Search results for: Data management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9358

Search results for: Data management

8428 Information System Management Factors Related to Behavioral Trend of Online Accommodation Services

Authors: Supattra Kanchanopast

Abstract:

The purpose of this research was to study the customers’ behavioral trend for online accommodation system at Bangkonthi District, Samutsongkhram province. The research collected data from 400 online users. A questionnaire was utilized as the tool in collecting information. Descriptive statistics included frequency, percentage, mean and standard deviation. Independent- sample t- test, analysis of variance and Pearson Correlation were also used. The findings of this research revealed that the majority of the respondents were male, 25-32 years old, and graduated a bachelor degree. The respondents mostly worked in private sectors and had monthly income between 10,001-15,000 baht. The regular online users, visiting this system between 3-4 times/month, spending 1-2 hours/time, searched for online accommodation information. This result showed that the users had good and high attitude towards the system. According to the hypothesis testing, the number of online usage had positive related to the behavioral trends: accommodation purchasing intention and recommend the accommodation to others. Furthermore, both the number of online usage and overall attitude had a significant correlation to accommodation purchase intention and recommend the accommodation to others.

Keywords: Customer Behavior, Information System Management, Online Accommodation Services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
8427 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain

Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami

Abstract:

To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of the manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. Blockchain mechanism such as Bitcoin using Public Key Infrastructure (PKI) requires plaintext to be shared between companies in order to verify the identity of the company that sent the data. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems, this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is top-secret. In this scenario, we show an implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.

Keywords: Business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
8426 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban

Abstract:

The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: Daily rainfall, Image processing, Approximation, Pixel value data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
8425 Automatic Generation of Ontology from Data Source Directed by Meta Models

Authors: Widad Jakjoud, Mohamed Bahaj, Jamal Bakkas

Abstract:

Through this paper we present a method for automatic generation of ontological model from any data source using Model Driven Architecture (MDA), this generation is dedicated to the cooperation of the knowledge engineering and software engineering. Indeed, reverse engineering of a data source generates a software model (schema of data) that will undergo transformations to generate the ontological model. This method uses the meta-models to validate software and ontological models.

Keywords: Meta model, model, ontology, data source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
8424 Change Management in Business Process Modeling Based on Object Oriented Petri Net

Authors: Bassam Atieh Rajabi, Sai Peck Lee

Abstract:

Business Process Modeling (BPM) is the first and most important step in business process management lifecycle. Graph based formalism and rule based formalism are the two most predominant formalisms on which process modeling languages are developed. BPM technology continues to face challenges in coping with dynamic business environments where requirements and goals are constantly changing at the execution time. Graph based formalisms incur problems to react to dynamic changes in Business Process (BP) at the runtime instances. In this research, an adaptive and flexible framework based on the integration between Object Oriented diagramming technique and Petri Net modeling language is proposed in order to support change management techniques for BPM and increase the representation capability for Object Oriented modeling for the dynamic changes in the runtime instances. The proposed framework is applied in a higher education environment to achieve flexible, updatable and dynamic BP.

Keywords: Business Process Modeling, Change Management, Graph Based Modeling, Rule Based Modeling, Object Oriented PetriNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
8423 Test Data Compression Using a Hybrid of Bitmask Dictionary and 2n Pattern Runlength Coding Methods

Authors: C. Kalamani, K. Paramasivam

Abstract:

In VLSI, testing plays an important role. Major problem in testing are test data volume and test power. The important solution to reduce test data volume and test time is test data compression. The Proposed technique combines the bit maskdictionary and 2n pattern run length-coding method and provides a substantial improvement in the compression efficiency without introducing any additional decompression penalty. This method has been implemented using Mat lab and HDL Language to reduce test data volume and memory requirements. This method is applied on various benchmark test sets and compared the results with other existing methods. The proposed technique can achieve a compression ratio up to 86%.

Keywords: Bit Mask dictionary, 2n pattern run length code, system-on-chip, SOC, test data compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
8422 The Risk of In-work Poverty and Family Coping Strategies

Authors: A. Banovcinova, M. Zakova

Abstract:

Labor market activity and paid employment should be a key factor in protecting individuals and families from falling into poverty and providing them with sufficient resources to meet the needs of their members. However, due to various processes in the labor market as well as the influence of individual factors and often insufficient social capital, there is a relatively large group of households that cannot eliminate paid employment and find themselves in a state of so-called working poverty. The aim of the research was to find out what strategies families use in managing poverty and meeting their needs and which of these strategies prevail in the Slovak population. A quantitative research strategy was chosen. The method of data collection was a structured interview focused on finding out the use of individual management strategies and also selected demographic indicators. The research sample consisted of members of families in which at least one member has a paid job. The condition for inclusion in the research was that the family's income did not exceed 60% of the national median equalized disposable income. The analysis of the results showed 5 basic areas to which management strategies are related - work, financial security, needs, social contacts and perception of the current situation. The prevailing strategies were strategies aimed at increasing and streamlining labor market activity and the planned and effective management of the family budget. Strategies that were rejected were mainly related to debt creation. The results make it possible to identify the preferred ways of managing poverty in individual areas of life, as well as the factors that influence this behavior. This information is important for working with families living in a state of working poverty and can help professionals develop positive ways of coping for families.

Keywords: Copying strategies, family, in-work poverty, quantitative research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
8421 A Hybrid Data Mining Method for the Medical Classification of Chest Pain

Authors: Sung Ho Ha, Seong Hyeon Joo

Abstract:

Data mining techniques have been used in medical research for many years and have been known to be effective. In order to solve such problems as long-waiting time, congestion, and delayed patient care, faced by emergency departments, this study concentrates on building a hybrid methodology, combining data mining techniques such as association rules and classification trees. The methodology is applied to real-world emergency data collected from a hospital and is evaluated by comparing with other techniques. The methodology is expected to help physicians to make a faster and more accurate classification of chest pain diseases.

Keywords: Data mining, medical decisions, medical domainknowledge, chest pain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
8420 Insight-Based Evaluation of a Map-based Dashboard

Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg

Abstract:

Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage, compared to task-based evaluation methods.

Keywords: Visual analytics, dashboard, insight-based evaluation, geographic visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 412
8419 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: Data mining, textile production, decision trees, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
8418 Application and Limitation of Parallel Modelingin Multidimensional Sequential Pattern

Authors: Mahdi Esmaeili, Mansour Tarafdar

Abstract:

The goal of data mining algorithms is to discover useful information embedded in large databases. One of the most important data mining problems is discovery of frequently occurring patterns in sequential data. In a multidimensional sequence each event depends on more than one dimension. The search space is quite large and the serial algorithms are not scalable for very large datasets. To address this, it is necessary to study scalable parallel implementations of sequence mining algorithms. In this paper, we present a model for multidimensional sequence and describe a parallel algorithm based on data parallelism. Simulation experiments show good load balancing and scalable and acceptable speedup over different processors and problem sizes and demonstrate that our approach can works efficiently in a real parallel computing environment.

Keywords: Sequential Patterns, Data Mining, ParallelAlgorithm, Multidimensional Sequence Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
8417 Generator of Hypotheses an Approach of Data Mining Based on Monotone Systems Theory

Authors: Rein Kuusik, Grete Lind

Abstract:

Generator of hypotheses is a new method for data mining. It makes possible to classify the source data automatically and produces a particular enumeration of patterns. Pattern is an expression (in a certain language) describing facts in a subset of facts. The goal is to describe the source data via patterns and/or IF...THEN rules. Used evaluation criteria are deterministic (not probabilistic). The search results are trees - form that is easy to comprehend and interpret. Generator of hypotheses uses very effective algorithm based on the theory of monotone systems (MS) named MONSA (MONotone System Algorithm).

Keywords: data mining, monotone systems, pattern, rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
8416 Defining a Semantic Web-based Framework for Enabling Automatic Reasoning on CIM-based Management Platforms

Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano

Abstract:

CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping provides CIM diagrams with precise semantics and can be used for automatic reasoning about the management information models, as a design aid, by means of newgeneration CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.

Keywords: CIM, Knowledge-based Information Models, OntologyLanguages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
8415 Categorical Data Modeling: Logistic Regression Software

Authors: Abdellatif Tchantchane

Abstract:

A Matlab based software for logistic regression is developed to enhance the process of teaching quantitative topics and assist researchers with analyzing wide area of applications where categorical data is involved. The software offers an option of performing stepwise logistic regression to select the most significant predictors. The software includes a feature to detect influential observations in data, and investigates the effect of dropping or misclassifying an observation on a predictor variable. The input data may consist either as a set of individual responses (yes/no) with the predictor variables or as grouped records summarizing various categories for each unique set of predictor variables' values. Graphical displays are used to output various statistical results and to assess the goodness of fit of the logistic regression model. The software recognizes possible convergence constraints when present in data, and the user is notified accordingly.

Keywords: Logistic regression, Matlab, Categorical data, Influential observation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
8414 Framework for Spare Inventory Management

Authors: Eman M. Wahba, Noha M. Galal, Khaled S. El-Kilany

Abstract:

Spare parts inventory management is one of the major areas of inventory research. Analysis of recent literature showed that an approach integrating spare parts classification, demand forecasting, and stock control policies is essential; however, adapting this integrated approach is limited. This work presents an integrated framework for spare part inventory management and an Excel based application developed for the implementation of the proposed framework. A multi-criteria analysis has been used for spare classification. Forecasting of spare parts- intermittent demand has been incorporated into the application using three different forecasting models; namely, normal distribution, exponential smoothing, and Croston method. The application is also capable of running with different inventory control policies. To illustrate the performance of the proposed framework and the developed application; the framework is applied to different items at a service organization. The results achieved are presented and possible areas for future work are highlighted.

Keywords: Demand forecasting, intermittent demand, inventory management, integrated approach, spare parts, spare part classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6574
8413 Mathematical Rescheduling Models for Railway Services

Authors: Zuraida Alwadood, Adibah Shuib, Norlida Abd Hamid

Abstract:

This paper presents the review of past studies concerning mathematical models for rescheduling passenger railway services, as part of delay management in the occurrence of railway disruption. Many past mathematical models highlighted were aimed at minimizing the service delays experienced by passengers during service disruptions. Integer programming (IP) and mixed-integer programming (MIP) models are critically discussed, focusing on the model approach, decision variables, sets and parameters. Some of them have been tested on real-life data of railway companies worldwide, while a few have been validated on fictive data. Based on selected literatures on train rescheduling, this paper is able to assist researchers in the model formulation by providing comprehensive analyses towards the model building. These analyses would be able to help in the development of new approaches in rescheduling strategies or perhaps to enhance the existing rescheduling models and make them more powerful or more applicable with shorter computing time.

Keywords: Mathematical modelling, Mixed-integer programming, Railway rescheduling, Service delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3252
8412 Role of Association Rule Mining in Numerical Data Analysis

Authors: Sudhir Jagtap, Kodge B. G., Shinde G. N., Devshette P. M

Abstract:

Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century, the life sciences and even the arts have adopted elements of scientific computations. The numerical data analysis became key process in research and development of all the fields [6]. In this paper we have made an attempt to analyze the specified numerical patterns with reference to the association rule mining techniques with minimum confidence and minimum support mining criteria. The extracted rules and analyzed results are graphically demonstrated. Association rules are a simple but very useful form of data mining that describe the probabilistic co-occurrence of certain events within a database [7]. They were originally designed to analyze market-basket data, in which the likelihood of items being purchased together within the same transactions are analyzed.

Keywords: Numerical data analysis, Data Mining, Association Rule Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
8411 A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures

Authors: Silvina Caíno-Lores, Jesús Carretero

Abstract:

Large scale computing infrastructures have been widely developed with the core objective of providing a suitable platform for high-performance and high-throughput computing. These systems are designed to support resource-intensive and complex applications, which can be found in many scientific and industrial areas. Currently, large scale data-intensive applications are hindered by the high latencies that result from the access to vastly distributed data. Recent works have suggested that improving data locality is key to move towards exascale infrastructures efficiently, as solutions to this problem aim to reduce the bandwidth consumed in data transfers, and the overheads that arise from them. There are several techniques that attempt to move computations closer to the data. In this survey we analyse the different mechanisms that have been proposed to provide data locality for large scale high-performance and high-throughput systems. This survey intends to assist scientific computing community in understanding the various technical aspects and strategies that have been reported in recent literature regarding data locality. As a result, we present an overview of locality-oriented techniques, which are grouped in four main categories: application development, task scheduling, in-memory computing and storage platforms. Finally, the authors include a discussion on future research lines and synergies among the former techniques.

Keywords: Co-scheduling, data-centric, data-intensive, data locality, in-memory storage, large scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
8410 Correction of Infrared Data for Electrical Components on a Board

Authors: Seong-Ho Song, Ki-Seob Kim, Seop-Hyeong Park, Seon-Woo Lee

Abstract:

In this paper, the data correction algorithm is suggested when the environmental air temperature varies. To correct the infrared data in this paper, the initial temperature or the initial infrared image data is used so that a target source system may not be necessary. The temperature data obtained from infrared detector show nonlinear property depending on the surface temperature. In order to handle this nonlinear property, Taylor series approach is adopted. It is shown that the proposed algorithm can reduce the influence of environmental temperature on the components in the board. The main advantage of this algorithm is to use only the initial temperature of the components on the board rather than using other reference device such as black body sources in order to get reference temperatures.

Keywords: Infrared camera, Temperature Data compensation, Environmental Ambient Temperature, Electric Component

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
8409 The Need for the Development of Entrepreneurial Skill in Benue State University Students, Makurdi

Authors: Philomena Ibuh Adzongo, Margaret U. Oluwole, Justina Nguveren Jor.

Abstract:

This paper investigated the need for the development of entrepreneurial skills for Benue State University students. The population consisted of all 1,500 final year students in Benue State University. A sample of 100 students was selected using simple random sampling. A 12-item self-constructed and content validated questionnaire by research experts titled, the Need for the Development of Entrepreneurial Skills in Benue State University Students (NDECBSUS) was used to collect the data. The questionnaire items were rated using a 4-point modified rating scale of Strongly Agree, Agree, Disagree and Strongly Disagree, assigned the following scores of 4,3,2 and 1, respectively. The questionnaire was administered by the researcher with the help of two research assistants through the primary source. Simple percentages and chi-square were used to answer the research questions and test the hypotheses, respectively. The findings revealed that in business management, business management skills, personal skills, and technical skills need to be developed in students for them to become effective and efficient entrepreneurs and concluded that the acquisition of these skills will reduce the challenge of unemployment. The study recommended that funds should be made available by all education stakeholders for such programmes to remain functional.

Keywords: Entrepreneurial skill, entrepreneurship, need for development, university students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
8408 Differences in IT Effectiveness among Firms: An Empirical Investigation

Authors: Crystal X. Jiang, Tess Han, George J. Titus, Matthew J. Liberatore

Abstract:

Information is a critical asset and an important source for gaining competitive advantage in firms. The effective maintenance of IT becomes an important task. In order to better understand the determinants of IT effectiveness, this study employs the Industrial Organization (I/O) and Resource Based View (RBV) theories and investigates the industry effect and several major firmspecific factors in relation to their impact on firms- IT effectiveness. The data consist of a panel data of ten-year observations of firms whose IT excellence had been recognized by the CIO Magazine. The non-profit organizations were deliberately excluded, as explained later. The results showed that the effectiveness of IT management varied significantly across industries. Industry also moderated the effects of firm demographic factors such as size and age on IT effectiveness. Surprisingly, R & D investment intensity had negative correlation to IT effectiveness. For managers and practitioners, this study offers some insights for evaluation criteria and expectation for IT project success. Finally, the empirical results indicate that the sustainability of IT effectiveness appears to be short in duration.

Keywords: Firm effect, industry effect, IT effectiveness, sustained IT effectiveness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
8407 Political Economy of Integrated Soil Fertility Management in the Okavango Delta, Botswana

Authors: Oluwatoyin D. Kolawole, Oarabile Mogobe, Lapologang Magole

Abstract:

Although many factors play a significant role in agricultural production and productivity, the importance of soil fertility cannot be underestimated. The extent to which small farmers are able to manage the fertility of their farmlands is crucial in agricultural development particularly in sub-Saharan Africa (SSA).  This paper assesses the nutrient status of selected farmers’ fields in relation to how government policy addresses the allocation of and access to agricultural inputs (e.g. chemical fertilizers) in a unique social-ecological environment of the Okavango Delta in northern Botswana. It also analyses small farmers and soil scientists’ perceptions about the political economy of integrated soil fertility management (ISFM) in the area. A multi-stage sampling procedure was used to elicit quantitative and qualitative information from 228 farmers and 9 soil researchers through the use of interview schedules and questionnaires, respectively. Knowledge validation workshops and focus group discussions (FGDs) were also used to collect qualitative data from farmers. Thirty-three composite soil samples were collected from 30 farmers’ plots in three farming communities of Makalamabedi, Nokaneng and Mohembo for laboratory analysis. While meeting points exist, farmers and scientists have divergent perspectives on soil fertility management. Laboratory analysis carried out shows that most soils in the wetland and the adjoining dry-land/upland surroundings are low in essential nutrients as well as in cation exchange capacity (CEC). Although results suggest the identification and use of appropriate inorganic fertilizers, the low CEC is an indication that holistic cultural practices, which are beyond mere chemical fertilizations, are critical and more desirable for improved soil health and sustainable livelihoods in the area. Farmers’ age (t= -0.728; p≤0.10); their perceptions about the political economy (t = -0.485; p≤0.01) of ISFM; and their preference for the use of local knowledge in soil fertility management (t = -10.254; p≤0.01) had a significant relationship with how they perceived their involvement in the implementation of ISFM.

Keywords: Access, Botswana, ecology, inputs, Okavango Delta, policy, scientists, small farmers, soil fertility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567
8406 Knowledge Management Applied to Forensic Sciences

Authors: Norma Rodrigues Gomes

Abstract:

This paper presents initiatives of Knowledge Management (KM) applied to Forensic Sciences field, especially developed at the Forensic Science Institute of the Brazilian Federal Police. Successful projects, related to knowledge sharing, drugs analysis and environmental crimes, are reported in the KM perspective. The described results are related to: a) the importance of having an information repository, like a digital library, in such a multidisciplinary organization; b) the fight against drug dealing and environmental crimes, enabling the possibility to map the evolution of crimes, drug trafficking flows, and the advance of deforestation in Amazon rain forest. Perspectives of new KM projects under development and studies are also presented, tracing an evolution line of the KM view at the Forensic Science Institute.

Keywords: Business Intelligence, Digital Library, Forensic Science, Knowledge Management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
8405 A Generalised Relational Data Model

Authors: Georgia Garani

Abstract:

A generalised relational data model is formalised for the representation of data with nested structure of arbitrary depth. A recursive algebra for the proposed model is presented. All the operations are formally defined. The proposed model is proved to be a superset of the conventional relational model (CRM). The functionality and validity of the model is shown by a prototype implementation that has been undertaken in the functional programming language Miranda.

Keywords: nested relations, recursive algebra, recursive nested operations, relational data model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
8404 WiFi Data Offloading: Bundling Method in a Canvas Business Model

Authors: Majid Mokhtarnia, Alireza Amini

Abstract:

Mobile operators deal with increasing in the data traffic as a critical issue. As a result, a vital responsibility of the operators is to deal with such a trend in order to create added values. This paper addresses a bundling method in a Canvas business model in a WiFi Data Offloading (WDO) strategy by which some elements of the model may be affected. In the proposed method, it is supposed to sell a number of data packages for subscribers in which there are some packages with a free given volume of data-offloaded WiFi complimentary. The paper on hands analyses this method in the views of attractiveness and profitability. The results demonstrate that the quality of implementation of the WDO strongly affects the final result and helps the decision maker to make the best one.

Keywords: Bundling, canvas business model, telecommunication, WiFi Data Offloading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890
8403 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Moses Noel Dogonyaro

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.

Keywords: Data Analytics, Security, Privacy, Bootstrapping, and Fully Homomorphic Encryption Scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3459
8402 Complexity Leadership and Knowledge Management in Higher Education

Authors: Prabhakar Venugopal Gantasala

Abstract:

Complex environments triggered by globalization have necessitated new paradigms of leadership – Complexity Leadership that encompass multiple roles that leaders need to take upon. Success of Higher Education institutions depends on how well leaders can provide adaptive, administrative and enabling leadership. Complexity Leadership seems all the more relevant for institutions that are knowledge-driven and thrive on Knowledge creation, Knowledge storage and retrieval, Knowledge Sharing and Knowledge applications. Discussed in this paper are the elements of Globalization and the opportunities and challenges that are brought forth by globalization. The Complexity leadership paradigm in a knowledge-based economy and the need for such a paradigm shift for higher education institutions is presented. Further, the paper also discusses the support the leader requires in a knowledge-driven economy through knowledge management initiatives.

Keywords: Globalization, Complexity Leadership, Knowledge Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
8401 Single and Multiple Sourcing in the Auto-Manufacturing Industry

Authors: Sung Ho Ha, Eun Kyoung Kwon, Jong Sik Jin, Hyun Sun Park

Abstract:

This article outlines a hybrid method, incorporating multiple techniques into an evaluation process, in order to select competitive suppliers in a supply chain. It enables a purchaser to do single sourcing and multiple sourcing by calculating a combined supplier score, which accounts for both qualitative and quantitative factors that have impact on supply chain performance.

Keywords: Analytic hierarchy process, Data envelopment analysis, Neural network, Supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661
8400 Procurement for Management Services in Delivery of Public Construction Projects in Poland

Authors: A. Leśniak, E. Plebankiewicz, K. Zima

Abstract:

Construction projects can be implemented under various contractual and organizational systems. They can be divided into two groups: systems without the managing company where the Client manages the process, and systems with the managing company, where management is entrusted to an external company. In the public sector of the Polish market there are two ways of delivery of construction projects with the participation of the manager: one is to assign operations to another party, the so called Project Supervisor, whilst the other results from the application of FIDIC conditions of contract, which entail appointment of the Engineer. The decision is to be made by the Client and depends on various factors. On the public procurement market in Poland the selection of construction project manager boils down to awarding the contract for such a service. The selection can be done by one of eight public procurement procedures identified by the procurement law. The paper provides the analysis of 96 contracts for services awarded in 2011, which employed construction management. The study aimed to investigate the methods and criteria for selecting managers, applied in practice by the Polish public Clients.

Keywords: construction management, construction services, methods and criteria of tender selection, public procurement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
8399 Organizational Involvement and Employees’ Consumption of New Work Practices in State-owned Enterprises: The Ghanaian Case

Authors: M. Aminu Sanda, K. Ewontumah

Abstract:

This paper explored the challenges faced by the management of a Ghanaian state enterprise in managing conflicts and disturbances associated with its attempt to implement new work practices to enhance its capability to operate as a commercial entity. The purpose was to understand the extent to which organizational involvement, consistency and adaptability influence employees’ consumption of new work practices in transforming the organization’s organizational activity system. Using selfadministered questionnaires, data were collected from one hundred and eighty (180) employees and analyzed using both descriptive and inferential statistics. The results showed that constraints in organizational involvement and adaptability prevented the positive consumption of new work practices by employees in the organization. It is also found that the organization’s employees failed to consume the new practices being implemented, because they perceived the process as non-involving, and as such, did not encourage the development of employee capability, empowerment, and teamwork. The study concluded that the failure of the organization’s management to create opportunities for organizational learning constrained its ability to get employees consume the new work practices, which situation could have facilitated the organization’s capabilities of operating as a commercial entity.

Keywords: Organizational transformation, new work practices, work practice consumption, organizational involvement, state-owned enterprise, Ghana.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576