Search results for: Sequential pattern mining
705 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design
Authors: Kenny Raharjo, Ramon Lawrence
Abstract:
Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.Keywords: Game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536704 Design and Analysis of a New Dual-Band Microstrip Fractal Antenna
Authors: I. Zahraoui, J. Terhzaz, A. Errkik, El. H. Abdelmounim, A. Tajmouati, L. Abdellaoui, N. Ababssi, M. Latrach
Abstract:
This paper presents a novel design of a microstrip fractal antenna based on the use of Sierpinski triangle shape, it’s designed and simulated by using FR4 substrate in the operating frequency bands (GPS, WiMAX), the design is a fractal antenna with a modified ground structure. The proposed antenna is simulated and validated by using CST Microwave Studio Software, the simulated results presents good performances in term of radiation pattern and matching input impedance.
Keywords: Dual-band antenna, Fractal antenna, GPS band, Modified ground structure, Sierpinski triangle, WiMAX band.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4008703 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in GeG Company
Authors: Iman Atighi, Jalal Soleimannejad, Reza Pourjafarabadi, Saeid Moradpour
Abstract:
In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increased prices. Therefore, the only way to increase profit will be to reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) and etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GeG) was examined by using of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.
Keywords: GeG Company, maintainability, maintenance costs, reliability-center-maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720702 A Framework for SQL Learning: Linking Learning Taxonomy, Cognitive Model and Cross Cutting Factors
Authors: Huda Al Shuaily, Karen Renaud
Abstract:
Databases comprise the foundation of most software systems. System developers inevitably write code to query these databases. The de facto language for querying is SQL and this, consequently, is the default language taught by higher education institutions. There is evidence that learners find it hard to master SQL, harder than mastering other programming languages such as Java. Educators do not agree about explanations for this seeming anomaly. Further investigation may well reveal the reasons. In this paper, we report on our investigations into how novices learn SQL, the actual problems they experience when writing SQL, as well as the differences between expert and novice SQL query writers. We conclude by presenting a model of SQL learning that should inform the instructional material design process better to support the SQL learning process.
Keywords: Pattern, SQL, learning, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343701 Incremental Learning of Independent Topic Analysis
Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda
Abstract:
In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.Keywords: Text mining, topic extraction, independent, incremental, independent component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060700 A Social Decision Support Mechanism for Group Purchasing
Authors: Lien-Fa Lin, Yung-Ming Li, Fu-Shun Hsieh
Abstract:
With the advancement of information technology and development of group commerce, people have obviously changed in their lifestyle. However, group commerce faces some challenging problems. The products or services provided by vendors do not satisfactorily reflect customers’ opinions, so that the sale and revenue of group commerce gradually become lower. On the other hand, the process for a formed customer group to reach group-purchasing consensus is time-consuming and the final decision is not the best choice for each group members. In this paper, we design a social decision support mechanism, by using group discussion message to recommend suitable options for group members and we consider social influence and personal preference to generate option ranking list. The proposed mechanism can enhance the group purchasing decision making efficiently and effectively and venders can provide group products or services according to the group option ranking list.
Keywords: Social network, group decision, text mining, group commerce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390699 EDULOGIC+ - Knowledge Management through Data Analysis in Education
Authors: Alok Sharma, Dr. Harvinder S. Saini, Raviteja Tiruvury
Abstract:
This paper outlines the application of Knowledge Management (KM) principles in the context of Educational institutions. The paper caters to the needs of the engineering institutions for imparting quality education by delineating the instruction delivery process in a highly structured, controlled and quantified manner. This is done using a software tool EDULOGIC+. The central idea has been based on the engineering education pattern in Indian Universities/ Institutions. The data, contents and results produced over contiguous years build the necessary ground for managing the related accumulated knowledge. Application of KM has been explained using certain examples of data analysis and knowledge extraction.Keywords: Education software system, information system, knowledge management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753698 Introduction of Hyperaccumulator Plants with Phytoremediation Potential of a Lead- Zinc Mine in Iran
Authors: M. Cheraghi, B. Lorestani, N. Yousefi
Abstract:
Contamination of heavy metals represents one of the most pressing threats to water and soil resources as well as human health. Phytoremediation can be potentially used to remediate metalcontaminated sites. A major step towards the development of phytoremediation of heavy metal impacted soils is the discovery of the heavy metal hyperaccumulation in plants. In this study, the several established criteria to define a hyperaccumulator plant were applied. The case study was represented by a mining area in Hamedan province in the central west part of Iran. Obtained results showed that the most of sampled species were able to grow on heavily metal-contaminated soils and also were able to accumulate extraordinarily high concentrations of some metals such as Zn, Mn, Cu, Pb and Fe. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of some measured heavy metals and, therefore, they have suitable potential for phytoremediation of contaminated soils.Keywords: Enrichment factor, Heavy metals, Hyperaccumulator, Phytoremediation, Translocation factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2887697 Customer Segmentation in Foreign Trade based on Clustering Algorithms Case Study: Trade Promotion Organization of Iran
Authors: Samira Malekmohammadi Golsefid, Mehdi Ghazanfari, Somayeh Alizadeh
Abstract:
The goal of this paper is to segment the countries based on the value of export from Iran during 14 years ending at 2005. To measure the dissimilarity among export baskets of different countries, we define Dissimilarity Export Basket (DEB) function and use this distance function in K-means algorithm. The DEB function is defined based on the concepts of the association rules and the value of export group-commodities. In this paper, clustering quality function and clusters intraclass inertia are defined to, respectively, calculate the optimum number of clusters and to compare the functionality of DEB versus Euclidean distance. We have also study the effects of importance weight in DEB function to improve clustering quality. Lastly when segmentation is completed, a designated RFM model is used to analyze the relative profitability of each cluster.Keywords: Customers segmentation, Customer relationship management, Clustering, Data Mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288696 Comparing the Educational Effectiveness of eHealth to Deliver Health Knowledge between Higher Literacy Users and Lower Literacy Users
Authors: Yah-Ling Hung
Abstract:
eHealth is undoubtedly emerging as a promising vehicle to provide information for individual self-care management. However, the accessing ability, reading strategies and navigating behavior between higher literacy users and lower literacy users are significantly different. Yet, ways to tailor audiences’ health literacy and develop appropriate eHealth to feed their need become a big challenge. The purpose of this study is to compare the educational effectiveness of eHealth to deliver health knowledge between higher literacy users and lower literacy users, thus establishing useful design strategies of eHealth for users with different level of health literacy. The study was implemented in four stages, the first of which developed a website as the testing media to introduce health care knowledge relating to children’s allergy. Secondly, a reliability and validity test was conducted to make sure that all of the questions in the questionnaire were good indicators. Thirdly, a pre-post knowledge test was conducted with 66 participants, 33 users with higher literacy and 33 users with lower literacy respectively. Finally, a usability evaluation survey was undertaken to explore the criteria used by users with different levels of health literacy to evaluate eHealth. The results demonstrated that the eHealth Intervention in both groups had a positive outcome. There was no significant difference between the effectiveness of eHealth intervention between users with higher literacy and users with lower literacy. However, the average mean of lower literacy group was marginally higher than the average mean of higher literacy group. The findings also showed that the criteria used to evaluate eHealth could be analyzed in terms of the quality of information, appearance, appeal and interaction, but the users with lower literacy have different evaluation criteria from those with higher literacy. This is an interdisciplinary research which proposes the sequential key steps that incorporate the planning, developing and accessing issues that need to be considered when designing eHealth for patients with varying degrees of health literacy.Keywords: eHealth, health intervention, health literacy, usability evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888695 Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data
Authors: Cristina G. Dascâlu, Corina Dima Cozma, Elena Carmen Cotrutz
Abstract:
The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.Keywords: Data clustering, medical data, principal components analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502694 Compact Slotted Broadband Antenna for Wireless Applications
Authors: M. M. Sharma, Swati Gupta, Deepak Bhatnagar, R. P. Yadav
Abstract:
This paper presents the theoretical investigation of a slotted patch antenna. The main objective of proposed work is to obtain a large bandwidth antenna with reduced size. The antenna has a compact size of 21.1mm x 20.25mm x 8.5mm. Two designs with minor variation are studied which provide wide impedance bandwidths of 24.056% and 25.63% respectively with the use of parasitic elements when excited by a probe feed. The advantages of this configuration are its compact size and the wide range of frequencies covered. A parametric study is also conducted to investigate the characteristics of the antenna under different conditions. The measured return loss and radiation pattern indicate the suitability of this design for WLAN applications, namely, Wi- Max, 802.11a/b/g and ISM bands.Keywords: Inset feed, microstrip antenna, parasitic patch, shorting wall, slot, wi-max.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740693 Research of Linear Camera Calibration Based on Planar Pattern
Authors: Jin Sun, Hongbin Gu
Abstract:
An important step in three-dimensional reconstruction and computer vision is camera calibration, whose objective is to estimate the intrinsic and extrinsic parameters of each camera. In this paper, two linear methods based on the different planes are given. In both methods, the general plane is used to replace the calibration object with very good precision. In the first method, after controlling the camera to undergo five times- translation movements and taking pictures of the orthogonal planes, a set of linear constraints of the camera intrinsic parameters is then derived by means of homography matrix. The second method is to get all camera parameters by taking only one picture of a given radius circle. experiments on simulated data and real images,indicate that our method is reasonable and is a good supplement to camera calibration.Keywords: camera calibration, 3D reconstruction, computervision
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830692 Forecasting Fraudulent Financial Statements using Data Mining
Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas
Abstract:
This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.Keywords: Machine learning, stacking, classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3056691 Post Occupancy Life Cycle Analysis of a Green Building Energy Consumption at the University of Western Ontario in London - Canada
Authors: M. Bittencourt, E. K. Yanful, D. Velasquez, A. E. Jungles
Abstract:
The CMLP building was developed to be a model for sustainability with strategies to reduce water, energy and pollution, and to provide a healthy environment for the building occupants. The aim of this paper is to investigate the environmental effects of energy used by this building. A LCA (life cycle analysis) was led to measure the real environmental effects produced by the use of energy. The impact categories most affected by the energy use were found to be the human health effects, as well as ecotoxicity. Natural gas extraction, uranium milling for nuclear energy production, and the blasting for mining and infrastructure construction are the processes contributing the most to emissions in the human health effect. Data comparing LCA results of CMLP building with a conventional building results showed that energy used by the CMLP building has less damage for the environment and human health than a conventional building.Keywords: Environmental Impacts, Green buildings, Life CycleAnalysis, Sustainability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775690 Correlation-based Feature Selection using Ant Colony Optimization
Authors: M. Sadeghzadeh, M. Teshnehlab
Abstract:
Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.
Keywords: Ant colony optimization, Classification, Datamining, Feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421689 Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation
Authors: Md. Masum Billah, Mohiuddin Ahmed, Soheli Farhana
Abstract:
In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.Keywords: Walking robots, locomotion, hexapod robot, gait, hazardous field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4437688 Performance Evaluation of an Ontology-Based Arabic Sentiment Analysis
Authors: Salima Behdenna, Fatiha Barigou, Ghalem Belalem
Abstract:
Due to the quick increase in the volume of Arabic opinions posted on various social media, Arabic sentiment analysis has become one of the most important areas of research. Compared to English, there is very little works on Arabic sentiment analysis, in particular aspect-based sentiment analysis (ABSA). In ABSA, aspect extraction is the most important task. In this paper, we propose a semantic ABSA approach for standard Arabic reviews to extract explicit aspect terms and identify the polarity of the extracted aspects. The proposed approach was evaluated using HAAD datasets. Experiments showed that the proposed approach achieved a good level of performance compared with baseline results. The F-measure was improved by 19% for the aspect term extraction tasks and 55% aspect term polarity task.
Keywords: Sentiment analysis, opinion mining, Arabic, aspect level, opinion, polarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 464687 Analysis of Diverse Cluster Ensemble Techniques
Authors: S. Sarumathi, N. Shanthi, P. Ranjetha
Abstract:
Data mining is the procedure of determining interesting patterns from the huge amount of data. With the intention of accessing the data faster the most supporting processes needed is clustering. Clustering is the process of identifying similarity between data according to the individuality present in the data and grouping associated data objects into clusters. Cluster ensemble is the technique to combine various runs of different clustering algorithms to obtain a general partition of the original dataset, aiming for consolidation of outcomes from a collection of individual clustering outcomes. The performances of clustering ensembles are mainly affecting by two principal factors such as diversity and quality. This paper presents the overview about the different cluster ensemble algorithm along with their methods used in cluster ensemble to improve the diversity and quality in the several cluster ensemble related papers and shows the comparative analysis of different cluster ensemble also summarize various cluster ensemble methods. Henceforth this clear analysis will be very useful for the world of clustering experts and also helps in deciding the most appropriate one to determine the problem in hand.Keywords: Cluster Ensemble, Consensus Function, CSPA, Diversity, HGPA, MCLA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842686 Case Studies of CSAMT Method Applied to Study of Complex Rock Mass Structure and Hidden Tectonic
Authors: Yuxin Chen, Qingyun Di, C. Dinis da Gama
Abstract:
In projects like waterpower, transportation and mining, etc., proving up the rock-mass structure and hidden tectonic to estimate the geological body-s activity is very important. Integrating the seismic results, drilling and trenching data, CSAMT method was carried out at a planning dame site in southwest China to evaluate the stability of a deformation. 2D and imitated 3D inversion resistivity results of CSAMT method were analyzed. The results indicated that CSAMT was an effective method for defining an outline of deformation body to several hundred meters deep; the Lung Pan Deformation was stable in natural conditions; but uncertain after the future reservoir was impounded. This research presents a good case study of the fine surveying and research on complex geological structure and hidden tectonic in engineering project.Keywords: CSAMT Surveying, Deformation Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449685 The Analysis of Knee Joint Movement During Golf Swing in Professional and Amateur Golfers
Authors: M.Somjarod, V. Tanawat, l. Weerawat
Abstract:
The understanding of knee movement during swing importance for golf swing improving and preventing injury. Thirty male professional and amateur golfers were assigned to swing time by time for 3 times. Data from a vedio-based motion capture were used to compute knee joint movement variables. The results showed that professional and amateur golfers were significantly in left knee flexion angle at the impact point and mid follow through phase. Nevertheless, left knee external rotation in both groups was also significant. The right knee were no significant different in all variable. However, pattern of knee joint movement are also likely between professional and amateur golfers.Keywords: Golfer, Knee joint, Movement, Swing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4410684 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.
Keywords: Data mining, Korean linguistic feature, literary fiction, relationship extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795683 Tolerance of Heavy Metals by Gram Positive Soil Bacteria
Authors: I. V. N. Rathnayake, Mallavarapu Megharaj, Nanthi Bolan, Ravi Naidu
Abstract:
With the intention of screening for heavy metal tolerance, a number of bacteria were isolated and characterized from a pristine soil. Two Gram positive isolates were identified as Paenibacillus sp. and Bacillus thuringeinsis. Tolerance of Cd2+, Cu2+ and Zn2+ by these bacteria was studied and found that both bacteria were highly sensitive to Cu2+ compared to other two metals. Both bacteria showed the same pattern of metal tolerance in the order Zn+ > Cd2+ > Cu2+. When the metal tolerance in both bacteria was compared, Paenibacillus sp. showed the highest sensitivity to Cu2+ where as B. thuringiensis showed highest sensitivity to Cd2+ and Zn2+ .These findings revealed the potential of Paenibacillus sp. in developing a biosensor to detect Cu2+ in environmental samples.Keywords: Heavy metals, bacteria, soil, tolerance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7013682 Value Analysis of Islamic Banking and Conventional Banking to Measure Value Co-creation
Authors: Amna Javed, Hisashi Masuda, Youji Kohda
Abstract:
This study examines the value analysis in Islamic and conventional banking services in Pakistan. Many scholars have focused on co-creation of values in services but mainly economic values not non-economic.
Keywords: Economic values, Islamic banking, Non-economic values, Value system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3257681 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions
Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko
Abstract:
The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multicomponent objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.
Keywords: Kohonen self-organizing maps, clusterization, multicomponent solutions, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762680 Evolving Knowledge Extraction from Online Resources
Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao
Abstract:
In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.Keywords: Evolving learning, knowledge extraction, knowledge graph, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942679 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.
Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547678 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. O. Ebrahim, P. K. Jain
Abstract:
Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). Changing the connection of the stator windings from delta to star at no load can achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.
Keywords: Artificial Neural Network, ANN, Energy Saving Mode, ESM, Induction Motor, IM, star/delta switch, supervisory control, fluid transportation, reliability, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 390677 Fe, Pb, Mn, and Cd Concentrations in Edible Mushrooms (Agaricus campestris) Grown in Abakaliki, Ebonyi State, Nigeria
Authors: N. O. Omaka, I. F. Offor, R.C. Ehiri
Abstract:
The health and environmental risk of eating mushrooms grown in Abakaliki were evaluated in terms of heavy metals accumulation. Mushroom samples were collected from four different farms located at Izzi, Amajim, Amana and Amudo and analyzed for (iron, lead, manganese and cadmium) using Bulk Scientific Atomic Absorption Spectrophotometer 205. Results indicates mean range of concentrations of the trace metals in the mushrooms were Fe (0.22-152. 03), Mn (0.74-9.76), Pb (0.01.0.80), Cd (0.61-0.82) mg/L respectively. Accumulation of Cd on the four locations under investigation was higher than the UK Government Food Science Surveillance and World Health Organization maximum recommended levels in mushroom for human consumption. The Fe and Mn contaminants of Amudo were significant and show the impact of anthropogenic/atmospheric pollution. The potential sources of the heavy metals in the mushrooms were from urban waste, dust from mining and quarrying activities, natural geochemistry of the area, and use of inorganic fertilizers
Keywords: Agaricus campestris, edible, health implication heavy metal, mushroom.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564676 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in Golgohar Company
Authors: Iman Atighi, Jalal Soleimannejad, Ahmad Akbarinasab, Saeid Moradpour
Abstract:
In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increase prices. Therefore, the only way to increase profit will be reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Company (GEG) was examined by using of MTBF (Mean Time between Failures) and MTTR (Mean Time to Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.
Keywords: Golgohar Iron Ore Mining & Industrial Company, maintainability, maintenance costs, reliability-center-maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658