedron of α.

By differentiation each one of the vector functions of the
frenet trihedron frame R = (T | N | B) ∈ L about the curve
α : I → E3 described by the following differential equations:
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α′(t) = T
T ′ = kN
N ′ = −kT + τB
B′ = τN

(7)

where k curvature, τ torsion of the curve α [6]
⎡
⎣ T́́

Ń
B́

⎤
⎦ =

⎡
⎣ 0 k 0

−k 0 τ
0 τ 0

⎤
⎦
⎡
⎣ T

N
B

⎤
⎦ (8)

These equations form a rotation motion with Darboux vector
w = τT−kB[5]. Also momentum rotation vector is expressed
as follows:

T́ = w × T (9)
Ń = w × N

B́ = w × B

where |w|2 = − < w,w >= − (
k2 − τ2

)
= τ2 − k2.

In this study, this Frenet frame is used to plan rigid body
motions by applying the Maximum Principle to optimal con-
trol systems defined on a Lie group [2]. An element g(t) ∈ M
is defined as:

g(t) =
(

1 0
α(t) R(t)

)
(10)

where R(t) ∈ L. There is also associated with (7) via the
relations

[1 α(t)]T = g(t)−→e1

[0 T ]T = g(t)−→e2

[0 N ]T = g(t)−→e3

[0 B]T = g(t)−→e4

(11)

where −→e1 ,−→e2 ,−→e3 ,−→e4 is the standard orthonormal frame in
E4.

Proposition 1 The left-invariant differential equation:

dg(t)
dt

= g(t)

⎛
⎜⎜⎝

0 0 0 0
0 0 −k 0
1 k 0 τ
0 0 τ 0

⎞
⎟⎟⎠ (12)

where g(t) ∈ M is equivalent to the Frenet frame (7).
Proof: It follows from differentiating (11) w.r.t to t that

[1 ά(t)]T = dg(t)
dt

−→e1 = g(t)−→e2 = [0 T ]T

[0 T́ ]T = dg(t)
dt

−→e2 = g(t) (k−→e3) = k [0 N ]T

[0 Ń ]T = dg(t)
dt

−→e3 = g(t) (−k−→e2 + τ−→e4)
= −k [0 T ]T + τ [0 B]T

[0 B́]T = dg(t)
dt

−→e4 = g(t) (τ−→e3) = τ [0 N ]T

(13)

then equating the L.H.S to the R.H.S yields (7).
The system (12) can be expressed conveniently in coordi-

nate form by defining the following basis for the Lie algebra
of M denoted by m

A1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦ (14)

(15)

A3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ (16)

(17)

B2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , B3 =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (18)

Using these notations, it follows that (12) can be expressed
as:

dg(t)
dt

= g(t)(B2 − kA1 + τA3) (19)

To minimize the elastic energy of the curve, this is equivalent
minimizing the function:

J =
1
2

∫
|w|2 dt =

1
2

∫
− < w,w > dt =

1
2

∫ (−k2 + τ2
)
dt

(20)
where the w defined as the Darboux vector with the equation
w = τT − kB.

The motion g(t) ∈ M of the left-invariant differential
system (15) which minimizes the expression (16) is computed
on a given interval [0, T ] subject to the given boundary
conditions g(0) = g0, g(T ) = gT on the next section.

III. HAMILTONIAN LIFT ON M

Due to the similarity in between optimal control problem
and elastic problem, this optimal control problem is considered
as elastic problem and the applicability of Maximum Principle
is obvious. The Maximum Principle states that the optimal
paths are the projections of the extremal curves onto the
base manifold, where the extremal curves are solutions of
certain Hamiltonian systems on the cotangent bundle. For the
problem, the manifold is M and the cotangent bundle is T ∗M .
The appropriate pseudo-Hamiltonian on T ∗M is defined as:

H (p, u, g) = p (g(t) B2) − kp (g(t) A1) + τp (g(t) A3)

− p0
1
2
(
τ2 − k2

)
(21)

where p (.) : TM → R. In this study, the regular extremals
where p0 = 1 (ignoring abnormal extremals where p0 = 0) is
carred.
The cotangent bundle T ∗M can be written as the direct
product M × m∗ where m∗ is the dual of the Lie algebra
m of M .
The original Hamiltonian defined on T ∗M can be expressed
as a reduced Hamiltonian on the dual of the Lie algebra m∗.
The linear functions Mi =

∧
p (Ai) , pi =

∧
p (Bi) for i = 1, 2, 3

where
∧
p : m → R are the Hamiltonian lifts of left-invariant

vector fields on M, because p (g(t) Ai) =
∧
p (Ai) for any
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P =
(
g (t) ,

∧
p
)

and any Ai ∈ m. If Mi, pi is a collection
of linear functions generated by the basis Ai, Bi in m then
the vector (M1, M2, M3, p1, p2, p3) is the coordinate vector
of

∧
p relative to the dual basis A∗

i , B
∗
i . The Hamiltonian (17)

becomes

H = p2 − kM1 + τM3 − 1
2
(
τ2 − k2

)
(22)

It follows from [12] that calculating ∂H
∂k = ∂H

∂τ = 0 yields the
optimal controls:

k = M1, τ = M3 (23)

substituting (19) into (18) gives the optimal Hamiltonian:

H = p2 +
1
2
(
M2

3 − M2
1

)
(24)

In addition substituting the expressions (19) into (12) the
optimal motions are the solutions g(t) ∈ M of the differential
equation:

dg(t)
dt

= g(t)

⎛
⎜⎜⎝

0 0 0 0
0 0 −M1 0
1 M1 0 M3

0 0 M3 0

⎞
⎟⎟⎠ (25)

To solve the equation (21) for g(t) ∈ M , it is necessary to
solve the ekstremal curves M1, M2, M3 for a special case.

IV. SOLVING THE EXTREMAL CURVES

To compute the corresponding Hamiltonian vector fields
from the left-invariant Hamiltonian (20) the Lie bracket table
(a) obtained for the basis (14):

[, ] A1 A2 A3 B1 B2 B3

A1 0 −A3 A2 0 B3 B2

A2 A3 0 A1 B3 0 B1

A3 −A2 −A1 0 B2 B1 0
B1 0 −B3 −B2 0 0 0
B2 −B3 0 −B1 0 0 0
B3 −B2 −B1 0 0 0 0

table (a)

where the Lie Bracket is defined as [X, Y ] = XY − Y X .
The time derivatives of Mi, pi along the Hamiltonian flow

are described by the Poisson bracket given by the equation:

{∧
p (.) ,

∧
p (.)

}
= −∧

p ([., .]) (26)

M1́ = {M1, H} =
{

M1, p2 +
1
2
(
M2

3 − M2
1

)}

= {M1, p2} + M3 {M1, M3} − M1 {M1, M1}
= −p3 − M3M2

M2́ = {M2, H} =
{

M2, p2 +
1
2
(
M2

3 − M2
1

)}

= {M2, p2} + M3 {M2, M3} − M1 {M2, M1}
= 0

M3́ = {M3, H} =
{

M3, p2 +
1
2
(
M2

3 − M2
1

)}

= {M3, p2} + M3 {M3, M3} − M1 {M3, M1}
= −p1 − M1M2

p1́ = {p1, H} =
{

p1, p2 +
1
2
(
M2

1 − M2
3

)}

= {p1, p2} + M1 {p1, M1} − M3 {p1, M3}
= −p2M3

p2́ = {p2, H} =
{

p2, p2 +
1
2
(
M2

1 − M2
3

)}

= {p2, p2} + M1 {p2, M1} − M3 {p2, M3}
= p1M3 + p3M1

p3́ = {p2, H} =
{

p2, p2 +
1
2
(
M2

1 − M2
3

)}

= {p2, p2} + M1 {p2, M1} − M3 {p2, M3}
= p2M1 + p1M2

The Hamiltonian vector fields are

M1́ = −p3 − M3M2

M2́ = 0
M3́ = −p1 − M1M2

p1́ = −p2M3

p2́ = p1M3 + p3M1

p3́ = p2M1

A trivial example of an integrable case of vector fields (24)
occurs when p1 = p2 = p3 = M1 = M2 = M3 = 0. More-
over, for these values p1 = p2 = p3 = M1 = M2 = M3 are
constant ∀t and therefore the system is integrable. Substituting
these values into (15)

dg(t)
dt

= g(t)B2 (27)

this is easily integrated to yield α(t) = [t, 0, 0]T with
R equal to a 3 × 3 matrix with zero entries. Therefore, a
straight line motion with zero rotation about this line is an
optimal rigid body motion. In addition there exists a nontrivial
integrable case of the Hamiltonian vector fields (24). This
case is considered nontrivial as it gives rise to time-dependent
extremal curves. It is observed that p1 = p2 = p3 = 0 is
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an invariant surface for the Hamiltonian vector fields (24).
Explicity, for p1 = p2 = p3 = 0 the equations (24) degenerate
to:

M1́ = −M3M2

M2́ = 0
M3́ = −M1M2

p1́ = 0
p2́ = 0
p3́ = 0

this implies that M2 is constant that will be denoted by
c. In addition p1 = p2 = p3 = 0 ∀t. It follows that the
Hamiltonian vector fields (26) are completely integrable. For
these particular curves the Hamiltonian (20) reduces to

H = M2
3 − M2

1 (28)

It follows that the differential equations (26) are satisfied
that the extremal curves are:

M2 = c (29)
M1 = r cosh ct

M3 = −r sinh ct

To compute the optimal motions corresponding to the ex-
tremal curves (28) is not trivial as the elements of the Lie
algebra are time-dependent.

V. OPTIMAL MOTINS FOR THE RIGID BODY

The geodesic frame (21) is splited into its translational and
rotational part:

dα (t)
dt

= R−→e1 (30)

and

dR

dt
= R

⎡
⎣ 0 −M1 0

M1 0 M3

0 M3 0

⎤
⎦ (31)

where R−1 = RT . A basis is described for the Lie algebra
m as:

E1 =

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ , E2 =

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦ ,

E3 =

⎡
⎣ 0 0 0

0 0 1
0 1 0

⎤
⎦ (32)

The quantities

RPR−1 = constant (33)

and
RMR−1 +

[
X, RPR−1

]
= constant (34)

are conversed for all left-invariant Hamiltonian systems on M
where

M = M1E1 + M2E2 + M3E3 (35)
P = p1E1 + p2E2 + p3E3

X = x1E1 + x2E2 + x3E3

where x1, x2, x3 are the position coordinates of the vector
α (t) = [x1, x2, x3]

T
.

Using these constants of motion (30) is integrated which is
stated in the following theorem:

Theorem 3: R = (T | N | B) ∈ L is the optimal rotation
matrix corresponding to the extremals (28) which relates the
Frenet frame to a fixed inertial frame where:

T =

⎡
⎣ cosh Kt cosh ct − c

K sinhKt sinh ct
r
K sinh ct

sinhKt cosh ct + c
K cosh Kt sinh ct

⎤
⎦

N =

⎡
⎣ − r

K sinhKt
c
K− r

K cosh Kt

⎤
⎦

B =

⎡
⎣ − cosh Kt sinh ct + c

K sinhKt cosh ct
− r

K cosh ct
− sinhKt sinh ct + c

K cosh Kt cosh ct

⎤
⎦

where K2 = c2 − r2 and r, c are the constant parameters
of the curvatures (28).

Proof For these particular curves p1 = p2 = p3 = 0 the
conversation laws (32) and (33) reduce to:

RMR−1 = constantt (36)

this constant matrix RMR−1 is then conjugated for a partic-
ular solution R such that:

RMR−1 =
√

M2
1 + M2

2 − M2
3 E2 (37)

substituting (24) into (37) gives

RMR−1 =
√

c2 − r2E2 (38)

The constant K is defined with the equation: K2 = c2 − r2.
Therefore

M = KR−1E2R (39)

is verified. Expressing R in a convenient coordinate from [12]:

R = exp(ϕ1E2) exp(ϕ2E3) exp(ϕ3E2) (40)

and substituting (40) into (39) yields:

M = K exp(−ϕ3E2) exp(−ϕ2E3)E2 exp(ϕ2E3) exp(ϕ3E2)
(41)

It is shown that:

M = K

⎡
⎣ 0 sinhϕ2 cosh ϕ3 cosh ϕ2

− sinhϕ2 cosh ϕ3 0 − sinhϕ2 sinhϕ3

cosh ϕ2 − sinhϕ2 sinhϕ3 0

⎤
⎦

(42)
equating M in (34) to (42) gives:

M1 = −K sinhϕ2 cosh ϕ3 (43)
M2 = K cosh ϕ2

M3 = −K sinhϕ2 sinhϕ3
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So it is easily shown that:

cosh ϕ2 =
M2

K
=

c

K
(44)

sinh ϕ2 = ∓
√

c2

K2
− 1 = ∓ r

K

in addition form (43) we have:

tanh ϕ3 =
M3

M1
(45)

therefore

sinh ϕ3 = ∓ M3√
M2

1 − M2
3

= ∓ sinh ct (46)

cosh ϕ3 = ± M1√
M2

1 − M2
3

= cosh ct

in order to obtain an expression for ϕ1, we substitute (40) into
(30) yields:

dR

dt
= ϕ1́E2 exp(ϕ1E2) exp(ϕ2E3) exp(ϕ3E2) (47)

+ ϕ2́ exp(ϕ1E2)E3 exp(ϕ2E3) exp(ϕ3E2)
+ ϕ3́ exp(ϕ1E2) exp(ϕ2E3)E2 exp(ϕ3E2)

therefore

R
−1 dR

dt
= ϕ1́ exp(−ϕ3E2) exp(−ϕ2E3)E2 exp(ϕ2E3) exp(ϕ3E2) (48)

+ ϕ2́ exp(−ϕ3E2)E3 exp(ϕ3E2)

+ ϕ3́E2

= ϕ1́

[
0 sinh ϕ2 cosh ϕ3 cosh ϕ2

− sinh ϕ2 cosh ϕ3 0 − sinh ϕ2 sinh ϕ3
cosh ϕ2 − sinh ϕ2 sinh ϕ3 0

]

+ ϕ2́

[
0 − sinh ϕ3 0

sinh ϕ3 0 cosh ϕ3
0 cosh ϕ3 0

]

+ ϕ3́

[
0 0 1
0 0 0
1 0 0

]

=

[
0 −M1 0

M1 0 M2
0 M2 0

]

which leads to

−M1 = ϕ1́ sinh ϕ2 cosh ϕ3 − ϕ2́ sinh ϕ3 (49)
M3 = −ϕ1́ sinh ϕ2 sinh ϕ3 + ϕ2́ cosh ϕ3

therefore

ϕ1́ =
M3 sinh ϕ3 − M1 cosh ϕ3

sinh ϕ2
(50)

substituting (28), (44) and (46) into (50) yields:

ϕ1́ = K (51)

and integrating with respect to t yields:

ϕ1 = Kt + β (52)

where β is a constant of integration anf for β = 0 yields:

ϕ1 = Kt (53)

An other hand from (40) yields :

T =

⎡
⎣ cosh ϕ1 cosh ϕ3 + sinh ϕ1 cosh ϕ2 sinhϕ3

sinhϕ2 sinhϕ3

sinhϕ1 cosh ϕ3 + cosh ϕ1 cosh ϕ2 sinhϕ3

⎤
⎦ (54)

N =

⎡
⎣ sinhϕ1 sinhϕ2

cosh ϕ2

cosh ϕ1 sinhϕ2

⎤
⎦

B =

⎡
⎣ cosh ϕ1 sinhϕ3 + sinh ϕ1 cosh ϕ2 cosh ϕ3

sinhϕ2 cosh ϕ3

sinhϕ1 sinhϕ3 + cosh ϕ1 cosh ϕ3 cosh ϕ2

⎤
⎦

substituting (44) , (46) and (52) into (55) yields
R = (T | N | B).
Lemma: The optimal path α(t) ∈ E3 defined by the
differential equation (29), with M1 = r cosh ct, M2 = c and
M3 = −r sinh ct described by:

dα(t)
dt = 1

k

⎡
⎣ −r sinh kt

c
−r cosh kt

⎤
⎦

α (t) = 1
k

∫ ⎡
⎣ −r sinh kt

c
−r cosh kt

⎤
⎦ dt =

1
k2 [−r cosh kt, ct,−r sinh kt]T

dα(t)
dt = 1

k

⎡
⎣ −r sinh kt

c
−r cosh kt

⎤
⎦

α (t) = 1
k

∫ ⎡
⎣ −r sinh kt

c
−r cosh kt

⎤
⎦ dt =

1
k2 [−r cosh kt, ct,−r sinh kt]T
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