Search results for: Reynolds shear stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1694

Search results for: Reynolds shear stress

794 Finite Element Analysis of Different Architectures for Bone Scaffold

Authors: Nimisha R. Shirbhate, Sanjay Bokade

Abstract:

Bone Scaffolds are fundamental architecture or a support structure that allows the regeneration of lost or damaged tissues and they are developed as a crucial tool in biomedical engineering. The structure of bone scaffolds plays an important role in treating bone defects. The shape of the bone scaffold performs a vital role, specifically pore size and shape, which help understand the behavior and strength of the scaffold. In this article, first, fundamental aspects of bone scaffold design are established. Second, the behavior of each architecture of the bone scaffold with biomaterials is discussed. Finally, for each structure, the stress analysis was carried out. This study aimed to design a porous and mechanically strong bone regeneration scaffold that can be successfully manufactured. Four porous architectures of the bone scaffold were designed using Rhinoceros solid modelling software. The structure model consisted of repeatable unit cells arranged in layers to fill the chosen scaffold volume. The mechanical behavior of used biocompatible material is studied with the help of ANSYS 19.2 software. It is also playing significant role to predict the strength of defined structures or 3 dimensional models.

Keywords: Bone scaffold, stress analysis, porous structure, static loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 534
793 Fung’s Model Constants for Intracranial Blood Vessel of Human Using Biaxial Tensile Test Results

Authors: Mohammad Shafigh, Nasser Fatouraee, Amirsaied Seddighi

Abstract:

Mechanical properties of cerebral arteries are, due to their relationship with cerebrovascular diseases, of clinical worth. To acquire these properties, eight samples were obtained from middle cerebral arteries of human cadavers, whose death were not due to injuries or diseases of cerebral vessels, and tested within twelve hours after resection, by a precise biaxial tensile test device specially developed for the present study considering the dimensions, sensitivity and anisotropic nature of samples. The resulting stress-stretch curve was plotted and subsequently fitted to a hyperelastic three-parameter Fung model. It was found that the arteries were noticeably stiffer in circumferential than in axial direction. It was also demonstrated that the use of multi-parameter hyperelastic constitutive models is useful for mathematical description of behavior of cerebral vessel tissue. The reported material properties are a proper reference for numerical modeling of cerebral arteries and computational analysis of healthy or diseased intracranial arteries.

Keywords: Anisotropic Tissue, Cerebral Blood Vessels, Fung Model, Nonlinear Material, Plain Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3359
792 Heat Transfer and Frictional Characteristics in Rectangular Channel with Inclined Perforated Baffles

Authors: Se Kyung Oh, Ary Bachtiar Krishna Putra, Soo Whan Ahn

Abstract:

A numerical study on the turbulent flow and heat transfer characteristics in the rectangular channel with different types of baffles is carried out. The inclined baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of 5o. Reynolds number is varied between 23,000 and 57,000. The SST turbulence model is applied in the calculation. The validity of the numerical results is examined by the experimental data. The numerical results of the flow field depict that the flow patterns around the different baffle type are entirely different and these significantly affect the local heat transfer characteristics. The heat transfer and friction factor characteristics are significantly affected by the perforation density of the baffle plate. It is found that the heat transfer enhancement of baffle type II (3 hole baffle) has the best values.

Keywords: Turbulent flow, rectangular channel, inclined baffle, heat transfer, friction factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
791 Numerical Analysis of Air Flow and Conjugated Heat Transfer in Internally Grooved Parallel- Plate Channels

Authors: Hossein Shokouhmand , Koohyar Vahidkhah, Mohammad A. Esmaeili

Abstract:

A numerical investigation of surface heat transfer characteristics of turbulent air flows in different parallel plate grooved channels is performed using CFD code. The results are obtained for Reynolds number ranging from 10,000 to 30,000 and for arc-shaped and rectangular grooved channels. The influence of different geometric parameters of dimples as well as the number of them and the geometric and thermophysical properties of channel walls are studied. It is found that there exists an optimum value for depth of dimples in which the largest wall heat flux can be achieved. Also, the results show a critical value for the ratio of wall thermal conductivity to the one of fluid in which the dependence of wall heat flux to this ratio almost vanishes. In most cases examined, heat transfer enhancement is larger for arc-shaped grooved channels than rectangular ones.

Keywords: dimple, heat transfer enhancement, Numerical, optimum value, turbulent air flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
790 Analysis of Boiling in Rectangular Micro Channel Heat Sink

Authors: Ahmed Jassim Shkarah, Mohd Yusoff Bin Sulaiman, Md Razali bin Hj Ayob

Abstract:

A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing Tow-phase flows. The sole purpose for analyzing two phase flow heat transfer in rectangular micro channel is to pin point what are the different factors affecting this phenomenon. Different methods and techniques have been undertaken to analyze the equations arising constituting the flow of heat from gas phase to liquid phase and vice versa.Different models of micro channels have been identified and analyzed. How the geometry of micro channels affects their activity i.e. of circular and non-circular geometry has also been reviewed. To the study the results average Nusselt no plotted against the Reynolds no has been taken into consideration to study average heat exchange in micro channels against applied heat flux. High heat fluxes up to 140 W/cm2 were applied to investigate micro-channel thermal characteristics.

Keywords: Tow Phase flow, Micro channel, VOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
789 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length

Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.

Keywords: Bond strength, climate change, pull-out test, replacement of reinforcement material, textile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
788 Turbulent Forced Convection Flow in a Channel over Periodic Grooves Using Nanofluids

Authors: Farshid Fathinia, Mohammad Parsazadeh, Amirhossein Heshmati

Abstract:

Turbulent forced convection flow in a 2-dimensional channel over periodic grooves is numerically investigated. Finite volume method is used to study the effect of turbulence model. The range of Reynolds number varied from 10000 to 30000 for the ribheight to channel-height ratio (B/H) of 2. The downstream wall is heated by a uniform heat flux while the upstream wall is insulated. The investigation is analyzed with different types of nanoparticles such as SiO2, Al2O3, and ZnO, with water as a base fluid are used. The volume fraction is varied from 1% to 4% and the nanoparticle diameter is utilized between 20nm to 50nm. The results revealed 114% heat transfer enhancement compared to the water in a grooved channel by using SiO2 nanoparticle with volume fraction and nanoparticle diameter of 4% and 20nm respectively.

Keywords: Forced convection, Periodic grooves, Nanofluids, Turbulent model, Heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
787 Influence of Fiber Packing on Transverse Plastic Properties of Metal Matrix Composites

Authors: Mohammad Tahaye Abadi

Abstract:

The present paper concerns with the influence of fiber packing on the transverse plastic properties of metal matrix composites. A micromechanical modeling procedure is used to predict the effective mechanical properties of composite materials at large tensile and compressive deformations. Microstructure is represented by a repeating unit cell (RUC). Two fiber arrays are considered including ideal square fiber packing and random fiber packing defined by random sequential algorithm. The micromechanical modeling procedure is implemented for graphite/aluminum metal matrix composite in which the reinforcement behaves as elastic, isotropic solids and the matrix is modeled as an isotropic elastic-plastic solid following the von Mises criterion with isotropic hardening and the Ramberg-Osgood relationship between equivalent true stress and logarithmic strain. The deformation is increased to a considerable value to evaluate both elastic and plastic behaviors of metal matrix composites. The yields strength and true elastic-plastic stress are determined for graphite/aluminum composites.

Keywords: Fiber packing, metal matrix composites, micromechanics, plastic deformation, random

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
786 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings

Authors: A. Ince

Abstract:

In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to nonproportional loading paths.

Keywords: Elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
785 Air flow and Heat Transfer Modeling of an Axial Flux Permanent Magnet Generator

Authors: Airoldi G., Bumby J. R., Dominy C., G.L. Ingram, Lim C. H., Mahkamov K., N. L. Brown, A. Mebarki, M. Shanel

Abstract:

Axial Flux Permanent Magnet (AFPM) Machines require effective cooling due to their high power density. The detrimental effects of overheating such as degradation of the insulation materials, magnets demagnetization, and increase of Joule losses are well known. This paper describes the CFD simulations performed on a test rig model of an air cooled Axial Flux Permanent Magnet (AFPM) generator built at Durham University to identify the temperatures and heat transfer coefficient on the stator. The Reynolds Averaged Navier-Stokes and the Energy equations are solved and the flow pattern and heat transfer developing inside the machine are described. The Nusselt number on the stator surfaces has been found. The dependency of the heat transfer on the flow field is described temperature field obtained. Tests on an experimental are undergoing in order to validate the CFD results.

Keywords: Axial flux permanent magnet machines, thermal modeling, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
784 CFD Simulation of the Hydrodynamic Vibrator for Stuck - Pipe Liquidation

Authors: L. Grinis, V. Haslavsky

Abstract:

Stuck-pipe in drilling operations is one of the most pressing and expensive problems in the oil industry. This paper describes a computational simulation and an experimental study of the hydrodynamic vibrator, which may be used for liquidation of stuck-pipe problems during well drilling. The work principle of the vibrator is based upon the known phenomena of Vortex Street of Karman and the resulting generation of vibrations. We will discuss the computational simulation and experimental investigations of vibrations in this device. The frequency of the vibration parameters has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. The computational simulation of the vibrator work and its effectiveness was carried out using FLUENT software. The research showed high degree of congruence with the results of the laboratory tests and allowed to determine the effect of the granular material features upon the pipe vibration in the well. This study demonstrates the potential of using the hydrodynamic vibrator in a well drilling system.

Keywords: Drilling, stuck-pipe, vibration, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
783 An Evaluation of Pesticide Stress Induced Proteins in three Cyanobacterial Species-Anabaena Fertilissima, Aulosira Fertilissima and Westiellopsis Prolifica using SDS-PAGE

Authors: Nirmal Kumar, Rita N. Kumar, Anubhuti Bora, Manmeet Kaur Amb

Abstract:

The whole-cell protein-profiling technique was evaluated for studying differences in banding pattern of three different species of Cyanobacteria i.e. Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica under the influence of four different pesticides-2,4-D (Ethyl Ester of 2,4-Dichloro Phenoxy Acetic Acid), Pencycuron (N-[(4-chlorophenyl)methyl]-Ncyclopentyl- N'–phenylurea), Endosulfan (6,7,8,9,10,10hexachloro- 1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3- oxide) and Tebuconazole (1-(4-Chlorophenyl)-4,4-dimethyl-3-(1,2,4- triazol-1-ylmethyl)pentan-3-ol). Whole-cell extracts were obtained by sonication treatment (Sonifier cell disruptor -Branson Digital Sonifier S-450D, USA) and were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE analyses of the total protein profile of Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica showed a linear decrease in the protein content with increasing pesticide stress when administered to different concentrations of 2, 4-D, Pencycuron, Endosulfan and Tebuconazole. The results indicate that different stressors exert specific effects on cyanobacterial protein synthesis.

Keywords: Cyanobacteria, pesticide, SDS-PAGE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
782 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations

Authors: M. Mazraehli, F. Mehrabani, S. Zare

Abstract:

In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.

Keywords: Distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799
781 Seasonal Heat Stress Effect on Cholesterol, Estradiol and Progesterone during Follicular Development in Egyptian Buffalo

Authors: Heba F. Hozyen, Hodallah H. Ahmed, S. I. A. Shalaby, G. E. S. Essawy

Abstract:

Biochemical and hormonal changes that occur in both follicular fluid and blood are involved in the control of ovarian physiology. The present study was conducted on follicular fluid and serum samples obtained from 708 buffaloes. Samples were examined for estradiol, progesterone, and cholesterol concentrations in relation to seasonal changes, ovarian follicular size, and stage of estrous cycle. The obtained results revealed that follicular fluid and serum levels of estradiol, progesterone, and cholesterol were significantly lower during summer and autumn when compared to winter and spring seasons. With the increase in follicular size, the follicular fluid levels of progesterone and cholesterol were significantly decreased, while estradiol levels were significantly increased. Estradiol and progesterone levels were significantly higher in follicular fluid than blood, while cholesterol was significantly lower in follicular fluid than serum. In conclusion, the current study threw a light on the hormonal changes in the follicular fluid and blood under the effect of heat stress which could be related to the low fertility of buffalo in the summer.

Keywords: Buffalo, follicular fluid, follicular development, seasonal changes, steroids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
780 Simulation Study on Vehicle Drag Reduction by Surface Dimples

Authors: S. F. Wong, S. S. Dol

Abstract:

Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.

Keywords: Aerodynamics, Boundary Layer, Dimple, Drag, Kinetic Energy, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
779 Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

Authors: Muhammad Afzal, Cao Yihua, Zhao Ming

Abstract:

The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem.

Keywords: Aerodynamics, Airfoil GLC305, Iced Airfoil, Turbulence Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
778 3D Shape Modelling of Left Ventricle: Towards Correlation of Myocardial Scintigraphy Data and Coronarography Result

Authors: A. Ben Abdallah, H. Essabbah, M. H. Bedoui

Abstract:

The myocardial sintigraphy is an imaging modality which provides functional informations. Whereas, coronarography modality gives useful informations about coronary arteries anatomy. In case of coronary artery disease (CAD), the coronarography can not determine precisely which moderate lesions (artery reduction between 50% and 70%), known as the “gray zone", are haemodynamicaly significant. In this paper, we aim to define the relationship between the location and the degree of the stenosis in coronary arteries and the observed perfusion on the myocardial scintigraphy. This allows us to model the impact evolution of these stenoses in order to justify a coronarography or to avoid it for patients suspected being in the gray zone. Our approach is decomposed in two steps. The first step consists in modelling a coronary artery bed and stenoses of different location and degree. The second step consists in modelling the left ventricle at stress and at rest using the sphercical harmonics model and myocardial scintigraphic data. We use the spherical harmonics descriptors to analyse left ventricle model deformation between stress and rest which permits us to conclude if ever an ischemia exists and to quantify it.

Keywords: Spherical harmonics model, vascular bed, 3D reconstruction, left ventricle, myocardial scintigraphy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
777 Conceptual Design and Characterization of Contractile Water Jet Thruster Using IPMC Actuator

Authors: Muhammad Farid Shaari, Zahurin Samad

Abstract:

This paper presents the design, development and characterization of contractile water jet thruster (CWJT) for mini underwater robot. Instead of electric motor, this CWJT utilizes the Ionic Polymer Metal Composite (IPMC) as the actuator to generate the water jet. The main focus of this paper is to analyze the conceptual design of the proposed CWJT which would determine the thrust force value, jet flow behavior and actuator’s stress. Those thrust force and jet flow studies were carried out using Matlab/Simscape simulation software. The actuator stress had been analyzed using COSMOS simulation software. The results showed that there was no significant change for jet velocity at variable cross sectional nozzle area. However, a significant change was detected for jet velocity at different nozzle cross sectional area ratio which was up to 37%. The generated thrust force has proportional relation to the nozzle cross sectional area.

Keywords: Contractile water jet thruster, IPMC actuator, Thrust force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
776 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: Nano-enhanced phase change material, phase change material, nanoparticles, latent heat storage unit, melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
775 Simulation of the Flow in a Packed-Bed with and without a Static Mixer by Using CFD Technique

Authors: Phavanee Narataruksa, Karn Pana-Suppamassadu, Sabaithip TungkamaniRungrote Kokoo, Prayut Jiamrittiwong

Abstract:

The major focus of this work was to characterize hydrodynamics in a packed-bed with and without static mixer by using Computational Fluid Dynamic (CFD). The commercial software: COMSOL MULTIPHYSICSTM Version 3.3 was used to simulate flow fields of mixed-gas reactants i.e. CO and H2. The packed-bed was a single tube with the inside diameter of 0.8 cm and the length of 1.2 cm. The static mixer was inserted inside the tube. The number of twisting elements was 1 with 0.8 cm in diameter and 1.2 cm in length. The packed-bed with and without static mixer were both packed with approximately 700 spherical structures representing catalyst pellets. Incompressible Navier-Stokes equations were used to model the gas flow inside the beds at steady state condition, in which the inlet Reynolds Number (Re) was 2.31. The results revealed that, with the insertion of static mixer, the gas was forced to flow radially inward and outward between the central portion of the tube and the tube wall. This could help improving the overall performance of the packed-bed, which could be utilized for heterogeneous catalytic reaction such as reforming and Fischer- Tropsch reactions.

Keywords: Packed Bed, Static Mixer, Computational Fluid Dynamic (CFD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
774 Fretting Fatigue behavior of Bolted Single Lap Joints of Aluminum Alloys

Authors: Hadi Rezghi Maleki, Babak Abazadeh

Abstract:

In this paper, the effect of bolt clamping force on the fatigue behavior of bolted single lap joints of aluminum alloy 2024- T3 have been studied using numerical finite element method. To do so, a three dimensional model according to the bolted single lap joint has been created and numerical analysis has been carried out using finite element based package. Then the stress distribution and also the slip amplitudes have been calculated in the critical regions and the outcome have been compared with the available experimental fatigue tests results. The numerical results show that in low applied clamping force, the fatigue failure of the specimens occur around the stress concentration location (the bolted hole edge) due to the tensile stresses and thus fatigue crack propagation, but with increase of the clamping force, the fatigue life increases and the cracks nucleate and propagate far from the hole edge because of fretting fatigue. In other words, with the further increase of clamping force value of the joint, the fatigue life reduces due to occurrence of the fretting fatigue in the critical location where the slip amplitude is within its critical occurs earlier.

Keywords: Fretting fatigue, bolted single lap joint, torque tightening, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
773 Heat Transfer Coefficients for Particulate Airflow in Shell and Coiled Tube Heat Exchangers

Authors: W. Witchayanuwat, S. Kheawhom

Abstract:

In this work, we experimentally study heat transfer from exhaust particulate air of detergent spray drying tower to water by using coiled tube heat exchanger. Water flows in the coiled tubes, where air loaded with detergent particles of 43 micrometers in diameter flows within the shell. Four coiled tubes with different coil pitches are used in a counter-current flow configuration. We investigate heat transfer coefficients of inside and outside the heat transfer surfaces through 400 experiments. The correlations between Nusselt number and Reynolds number, Prandtl number, mass flow rate of particulates to mass flow rate of air ratio and coiled tube pitch parameter are proposed. The correlations procured can be used to predicted heat transfer between tube and shell of the heat exchanger.

Keywords: Shell and coiled tube heat exchanger, Spray drying tower, Heat transfer coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
772 CFD Simulation and Validation of Flap Type Wave-Maker

Authors: Anant Lal, M. Elangovan

Abstract:

A general purpose viscous flow solver Ansys CFX was used to solve the unsteady three-dimensional (3D) Reynolds Averaged Navier-Stokes Equation (RANSE) for simulating a 3D numerical viscous wave tank. A flap-type wave generator was incorporated in the computational domain to generate the desired incident waves. Authors have made effort to study the physical behaviors of Flap type wave maker with governing parameters. Dependency of the water fill depth, Time period of oscillations and amplitude of oscillations of flap were studied. Effort has been made to establish relations between parameters. A validation study was also carried out against CFD methodology with wave maker theory. It has been observed that CFD results are in good agreement with theoretical results. Beaches of different slopes were introduced to damp the wave, so that it should not cause any reflection from boundary. As a conclusion this methodology can simulate the experimental wave-maker for regular wave generation for different wave length and amplitudes.

Keywords: CFD, RANSE, Flap type, wave-maker, VOF, seakeeping, numerical method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3923
771 Structural Analysis of Warehouse Rack Construction for Heavy Loads

Authors: C. Kozkurt, A. Fenercioglu, M. Soyaslan

Abstract:

In this study rack systems that are structural storage units of warehouses have been analyzed as structural with Finite Element Method (FEA). Each cell of discussed rack system storages pallets which have from 800 kg to 1000 kg weights and 0.80x1.15x1.50 m dimensions. Under this load, total deformations and equivalent stresses of structural elements and principal stresses, tensile stresses and shear stresses of connection elements have been analyzed. The results of analyses have been evaluated according to resistance limits of structural and connection elements. Obtained results have been presented as visual and magnitude.

Keywords: warehouse, structural analysis, AS/RS, FEM, FEA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3738
770 Analyzing the Performance Properties of Stress Absorbing Membrane Interlayer Modified with Recycled Crumb Rubber

Authors: Seyed Mohammad Asgharzadeh, Moein Biglari

Abstract:

Asphalt overlay is the most commonly used technique of pavement rehabilitation. However, the reflective cracks which occur on the overlay surface after a short period of time are the most important distresses threatening the durability of new overlays. Stress Absorbing Membrane Interlayers (SAMIs) are used to postpone the reflective cracking in the overlays. Sand asphalt mixtures, in unmodified or crumb rubber modified (CRM) conditions, can be used as an SAMI material. In this research, the performance properties of different SAMI applications were evaluated in the laboratory using an Indirect Tensile (IDT) fracture energy. The IDT fracture energy of sand asphalt samples was also evaluated and then compared to that of the regular dense graded asphalt used as an overlay. Texas boiling water and modified Lottman tests were also conducted to evaluate the moisture susceptibility of sand asphalt mixtures. The test results showed that sand asphalt mixtures can stand higher levels of energy before cracking, and this is even more pronounced for the CRM sand mix. Sand asphalt mixture using CRM binder was also shown to be more resistance to moisture induced distresses.

Keywords: SAMI, sand asphalt, crumb rubber, Lottman Modified Test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
769 Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient

Authors: Cristian P. Topa, Esteban A. Valencia, Victor H. Hidalgo, Marco A. Martinez

Abstract:

Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.

Keywords: Wind tunnel, low cost instrumentation, experimental testing, CFD simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
768 Drag Analysis of an Aircraft Wing Model withand without Bird Feather like Winglet

Authors: Altab Hossain, Ataur Rahman, A.K.M. P. Iqbal, M. Ariffin, M. Mazian

Abstract:

This work describes the aerodynamic characteristic for aircraft wing model with and without bird feather like winglet. The aerofoil used to construct the whole structure is NACA 653-218 Rectangular wing and this aerofoil has been used to compare the result with previous research using winglet. The model of the rectangular wing with bird feather like winglet has been fabricated using polystyrene before design using CATIA P3 V5R13 software and finally fabricated in wood. The experimental analysis for the aerodynamic characteristic for rectangular wing without winglet, wing with horizontal winglet and wing with 60 degree inclination winglet for Reynolds number 1.66×105, 2.08×105 and 2.50×105 have been carried out in open loop low speed wind tunnel at the Aerodynamics laboratory in Universiti Putra Malaysia. The experimental result shows 25-30 % reduction in drag coefficient and 10-20 % increase in lift coefficient by using bird feather like winglet for angle of attack of 8 degree.

Keywords: Aerofoil, Wind tunnel, Winglet, Drag Coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6297
767 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading

Authors: Vaso K. Kapnopoulou, Piero Caridis

Abstract:

The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.

Keywords: Lower hopper knuckle, high cycle fatigue, finite element method, dynamic load cases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
766 Numerical Simulation of Heat Transfer in Primary Surface with Corrugations Recuperators

Authors: Liu Xuedong, Liu Hanpeng, Zhou Ling

Abstract:

Study fluid flow and heat transfer characteristics of microchannel in a primary Cross-corrugated(CC) surface recuperators with corrugations and without corrugations, using CFD method. The pitch-over-height ratios P/H of Cross-corrugated (CC) surface is from 1.5 to 4.0, included angles β=75º. The study was performed using CFD software FLUENT to create unit model and simulate fluid temperature, velocity, heat transfer coefficient and other parameters. The results from these simulations were compared to experimental data. It is concluded that, when the Reynolds number is constant, if increase P/H, j/f will decrease, also the decreasing trend will become weak. Under the condition of P/H=2.2, if increase the inlet velocity j/f will decrease; in addition, the heat transfer performance in surface with corrugation will increase 10% compared to that without corrugation. The study results can provide the basis to optimize the design, select the type of heat transfer surface, the scale structure, and heat-transfer surface arrangement for recuperators.

Keywords: Cross-corrugated surface, Primary surface, Numerical simulation, Heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
765 The Use of Chlorophyll Meter Readings for the Selection of Maize Inbred Lines under Drought Stress

Authors: F. Gekas, C. Pankou, I. Mylonas, E. Ninou, E. Sinapidou, A. Lithourgidis, F. Papathanasiou, J. –K. Petrevska, F. Papadopoulou, P. Zouliamis, G. Tsaprounis, I. Tokatlidis, C. Dordas

Abstract:

The present study aimed to investigate whether chlorophyll meter readings (SPAD) can be used as criterion of singleplant selection in maize breeding. Experimentation was performed at the ultra-low density of 0.74 plants/m2 in order the potential yield per plant to be fully expressed. R-31 honeycomb experiments were conducted in three different areas in Greece (Thessaloniki, Giannitsa and Florina) using 30 inbred lines at well-watered and water-stressed conditions during the 2012 growing season. The chlorophyll meter readings had higher rates at dry conditions, except location of Giannitsa where differences were not significant. Genotypes of highest chlorophyll meter readings were consistent across areas, emphasizing on the character’s stability. A positive correlation between the chlorophyll meter readings and grain yield was strengthening over time and culminated at the physiological maturity stage. There was a clear sign that the chlorophyll meter readings has the potential to be used for the selection of stress-adaptive genotypes and may permit modern maize to be grown at wider range of environments addressing the climate change scenarios.

Keywords: Drought-prone environments, honeycomb breeding, SPAD, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839