Search results for: surface water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4062

Search results for: surface water

3162 Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India

Authors: N. K. Ambujam, V. Sudha

Abstract:

Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll a (Chl a) were analysed. Trophic status of KR was classified by using Carlson's Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl a using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson’s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson’s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients.

Keywords: Hyper-eutrophication, Krishnagiri reservoir, nutrients, NPS pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
3161 The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene

Authors: R. Dangtungee, A. Rattanapan, S. Siengchin

Abstract:

Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE.

Keywords: High-density polyethylene, HDPE-g-MA, mechanical properties, morphological properties, silicon carbide, waste silicon carbide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
3160 Assessment of Risk of Ground Water Resources for the Emergency Supply in Relation to Their Contamination by Metals

Authors: Frantisek Bozek, Alexandr Bozek, Alena Bumbova, Jiri Dvorak, Lenka Jesonkova

Abstract:

The contamination of 15 ground water resources of a selected region earmarked for the emergency supply of population has been monitored. The resources have been selected on the basis of previous assessment of natural conditions and the exploitation of territory in their surroundings and infiltration area. Two resources out of 15 have been excluded from further exploitation, because they have not met some of the 72 assessed hygienic indicators of extended analysis. The remaining 13 resources have been the subject of health risk analysis in relation to the contamination by arsenic, lead, cadmium, mercury, nickel and manganese. The risk analysis proved that all 13 resources meet health standards with regard to the above mentioned purposefully selected elements and may thus be included into crisis plans. Water quality of ground resources may be assessed in the same way with regard to other contaminants.

Keywords: Contamination, drinking water, emergency supply, health risk, hygienic limits, metals, risk assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
3159 Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow

Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim

Abstract:

Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.

Keywords: Constriction, pressure drop, turbulence, water cut, water-in-oil emulsions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106
3158 Interaction of Building Stones with Inorganic Water-Soluble Salts

Authors: Z. Pavlík, J. Žumár, M. Pavlíková, R. Černý

Abstract:

Interaction of inorganic water-soluble salts and building stones is studied in the paper. Two types of sandstone and one type of spongillite as representatives of materials used in historical masonry are subjected to experimental testing. Within the performed experiments, measurement of moisture and chloride concentration profiles is done in order to get input data for computational inverse analysis. Using the inverse analysis, moisture diffusivity and chloride diffusion coefficient of investigated materials are accessed. Additionally, the effect of salt presence on water vapor storage is investigated using dynamic vapor sorption device. The obtained data represents valuable information for restoration of historical masonry and give evidence on the performance of studied stones in contact with water soluble salts.

Keywords: Moisture and chloride transport, sandstone, spongillite, moisture diffusivity, chloride diffusion coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
3157 A Shallow Water Model for Computing Inland Inundation Due to Indonesian Tsunami 2004 Using a Moving Coastal Boundary

Authors: Md. Fazlul Karim, Mohammed Ashaque Meah, Ahmad Izani M. Ismail

Abstract:

In this paper, a two-dimensional mathematical model is developed for estimating the extent of inland inundation due to Indonesian tsunami of 2004 along the coastal belts of Peninsular Malaysia and Thailand. The model consists of the shallow water equations together with open and coastal boundary conditions. In order to route the water wave towards the land, the coastal boundary is treated as a time dependent moving boundary. For computation of tsunami inundation, the initial tsunami wave is generated in the deep ocean with the strength of the Indonesian tsunami of 2004. Several numerical experiments are carried out by changing the slope of the beach to examine the extent of inundation with slope. The simulated inundation is found to decrease with the increase of the slope of the orography. Correlation between inundation / recession and run-up are found to be directly proportional to each other.

Keywords: Inland Inundation, Shallow Water Equations, Tsunami, Moving Coastal Boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
3156 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water

Authors: Krishna Kumar Singh, Praveen Jain

Abstract:

Collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with higher thickness of MS media indicated recharge rate slightly more than that of all treatment with lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.

Keywords: Groundwater, medium sand-mixed storm water filter, inflow sediment load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
3155 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling

Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao

Abstract:

Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.

Keywords: Neural Network, Fuzzy, River, Forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
3154 Beta-spline Surface Fitting to Multi-slice Images

Authors: Normi Abdul Hadi, Arsmah Ibrahim, Fatimah Yahya, Jamaludin Md. Ali

Abstract:

Beta-spline is built on G2 continuity which guarantees smoothness of generated curves and surfaces using it. This curve is preferred to be used in object design rather than reconstruction. This study however, employs the Beta-spline in reconstructing a 3- dimensional G2 image of the Stanford Rabbit. The original data consists of multi-slice binary images of the rabbit. The result is then compared with related works using other techniques.

Keywords: Beta-spline, multi-slice image, rectangular surface, 3D reconstruction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
3153 Direct Numerical Simulation of Oxygen Transfer at the Air-Water Interface in a Convective Flow Environment and Comparison to Experiments

Authors: B. Kubrak J. Wissink H. Herlina

Abstract:

Two-dimensional Direct Numerical Simulation (DNS) of high Schmidt number mass transfer in a convective flow environment (Rayleigh-B'enard) is carried out and results are compared to experimental data. A fourth-order accurate WENO-scheme has been used for scalar transport in order to aim for a high accuracy in areas of high concentration gradients. It was found that the typical spatial distance between downward plumes of cold high concentration water and the eddy size are in good agreement with experiments using a combined PIV-LIF technique for simultaneous and spatially synoptic measurements of 2D velocity and concentration fields.

Keywords: Air-Water Interface, DNS, Gas Transfer, LIF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
3152 Experimental Investigation of a Mixture of Methane, Carbon Dioxide and Nitrogen Gas Hydrate Formation in Water-Based Drilling Mud in the Presence or Absence of Thermodynamic Inhibitors

Authors: F. Esmaeilzadeh, Y. Fayazi, J. Fathikaljahi

Abstract:

Gas hydrates form when a number of factors co-exist: free water, hydrocarbon gas, cold temperatures and high pressures are typical of the near mud-line conditions in a deepwater drilling operation. Subsequently, when drilling with water based muds, particularly on exploration wells, the risk of hydrate formation associated with a gas influx is high. The consequences of gas hydrate formation while drilling are severe, and as such, every effort should be made to ensure the risk of hydrate formation is either eliminated or significantly reduced. Thermodynamic inhibitors are used to reduce the free water content of a drilling mud, and thus suppress the hydrate formation temperature. Very little experimental work has been performed by oil and gas research companies on the evaluation of gas hydrate formation in a water-based drilling mud. The main objective of this paper is to investigate the experimental gas hydrate formation for a mixture of methane, carbon dioxide & nitrogen in a water-based drilling mud with or without presence of different concentrations of thermodynamic inhibitors including pure salt and a combination of salt with methanol or ethylene glycol at different concentrations in a static loop apparatus. The experiments were performed using a static loop apparatus consisting of a 2.4307 cm inside diameter and 800 cm long pipe. All experiments were conducted at 2200 psia. The temperature in the loop was decreased at a rate of 3.33 °F/h from initial temperature of 80 °F.

Keywords: Hydrate formation, thermodynamic inhibitor, waterbaseddrilling mud, salt, static loop apparatus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
3151 A Comparison Study of the Removal of Selected Pharmaceuticals in Waters by Chemical Oxidation Treatments

Authors: F. Javier Benitez, Juan Luis Acero, Francisco J. Real, Gloria Roldan, Francisco Casas

Abstract:

The degradation of selected pharmaceuticals in some water matrices was studied by using several chemical treatments. The pharmaceuticals selected were the beta-blocker metoprolol, the nonsteroidal anti-inflammatory naproxen, the antibiotic amoxicillin, and the analgesic phenacetin; and their degradations were conducted by using UV radiation alone, ozone, Fenton-s reagent, Fenton-like system, photo-Fenton system, and combinations of UV radiation and ozone with H2O2, TiO2, Fe(II), and Fe(III). The water matrices, in addition to ultra-pure water, were a reservoir water, a groundwater, and two secondary effluents from two municipal WWTP. The results reveal that the presence of any second oxidant enhanced the oxidation rates, with the systems UV/TiO2 and O3/TiO2 providing the highest degradation rates. It is also observed in most of the investigated oxidation systems that the degradation rate followed the sequence: amoxicillin > naproxen > metoprolol > phenacetin. Lower rates were obtained with the pharmaceuticals dissolved in natural waters and secondary effluents due to the organic matter present which consume some amounts of the oxidant agents.

Keywords: Pharmaceuticals, UV radiation, ozone, advancedoxidation processes, water matrices, degradation rates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
3150 Monomial Form Approach to Rectangular Surface Modeling

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Keywords: Monomial form, rectangular surfaces, CAGD curves, monomial matrix applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
3149 Enhancement of Essential Oil from Agarwood by Subcritical Water Extraction and Pretreatments on Hydrodistillation

Authors: Nuttawan Yoswathana, M. N. Eshiaghi, K. Jaturapornpanich

Abstract:

The traditional method for essential oil extraction from agarwood (Aquilaria Crassna) is to soak it in water and follow with hydrodistillation. The effect of various agarwood pretreatments: ethanol, acid, alkaline, enzymes, and ultrasound, and the effect of subcritical water extraction(SWE) was studied to compare with the traditional method. The major compositions of agarwood oil from hydrodistillation were aroma compounds as follow: aristol-9-en-8- one (21.53%), selina-3, 7(11)-diene (12.96%), τ-himachalene (9.28%), β-guaiene (5.79%), hexadecanoic acid (4.90%) and guaia- 3,9-diene (4.21%). Whereas agarwood oil from pretreatments with ethanol and ultrasound, and SWE got fatty acid compounds. Extraction of agarwood oil using these pretreatments could improve the agarwood oil yields up to 2 times that of the traditional method. The components of the pretreated sample with diluted acid (H2SO4) at pH 4 gave quite similar results as the traditional method. Therefore, the enhancement of essential oil from agarwood depends on requirement of type of extracted oil that involved extraction methods.

Keywords: Agarwood, aquilaria crassna, hydrodistillation, subcritical water extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4562
3148 Hull Separation Optimization of Catamaran Unmanned Surface Vehicle Powered with Hydrogen Fuel Cell

Authors: Seok-In Sohn, Dae-Hwan Park, Yeon-Seung Lee, Il-Kwon Oh

Abstract:

This paper presents an optimization of the hull separation, i.e. transverse clearance. The main objective is to identify the feasible speed ranges and find the optimum transverse clearance considering the minimum wave-making resistance. The dimensions and the weight of hardware systems installed in the catamaran structured fuel cell powered USV (Unmanned Surface Vehicle) were considered as constraints. As the CAE (Computer Aided Engineering) platform FRIENDSHIP-Framework was used. The hull surface modeling, DoE (Design of Experiment), Tangent search optimization, tool integration and the process automation were performed by FRIENDSHIP-Framework. The hydrodynamic result was evaluated by XPAN the potential solver of SHIPFLOW.

Keywords: Full parametric modeling, Hull Separation, Wave-making resistance, Design Of Experiment, Tangent search method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
3147 Participatory Patterns of Community in Water and Waste Management: A Case Study of Municipality in Amphawa District, Samut Songkram Province

Authors: Srisuwan Kasemsawat

Abstract:

This is a survey research using quantitative and qualitative methodology. There were three objectives: 1) To study participatory level of community in water and waste environment management. 2) To study the affecting factors for community participation in water and waste environment management in Ampawa District, Samut Songkram Province. 3) To search for the participatory patterns in water and waste management. The population sample for the quantitative research was 1,364 people living in Ampawa District. The methodology was simple random sampling. Research instrument was a questionnaire and the qualitative research used purposive sampling in 6 Sub Districts which are Ta Ka, Suanluang, Bangkae, Muangmai, Kwae-om, and Bangnanglee Sub District Administration Organization. Total population is 63. For data analysis, the study used content analysis from quantitative research to synthesize and build question frame from the content for interview and conducting focus group interview. The study found that the community participatory in the issue of level in water and waste management are moderate of planning, operation, and evaluation. The issue of being beneficial is at low level. Therefore, the overall participatory level of community in water and waste environment management is at a medium level. The factors affecting the participatory of community in water and waste management are age, the period dwelling in the community and membership in which the mean difference is statistic significant at 0.05 in area of operation, being beneficial, and evaluation. For patterns of community participation, there is the correlation with water and waste management in 4 concerns which are 1) Participation in planning 2) Participation in operation 3) Participation in being beneficial both directly and indirectly benefited 4) Participation in evaluation and monitoring. The recommendation from this study is the need to create conscious awareness in order to increase participation level of people by organizing activities that promote participation with volunteer spirit. Government should open opportunities for people to participate in sharing ideas and create the culture of living together with equality which would build more concrete participation.

Keywords: Participation, Participatory Patterns, Water and Waste Management, Environmental Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
3146 Performance Evaluation of Powder Metallurgy Electrode in Electrical Discharge Machining of AISI D2 Steel Using Taguchi Method

Authors: Naveen Beri, S. Maheshwari, C. Sharma, Anil Kumar

Abstract:

In this paper an attempt has been made to correlate the usefulness of electrodes made through powder metallurgy (PM) in comparison with conventional copper electrode during electric discharge machining. Experimental results are presented on electric discharge machining of AISI D2 steel in kerosene with copper tungsten (30% Cu and 70% W) tool electrode made through powder metallurgy (PM) technique and Cu electrode. An L18 (21 37) orthogonal array of Taguchi methodology was used to identify the effect of process input factors (viz. current, duty cycle and flushing pressure) on the output factors {viz. material removal rate (MRR) and surface roughness (SR)}. It was found that CuW electrode (made through PM) gives high surface finish where as the Cu electrode is better for higher material removal rate.

Keywords: Electrical discharge machining (EDM), Powder Metallurgy (PM), Taguchi method, Material Removal Rate (MRR), Surface Roughness (SR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4318
3145 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T

Authors: M. N. Islam, B. Boswell, Y. R. Ginting

Abstract:

The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.

Keywords: Circularity, diameter error, drilling canned cycle, Pareto ANOVA, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144
3144 An Experimental Study on Evacuated Tube Solar Collector for Steam Generation in India

Authors: Avadhesh Yadav, Anunaya Saraswat

Abstract:

An evacuated tube solar collector is experimentally studied for steam generation. When the solar radiation falls on evacuated tubes, this energy is absorbed by the tubes and transferred to water with natural conduction and convection. A natural circulation of water occurs due to the inclination in tubes and header. In this experimental study, the efficiency of collector has been calculated. The result shows that the collector attains the maximum efficiency of 46.26% during 14:00 to 15:00h. Steam has been generated for two hours from 13:30 to 15:30 h on a winter day. Maximum solar intensity and maximum ambient temperatures are 795W/m2 and 19oC respectively on this day.

Keywords: Evacuated tube, solar collector, hot water, steam generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
3143 The Role of Halloysite’s Surface Area and Aspect Ratio on Tensile Properties of Ethylene Propylene Diene Monomer Nanocomposites

Authors: Pooria Pasbakhsh, Rangika T. De Silva, Vahdat Vahedi, Hanafi Ismail

Abstract:

The influence of three different types of halloysite nanotubes (HNTs) with different dimensions, namely as camel lake (CLA), Jarrahdale (JA) and Matauri Bay (MB), on their reinforcing ability of ethylene propylene dine monomer (EPDM) were investigated by varying the HNTs loading (from 0-15 phr). Mechanical properties of the nanocomposites improved with addition of all three HNTs, but CLA based nanocomposites exhibited a significant enhancement compared to the other HNTs. For instance, tensile properties of EPDM nanocomposites increased by 120%, 256% and 340% for MB, JA and CLA, respectively, with addition of 15 phr of HNTs. This could be due to the higher aspect ratio and higher surface area of CLA compared to others. Scanning electron microscopy (SEM) of nanocomposites at 15 phr of HNT loadings showed low amounts of pulled-out nanotubes which confirmed the presence of more embedded nanotubes inside the EPDM matrix, as well as aggregates within the fracture surface of EPDM/HNT nanocomposites

Keywords: Aspect ratio, Halloysite nanotubes (HNTs), Mechanical properties, Rubber/clay nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
3142 Assessment and Uncertainty Analysis of ROSA/LSTF Test on Pressurized Water Reactor 1.9% Vessel Upper Head Small-Break Loss-of-Coolant Accident

Authors: Takeshi Takeda

Abstract:

An experiment utilizing the ROSA/LSTF (rig of safety assessment/large-scale test facility) simulated a 1.9% vessel upper head small-break loss-of-coolant accident with an accident management (AM) measure under the total failure of high-pressure injection system of emergency core cooling system in a pressurized water reactor. Steam generator (SG) secondary-side depressurization on the AM measure was started by fully opening relief valves in both SGs when the maximum core exit temperature rose to 623 K. A large increase took place in the cladding surface temperature of simulated fuel rods on account of a late and slow response of core exit thermocouples during core boil-off. The author analyzed the LSTF test by reference to the matrix of an integral effect test for the validation of a thermal-hydraulic system code. Problems remained in predicting the primary coolant distribution and the core exit temperature with the RELAP5/MOD3.3 code. The uncertainty analysis results of the RELAP5 code confirmed that the sample size with respect to the order statistics influences the value of peak cladding temperature with a 95% probability at a 95% confidence level, and the Spearman’s rank correlation coefficient.

Keywords: LSTF, LOCA, uncertainty analysis, RELAP5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
3141 Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder

Authors: Avinash Chandra, R. P. Chhabra

Abstract:

Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number. The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number, . The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. The resulting flow and temperature fields are visualized in terms of the streamline and isotherm patterns in the proximity of the cylinder. The flow remains attached to the cylinder surface over the range of conditions spanned here except that for and ; at these conditions, a separated flow region is observed when the condition of the constant wall temperature is prescribed on the surface of the cylinder. The heat transfer characteristics are analyzed in terms of the local and average Nusselt numbers. The maximum value of the local Nusselt number always occurs at the corner points whereas it is found to be minimum at the rear stagnation point on the flat surface. Overall, the average Nusselt number increases with Grashof number and/ or Prandtl number in accordance with the scaling considerations. The numerical results are used to develop simple correlations as functions of Grashof and Prandtl number thereby enabling the interpolation of the present numerical results for the intermediate values of the Prandtl or Grashof numbers for both thermal boundary conditions.

Keywords: Constant heat flux, Constant surface temperature, Grashof number, natural convection, Prandtl number, Semi-circular cylinder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3416
3140 Human Elastin-derived Biomimetic Coating Surface to Support Cell Growth

Authors: Antonella Bandiera

Abstract:

A new sythetic gene coding for a Human Elastin-Like Polypeptide was constructed and expressed. The recombinant product was tested as coating agent to realize a surface suitable for cell growth. Coatings showed peculiar features and different human cell lines were seeded and cultured. All cell lines tested showed to adhere and proliferate on this substrate that has been shown also to exert a specific effect on cells, depending on cell type.

Keywords: elastin, recombinant protein, coating, cell adhesion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
3139 Water and Beverage Consumption among Children and Adolescents in Tehran Metropolitan City of Iran

Authors: Mitra Abtahi, Esmat Nasseri, Morteza Abodllahi

Abstract:

Introduction: Adequate hydration is necessary for proper physical and mental function. The aim of this study is to determine the consumption of water and all other beverages in children (8-13 years) and adolescents (14-17 years) in Tehran metropolitan city of Iran. Materials and Methods: In this cross-sectional study, 455 children (8-13 years) and 334 adolescents (14-17 years) were retrieved from north, center, and south of Tehran (18 schools). Instrument for data collection consisted of a “demographic and general health” questionnaire and a “7-day fluid record”. Data analyses were performed with SPSS 16 software. Results: The mean total consumption of fluids in school children was 1302 ± 500.6 ml/day. The highest mean intakes were observed for water (666 ± 398 ml/day), followed by milk (239 ± 183 ml/day), regular soft beverages (RSB) (188 ± 148 ml/day), and juices (60 ± 74 ml/day). Water, hot drinks (mainly tea) and soft drinks intake was significantly more in boys than girls. A significantly lower intake of milk and a higher intake of RSB and hot beverages (mainly tea) have been seen among adolescents compared to children. Conclusion: The most important finding is that mean fluid intake of children and adolescents does not meet international adequate intake references for water and fluids. This finding may suggest the necessity of development of the local references. To improve fluid intake habits of children and adolescents, relevant policy making and actions are warranted.

Keywords: Adolescents, beverages, children, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
3138 Smart Meters and In-Home Displays to Encourage Water Conservation through Behavioural Change

Authors: Julia Terlet, Thomas H. Beach, Yacine Rezgui

Abstract:

Urbanization, population growth, climate change and the current increase in water demand have made the adoption of innovative demand management strategies crucial to the water industry. Water conservation in urban areas has to be improved by encouraging consumers to adopt more sustainable habits and behaviours. This includes informing and educating them about their households’ water consumption and advising them about ways to achieve significant savings on a daily basis. This paper presents a study conducted in the context of the European FP7 WISDOM Project. By integrating innovative Information and Communication Technologies (ICT) frameworks, this project aims at achieving a change in water savings. More specifically, behavioural change will be attempted by implementing smart meters and in-home displays in a trial group of selected households within Cardiff (UK). Using this device, consumers will be able to receive feedback and information about their consumption but will also have the opportunity to compare their consumption to the consumption of other consumers and similar households. Following an initial survey, it appeared necessary to implement these in-home displays in a way that matches consumer's motivations to save water. The results demonstrated the importance of various factors influencing people’s daily water consumption. Both the relevant literature on the subject and the results of our survey therefore led us to include within the in-home device a variety of elements. It first appeared crucial to make consumers aware of the economic aspect of water conservation and especially of the significant financial savings that can be achieved by reducing their household’s water consumption on the long term. Likewise, reminding participants of the impact of their consumption on the environment by making them more aware of water scarcity issues around the world will help increasing their motivation to save water. Additionally, peer pressure and social comparisons with neighbours and other consumers, accentuated by the use of online social networks such as Facebook or Twitter, will likely encourage consumers to reduce their consumption. Participants will also be able to compare their current consumption to their past consumption and to observe the consequences of their efforts to save water through diverse graphs and charts. Finally, including a virtual water game within the display will help the whole household, children and adults, to achieve significant reductions by providing them with simple tips and advice to save water on a daily basis. Moreover, by setting daily and weekly goals for them to reach, the game will expectantly generate cooperation between family members. Members of each household will indeed be encouraged to work together to reduce their water consumption within different rooms of the house, such as the bathroom, the kitchen, or the toilets. Overall, this study will allow us to understand the elements that attract consumers the most and the features that are most commonly used by the participants. In this way, we intend to determine the main factors influencing water consumption in order to identify the measures that will most encourage water conservation in both the long and short term.

Keywords: Behavioural change, ICT technologies, water consumption, water conservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
3137 Modeling of Heat and Mass Transfer in Soil Plant-Atmosphere. Influence of the Spatial Variability of Soil Hydrodynamic

Authors: Aouattou Nabila, Saighi Mohamed, Fekih Malika

Abstract:

The modeling of water transfer in the unsaturated zone uses techniques and methods of the soil physics to solve the Richards-s equation. However, there is a disaccord between the size of the measurements provided by the soil physics and the size of the fields of hydrological modeling problem, to which is added the strong spatial variability of soil hydraulic properties. The objective of this work was to develop a methodology to estimate the hydrodynamic parameters for modeling water transfers at different hydrological scales in the soil-plant atmosphere systems.

Keywords: Hydraulic properties, Modeling, Unsaturated zone, Transfer, Water

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
3136 Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy

Authors: Fatma Khaled, Khaoula Hidouri, Bechir Chaouachi

Abstract:

Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.

Keywords: Vacuum membrane distillation, membrane module, membrane temperature, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
3135 Ecotoxicity Evaluation and Suggestion of Remediation Method of ZnO Nanoparticles in Aqueous Phase

Authors: Hyunsang Kim, Younghun Kim, Younghee Kim, Sangku Lee

Abstract:

We investigated ecotoxicity and performed experiment for removing ZnO nanoparticles in water. Short term exposure of hatching test using fertilized eggs (O. latipes) showed deformity in 5ppm of ZnO nanoparticles solution. And in 10ppm ZnO nanoparticles solution delayed hatching was observed. Hereine, chemical precipitation method was suggested for removing ZnO nanoparticles in water. The precipitated ZnO nanoparticles showed the form of ZnS after addition of Na2S, and the form of Zn3(PO4)2 for Na2HPO4. The removal efficiency of ZnO nanoparticles in water was closed to 100% for two cases. In ecotoxicity evaluation of as-precipitated ZnS and Zn3(PO4)2, they did not cause any acute toxicity for D. magna. It is noted that this precipitation treatment of ZnO is effective to reduce the potential cytotoxicity.

Keywords: ZnO nanoparticles, ZnS, Zn3(PO4)2, ecotoxicity evaluation, chemical precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
3134 The Absence of a National Industrial Effluent Policy: Imminent Risk to the Brazilian Bodies of Water

Authors: Aline Alves Bandeira, Maria Cecília de Paula Silva

Abstract:

The existing legal gap regarding thes treatment and final disposal of industrial effluents in Brazil promotes legal uncertainty. The government has not structured itself to guarantee environmental protection. The current legal system and public policies must guarantee the protection of bodies of water and an effective treatment of industrial effluents. This is because economic progress, eco-efficiency and industrial ecology are inseparable. The lack of protection for the water bodies weakens environmental protection, with abuses by companies that do not give due treatment to their effluents, or fail to present the water balance of their factories. It is considered necessary to enact a specific law on industrial effluents related to a National Industrial Effluent Policy, because it is the location of the largest Integrated Industrial Complex in the Southern Hemisphere. The regulation of this subject cannot be limited by decrees of the local Executive Branch, allowing the inspection of the industrial activity or enterprise to be affected fundamentally by environmental self-control, or by private institutions.

Keywords: Effluent policy, environmental law, environmental management, industrial effluents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
3133 The Kinetic of Biodegradation Lignin in Water Hyacinth (Eichhornia Crassipes) by Phanerochaete Chrysosporium using Solid State Fermentation (SSF) Method for Bioethanol Production, Indonesia

Authors: Eka Sari, Siti Syamsiah, Hary Sulistyo, Muslikhin

Abstract:

Lignocellulosic materials are considered the most abundant renewable resource available for the Bioethanol Production. Water Hyacinth is one of potential raw material of the world-s worst aquatic plant as a feedstock to produce Bioethanol. The purposed this research is obtain reduced of matter for biodegradation lignin in Biological pretreatment with White Rot Fungi eg. Phanerochaete Chrysosporium using Solid state Fermentation methods. Phanerochaete Chrysosporium is known to have the best ability to degraded lignin, but simultaneously it can also degraded cellulose and hemicelulose. During 8 weeks incubation, water hyacinth occurred loss of weight reached 34,67%, while loss of lignin reached 67,21%, loss of cellulose reached 11,01% and loss of hemicellulose reached 36,56%. The kinetic of losses lignin using regression linear plot, the results is obtained constant rate (k) of reduction lignin is -0.1053 and the equation of reduction of lignin is y = wo - 0, 1.53 x

Keywords: Biodegradation, lignin, PhanerochaeteChrysosporium, SSF, Water Hyacinth, Bioethanol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580