Search results for: optimal distribution plan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3763

Search results for: optimal distribution plan

2863 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the EnergyPlus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.

Keywords: Thermal performance, phase change material, energy efficiency, PCM optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
2862 Energy Benefits of Urban Platooning with Self-Driving Vehicles

Authors: Eduardo F. Mello, Peter H. Bauer

Abstract:

The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.

Keywords: Electric vehicles, energy efficiency, optimization, platooning, self-driving vehicles, urban traffic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
2861 The Mechanistic and Oxidative Study of Methomyl and Parathion Degradation by Fenton Process

Authors: Chihhao Fan, Ming-Chu Liao

Abstract:

The purpose of this study is to investigate the chemical degradation of the organophosphorus pesticide of parathion and carbamate insecticide of methomyl in the aqueous phase through Fenton process. With the employment of batch Fenton process, the degradation of the two selected pesticides at different pH, initial concentration, humic acid concentration, and Fenton reagent dosages was explored. The Fenton process was found effective to degrade parathion and methomyl. The optimal dosage of Fenton reagents (i.e., molar concentration ratio of H2O2 to Fe2+) at pH 7 for parathion degradation was equal to 3, which resulted in 50% removal of parathion. Similarly, the optimal dosage for methomyl degradation was 1, resulting in 80% removal of methomyl. This study also found that the presence of humic substances has enhanced pesticide degradation by Fenton process significantly. The mass spectroscopy results showed that the hydroxyl free radical may attack the single bonds with least energy of investigated pesticides to form smaller molecules which is more easily to degrade either through physio-chemical or bilolgical processes.

Keywords: Fenton Process, humic acid, methomyl, parathion, pesticides

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
2860 Steady State Power Flow Calculations with STATCOM under Load Increase Scenario and Line Contingencies

Authors: A. S. Telang, P. P. Bedekar

Abstract:

Flexible AC transmission system controllers play an important role in controlling the line power flow and in improving voltage profiles of the power system network. They can be used to increase the reliability and efficiency of transmission and distribution system. The modeling of these FACTS controllers in power flow calculations have become a challenging research problem. This paper presents a simple and systematic approach for a steady state power flow calculations of power system with STATCOM (Static Synchronous Compensator). It shows how systematically STATCOM can be implemented in conventional power flow calculations. The main contribution of this paper is to investigate this approach for two special conditions i.e. consideration of load increase pattern incorporating load change (active, reactive and both active and reactive) at all load buses simultaneously and the line contingencies under such load change. Such investigation proves to be relevant for determination of strategy for the optimal placement of STATCOM to enhance the voltage stability. The performance has been evaluated on many standard IEEE test systems. The results for standard IEEE-30 bus test system are presented here.

Keywords: Load flow analysis, Newton-Raphson (N-R) power flow, Flexible AC transmission system, FACTS, Static synchronous compensator, STATCOM, voltage profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169
2859 Thermal Analysis of the Current Path from Circuit Breakers Using Finite Element Method

Authors: Adrian T. Plesca

Abstract:

This paper describes a three-dimensional thermal model of the current path included in the low voltage power circuit breakers. The model can be used to analyse the thermal behaviour of the current path during both steady-state and transient conditions. The current path lengthwise temperature distribution and timecurrent characteristic of the terminal connections of the power circuit breaker have been obtained. The influence of the electric current and voltage drop on main electric contact of the circuit breaker has been investigated. To validate the three-dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Current path, power circuit breakers, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
2858 SELF-Cured Alkali Activated Slag Concrete Mixes- An Experimental Study

Authors: Mithun B. M., Mattur C. Narasimhan

Abstract:

Alkali Activated Slag Concrete (AASC) mixes are manufactured by activating ground granulated blast furnace slag (GGBFS) using sodium hydroxide and sodium silicate solutions. The aim of the present experimental research was to investigate the effect of increasing the dosages of sodium oxide (Na2O, in the range of 4 to 8%) and the activator modulus (Ms) (i.e. the SiO2/Na2O ratio, in the range of 0.5 to 1.5) of the alkaline solutions, on the workability and strength characteristics of self-cured (air-cured) alkali activated Indian slag concrete mixes. Further the split tensile and flexure strengths for optimal mixes were studied for each dosage of Na2O.It is observed that increase in Na2O concentration increases the compressive, split-tensile and flexural strengths, both at the early and later-ages, while increase in Ms, decreases the workability of the mixes. An optimal Ms of 1.25 is found at various Na2O dosages. No significant differences in the strength performances were observed between AASCs manufactured with alkali solutions prepared using either of potable and de-ionized water.

Keywords: Alkali activated slag, self-curing, strength characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3031
2857 Dynamic State Estimation with Optimal PMU and Conventional Measurements for Complete Observability

Authors: M. Ravindra, R. Srinivasa Rao

Abstract:

This paper presents a Generalized Binary Integer Linear Programming (GBILP) method for optimal allocation of Phasor Measurement Units (PMUs) and to generate Dynamic State Estimation (DSE) solution with complete observability. The GBILP method is formulated with Zero Injection Bus (ZIB) constraints to reduce the number of locations for placement of PMUs in the case of normal and single line contingency. The integration of PMU and conventional measurements is modeled in DSE process to estimate accurate states of the system. To estimate the dynamic behavior of the power system with proposed method, load change up to 40% considered at a bus in the power system network. The proposed DSE method is compared with traditional Weighted Least Squares (WLS) state estimation method in presence of load changes to show the impact of PMU measurements. MATLAB simulations are carried out on IEEE 14, 30, 57, and 118 bus systems to prove the validity of the proposed approach.

Keywords: Observability, phasor measurement units, PMU, state estimation, dynamic state estimation, SCADA measurements, zero injection bus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
2856 Generalized Maximal Ratio Combining as a Supra-optimal Receiver Diversity Scheme

Authors: Jean-Pierre Dubois, Rania Minkara, Rafic Ayoubi

Abstract:

Maximal Ratio Combining (MRC) is considered the most complex combining technique as it requires channel coefficients estimation. It results in the lowest bit error rate (BER) compared to all other combining techniques. However the BER starts to deteriorate as errors are introduced in the channel coefficients estimation. A novel combining technique, termed Generalized Maximal Ratio Combining (GMRC) with a polynomial kernel, yields an identical BER as MRC with perfect channel estimation and a lower BER in the presence of channel estimation errors. We show that GMRC outperforms the optimal MRC scheme in general and we hereinafter introduce it to the scientific community as a new “supraoptimal" algorithm. Since diversity combining is especially effective in small femto- and pico-cells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to IP-based 4th generation networks.

Keywords: Bit error rate, femto-internet cells, generalized maximal ratio combining, signal-to-scattering noise ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
2855 Steering Velocity Bounded Mobile Robots in Environments with Partially Known Obstacles

Authors: Reza Hossseynie, Amir Jafari

Abstract:

This paper presents a method for steering velocity bounded mobile robots in environments with partially known stationary obstacles. The exact location of obstacles is unknown and only a probability distribution associated with the location of the obstacles is known. Kinematic model of a 2-wheeled differential drive robot is used as the model of mobile robot. The presented control strategy uses the Artificial Potential Field (APF) method for devising a desired direction of movement for the robot at each instant of time while the Constrained Directions Control (CDC) uses the generated direction to produce the control signals required for steering the robot. The location of each obstacle is considered to be the mean value of the 2D probability distribution and similarly, the magnitude of the electric charge in the APF is set as the trace of covariance matrix of the location probability distribution. The method not only captures the challenges of planning the path (i.e. probabilistic nature of the location of unknown obstacles), but it also addresses the output saturation which is considered to be an important issue from the control perspective. Moreover, velocity of the robot can be controlled during the steering. For example, the velocity of robot can be reduced in close vicinity of obstacles and target to ensure safety. Finally, the control strategy is simulated for different scenarios to show how the method can be put into practice.

Keywords: Steering, obstacle avoidance, mobile robots, constrained directions control, artificial potential field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
2854 Application of the Data Distribution Service for Flexible Manufacturing Automation

Authors: Marco Ryll, Svetan Ratchev

Abstract:

This paper discusses the applicability of the Data Distribution Service (DDS) for the development of automated and modular manufacturing systems which require a flexible and robust communication infrastructure. DDS is an emergent standard for datacentric publish/subscribe middleware systems that provides an infrastructure for platform-independent many-to-many communication. It particularly addresses the needs of real-time systems that require deterministic data transfer, have low memory footprints and high robustness requirements. After an overview of the standard, several aspects of DDS are related to current challenges for the development of modern manufacturing systems with distributed architectures. Finally, an example application is presented based on a modular active fixturing system to illustrate the described aspects.

Keywords: Flexible Manufacturing, Publish/Subscribe, Plug & Produce.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
2853 Photon Localization inside a Waveguide Modeled by Uncertainty Principle

Authors: Shilpa N. Kulkarni, Sujata R. Patrikar

Abstract:

In the present work, an attempt is made to understand electromagnetic field confinement in a subwavelength waveguide structure using concepts of quantum mechanics. Evanescent field in the waveguide is looked as inability of the photon to get confined in the waveguide core and uncertainty of position is assigned to it. The momentum uncertainty is calculated from position uncertainty. Schrödinger wave equation for the photon is written by incorporating position-momentum uncertainty. The equation is solved and field distribution in the waveguide is obtained. The field distribution and power confinement is compared with conventional waveguide theory. They were found in good agreement with each other.

Keywords: photon localization in waveguide, photon tunneling, quantum confinement of light, Schrödinger wave equation, uncertainty principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918
2852 Thermal Analysis of Extrusion Process in Plastic Making

Authors: S. K. Fasogbon, T. M. Oladosu, O. S. Osasuyi

Abstract:

Plastic extrusion has been an important process of plastic production since 19th century. Meanwhile, in plastic extrusion process, wide variation in temperature along the extrudate usually leads to scraps formation on the side of finished products. To avoid this situation, there is a need to deeply understand temperature distribution along the extrudate in plastic extrusion process. This work developed an analytical model that predicts the temperature distribution over the billet (the polymers melt) along the extrudate during extrusion process with the limitation that the polymer in question does not cover biopolymer such as DNA. The model was solved and simulated. Results for two different plastic materials (polyvinylchloride and polycarbonate) using self-developed MATLAB code and a commercially developed software (ANSYS) were generated and ultimately compared. It was observed that there is a thermodynamic heat transfer from the entry level of the billet into the die down to the end of it. The graph plots indicate a natural exponential decay of temperature with time and along the die length, with the temperature being 413 K and 474 K for polyvinylchloride and polycarbonate respectively at the entry level and 299.3 K and 328.8 K at the exit when the temperature of the surrounding was 298 K. The extrusion model was validated by comparison of MATLAB code simulation with a commercially available ANSYS simulation and the results favourably agree. This work concludes that the developed mathematical model and the self-generated MATLAB code are reliable tools in predicting temperature distribution along the extrudate in plastic extrusion process.

Keywords: ANSYS, extrusion process, MATLAB, plastic making, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
2851 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: Experimentation, forging, process modeling, strain distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
2850 Control Technology for a Daily Load-following Operation in a Nuclear Power Plant

Authors: Keuk Jong Yu, Sang Hee Kang, Sung Chang You

Abstract:

In Korea, the technology of a load fo nuclear power plant has been being developed. automatic controller which is able to control temperature and axial power distribution was developed. identification algorithm and a model predictive contact former transforms the nuclear reactor status into numerically. And the latter uses them and ge manipulated values such as two kinds of control ro this automatic controller, the performance of a coperation was evaluated. As a result, the automatic generated model parameters of a nuclear react to nuclear reactor average temperature and axial power the desired targets during a daily load follow.

Keywords: axial power distribution, model reactor temperature, system identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
2849 Optimization of Machining Parametric Study on Electrical Discharge Machining

Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel

Abstract:

Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.

Keywords: Material removal rate, TWR, OC, DOE, ANOVA, MINITAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
2848 Research on the Layout of Ground Control Points in Plain area 1:10000 DLG Production Using POS Technique

Authors: Dong Ming, Chen Haipeng

Abstract:

POS (also been called DGPS/IMU) technique can obtain the Exterior Orientation Elements of aerial photo, so the triangulation and DLG production using POS can save large numbers of ground control points (GCP), and this will improve the produce efficiency of DLG and reduce the cost of collecting GCP. This paper mainly research on POS technique in production of 1:10 000 scale DLG on GCP distribution. We designed 23 kinds of ground control points distribution schemes, using integrated sensor direction method to do the triangulation experiments, based on the results of triangulation, we produce a map with the scale of 1:10 000 and test its accuracy. This paper put forward appropriate GCP distributing schemes by experiments and research above, and made preparations for the application of POS technique on photogrammetry 4D data production.

Keywords: POS, IMU, DGPS, DLG, ground control point, triangulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
2847 Size Control of Nanoparticles Using a Microfluidic Device

Authors: Shigenori Togashi, Erika Katayama, Mitsuhiro Matsuzawa

Abstract:

We have developed a microfluidic device system for the continuous producting of nanoparticles, and we have clarified the relationship between the mixing performance of reactors and the particle size. First, we evaluated the mixing performance of reactors by carring out the Villermaux–Dushman reaction and determined the experimental conditions for producing AgCl nanoparticles. Next, we produced AgCl nanoparticles and evaluated the mixing performance and the particle size. We found that as the mixing performance improves the size of produced particles decreases and the particle size distribution becomes sharper. We produced AgCl nanoparticles with a size of 86 nm using the microfluidic device that had the best mixing performance among the three reactors we tested in this study; the coefficient of variation (Cv) of the size distribution of the produced nanoparticles was 26.1%.

Keywords: Microfluidic, Mixing, Nanoparticle, Silver Chloride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
2846 3D Liver Segmentation from CT Images Using a Level Set Method Based on a Shape and Intensity Distribution Prior

Authors: Nuseiba M. Altarawneh, Suhuai Luo, Brian Regan, Guijin Tang

Abstract:

Liver segmentation from medical images poses more challenges than analogous segmentations of other organs. This contribution introduces a liver segmentation method from a series of computer tomography images. Overall, we present a novel method for segmenting liver by coupling density matching with shape priors. Density matching signifies a tracking method which operates via maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Density matching controls the direction of the evolution process and slows down the evolving contour in regions with weak edges. The shape prior improves the robustness of density matching and discourages the evolving contour from exceeding liver’s boundaries at regions with weak boundaries. The model is implemented using a modified distance regularized level set (DRLS) model. The experimental results show that the method achieves a satisfactory result. By comparing with the original DRLS model, it is evident that the proposed model herein is more effective in addressing the over segmentation problem. Finally, we gauge our performance of our model against matrices comprising of accuracy, sensitivity, and specificity.

Keywords: Bhattacharyya distance, distance regularized level set (DRLS) model, liver segmentation, level set method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
2845 Experimental and Numerical Studies of Drag Reduction on a Circular Cylinder

Authors: A.O. Ladjedel, B.T.Yahiaoui, C.L.Adjlout, D.O.Imine

Abstract:

In the present paper; an experimental and numerical investigations of drag reduction on a grooved circular cylinder have been performed. The experiments were carried out in closed circuit subsonic wind tunnel (TE44); the pressure distribution on the cylinder was conducted using a TE44DPS differential pressure scanner and the drag forces were measured using the TE81 balance. The display unit is linked to a computer, loaded with DATASLIM software for data analysis and logging of result. The numerical study was performed using the code ANSYS FLUENT solving the Reynolds Averaged Navier-Stokes (RANS) equations. The k-ε and k- ω SST models were tested. The results obtained from the experimental and numerical investigations have showed a reduction in the drag when using longitudinal grooves namely 2 and 6 on the cylinder.

Keywords: Circular cylinder, Drag, grooves, pressure distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2824
2844 Architectural Acoustic Modeling for Predicting Reverberation Time in Room Acoustic Design Using Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper presents architectural acoustic modeling to estimate reverberation time in room acoustic design using multiple criteria decision making analysis. First, fundamental decision criteria were determined to evaluate the reverberation time in the room acoustic design problem. Then, the proposed model was applied to a practical decision problem to evaluate and select the optimal room acoustic design model. Finally, the optimal acoustic design of the rooms was analyzed and ranked using a multiple criteria decision making analysis method.

Keywords: Architectural acoustics, room acoustics, architectural acoustic modeling, reverberation time, room acoustic design, multiple criteria decision making analysis, decision analysis, MCDMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
2843 Coil and Jacket's Effects on Internal Flow Behavior and Heat Transfer in Stirred Tanks

Authors: B. Lakghomi, E. Kolahchian, A. Jalali, F. Farhadi

Abstract:

Different approaches for heating\cooling of stirred tanks, coils and jackets, are investigated using computational fluid dynamics (CFD).A time-dependant sliding mesh approach is applied to simulate the flow in both conditions. The investigations are carried out under the turbulent flow conditions for a Rushton impeller and heating elements are considered isothermal. The flow behavior and temperature distribution are studied for each case and heat transfer coefficient is calculated. Results show different velocity profiles for each case. Unsteady temperature distribution is not similar for different cases .In the case of the coiled stirred vessel more uniform temperature and higher heat transfer coefficient is resulted.

Keywords: CFD, coil and jacket, heat transfer, stirred tank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4912
2842 Influence of Reaction Temperature and Water Content on Wheat Straw Pyrolysis

Authors: N.Ibrahim, Peter A. Jensen, K. Dam-Johansen, Roshafima.R. Ali, Rafiziana.M. Kasmani

Abstract:

The aim of this study was to investigate the influence of reaction temperature and wheat straw moisture content on the pyrolysis product yields, in the temperature range of 475-575 °C. Samples of straw with moisture contents from 1.5 wt % to 15.0 wt % were fed to a bench scale Pyrolysis Centrifuge Reactor (PCR). The experimental results show that the changes in straw moisture content have no significant effect on the distribution of pyrolysis product yields. The maximum bio-oil yields approximately 60 (wt %, on dry ash free feedstock basis) was observed around 525 °C - 550 °C for all straw moisture levels. The water content in the wet straw bio-oil was the highest. The heating value of bio-oil and solid char were measured and the percentages of its energy distribution were calculated. The energy distributions of bio-oil, char and gas were 56- 69 % 24-33 %, and 2-19 %, respectively.

Keywords: Flash pyrolysis, moisture content, wheat straw, biooil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299
2841 Robust Camera Calibration using Discrete Optimization

Authors: Stephan Rupp, Matthias Elter, Michael Breitung, Walter Zink, Christian Küblbeck

Abstract:

Camera calibration is an indispensable step for augmented reality or image guided applications where quantitative information should be derived from the images. Usually, a camera calibration is obtained by taking images of a special calibration object and extracting the image coordinates of projected calibration marks enabling the calculation of the projection from the 3d world coordinates to the 2d image coordinates. Thus such a procedure exhibits typical steps, including feature point localization in the acquired images, camera model fitting, correction of distortion introduced by the optics and finally an optimization of the model-s parameters. In this paper we propose to extend this list by further step concerning the identification of the optimal subset of images yielding the smallest overall calibration error. For this, we present a Monte Carlo based algorithm along with a deterministic extension that automatically determines the images yielding an optimal calibration. Finally, we present results proving that the calibration can be significantly improved by automated image selection.

Keywords: Camera Calibration, Discrete Optimization, Monte Carlo Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
2840 Unsteady Transient Free Convective Flow of an Incompressible Viscous Fluid under Influence of Uniform Transverse Magnetic Field

Authors: Praveen Saraswat, Vipin Kumar Verma, Rudraman Singh

Abstract:

The unsteady transient free convection flow of an incompressible dissipative viscous fluid between parallel plates at different distances have been investigated under porous medium. Due to presence of heat flux under the influence of uniform transverse magnetic field the velocity distribution and the temperature distribution, is shown graphically. Since exact solution is not possible so we find parametrical solution by perturbation technique. The result is shown in graph for different parameters. We notice that heat generation effects fluid velocity keeping in which of free convection which cools.

Keywords: Transient, Convection, MHD, Viscous, Porous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
2839 Statistical Estimation of Spring-back Degree Using Texture Database

Authors: Takashi Sakai, Shinsaku Kikuta, Jun-ichi Koyama

Abstract:

Using a texture database, a statistical estimation of spring-back was conducted in this study on the basis of statistical analysis. Both spring-back in bending deformation and experimental data related to the crystal orientation show significant dispersion. Therefore, a probabilistic statistical approach was established for the proper quantification of these values. Correlation was examined among the parameters F(x) of spring-back, F(x) of the buildup fraction to three orientations after 92° bending, and F(x) at an as-received part on the basis of the three-parameter Weibull distribution. Consequent spring-back estimation using a texture database yielded excellent estimates compared with experimental values.

Keywords: Bending, Spring-back, Database, Crystallographic Orientation, Texture, SEM-EBSD, Weibull distribution, Statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
2838 Comparing the Performance of the Particle Swarm Optimization and the Genetic Algorithm on the Geometry Design of Longitudinal Fin

Authors: Hassan Azarkish, Said Farahat, S.Masoud H. Sarvari

Abstract:

In the present work, the performance of the particle swarm optimization and the genetic algorithm compared as a typical geometry design problem. The design maximizes the heat transfer rate from a given fin volume. The analysis presumes that a linear temperature distribution along the fin. The fin profile generated using the B-spline curves and controlled by the change of control point coordinates. An inverse method applied to find the appropriate fin geometry yield the linear temperature distribution along the fin corresponds to optimum design. The numbers of the populations, the count of iterations and time to convergence measure efficiency. Results show that the particle swarm optimization is most efficient for geometry optimization.

Keywords: Genetic Algorithm, Geometry Optimization, longitudinal Fin, Particle Swarm Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
2837 Speech Enhancement by Marginal Statistical Characterization in the Log Gabor Wavelet Domain

Authors: Suman Senapati, Goutam Saha

Abstract:

This work presents a fusion of Log Gabor Wavelet (LGW) and Maximum a Posteriori (MAP) estimator as a speech enhancement tool for acoustical background noise reduction. The probability density function (pdf) of the speech spectral amplitude is approximated by a Generalized Laplacian Distribution (GLD). Compared to earlier estimators the proposed method estimates the underlying statistical model more accurately by appropriately choosing the model parameters of GLD. Experimental results show that the proposed estimator yields a higher improvement in Segmental Signal-to-Noise Ratio (S-SNR) and lower Log-Spectral Distortion (LSD) in two different noisy environments compared to other estimators.

Keywords: Speech Enhancement, Generalized Laplacian Distribution, Log Gabor Wavelet, Bayesian MAP Marginal Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
2836 A Characterized and Optimized Approach for End-to-End Delay Constrained QoS Routing

Authors: P.S.Prakash, S.Selvan

Abstract:

QoS Routing aims to find paths between senders and receivers satisfying the QoS requirements of the application which efficiently using the network resources and underlying routing algorithm to be able to find low-cost paths that satisfy given QoS constraints. The problem of finding least-cost routing is known to be NP hard or complete and some algorithms have been proposed to find a near optimal solution. But these heuristics or algorithms either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we analyzed two algorithms namely Characterized Delay Constrained Routing (CDCR) and Optimized Delay Constrained Routing (ODCR). The CDCR algorithm dealt an approach for delay constrained routing that captures the trade-off between cost minimization and risk level regarding the delay constraint. The ODCR which uses an adaptive path weight function together with an additional constraint imposed on the path cost, to restrict search space and hence ODCR finds near optimal solution in much quicker time.

Keywords: QoS, Delay, Routing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
2835 Optimal Transmission Network Usage and Loss Allocation Using Matrices Methodology and Cooperative Game Theory

Authors: Baseem Khan, Ganga Agnihotri

Abstract:

Restructuring of Electricity supply industry introduced many issues such as transmission pricing, transmission loss allocation and congestion management. Many methodologies and algorithms were proposed for addressing these issues. In this paper a power flow tracing based method is proposed which involves Matrices methodology for the transmission usage and loss allocation for generators and demands. This method provides loss allocation in a direct way because all the computation is previously done for usage allocation. The proposed method is simple and easy to implement in a large power system. Further it is less computational because it requires matrix inversion only a single time. After usage and loss allocation cooperative game theory is applied to results for finding efficient economic signals. Nucleolus and Shapely value approach is used for optimal allocation of results. Results are shown for the IEEE 6 bus system and IEEE 14 bus system.

Keywords: Modified Kirchhoff Matrix, Power flow tracing, Transmission Pricing, Transmission Loss Allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594
2834 Performance Analysis of OQSMS and MDDR Scheduling Algorithms for IQ Switches

Authors: K. Navaz, Kannan Balasubramanian

Abstract:

Due to the increasing growth of internet users, the emerging applications of multicast are growing day by day and there is a requisite for the design of high-speed switches/routers. Huge amounts of effort have been done into the research area of multicast switch fabric design and algorithms. Different traffic scenarios are the influencing factor which affect the throughput and delay of the switch. The pointer based multicast scheduling algorithms are not performed well under non-uniform traffic conditions. In this work, performance of the switch has been analyzed by applying the advanced multicast scheduling algorithm OQSMS (Optimal Queue Selection Based Multicast Scheduling Algorithm), MDDR (Multicast Due Date Round-Robin Scheduling Algorithm) and MDRR (Multicast Dual Round-Robin Scheduling Algorithm). The results show that OQSMS achieves better switching performance than other algorithms under the uniform, non-uniform and bursty traffic conditions and it estimates optimal queue in each time slot so that it achieves maximum possible throughput.

Keywords: Multicast, Switch, Delay, Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165