Search results for: Game based learning system
16171 Impact of Grade Sensitivity on Learning Motivation and Academic Performance
Authors: Salwa Aftab, Sehrish Riaz
Abstract:
The objective of this study was to check the impact of grade sensitivity on learning motivation and academic performance of students and to remove the degree of difference that exists among students regarding the cause of their learning motivation and also to gain knowledge about this matter since it has not been adequately researched. Data collection was primarily done through the academic sector of Pakistan and was depended upon the responses given by students solely. A sample size of 208 university students was selected. Both paper and online surveys were used to collect data from respondents. The results of the study revealed that grade sensitivity has a positive relationship with the learning motivation of students and their academic performance. These findings were carried out through systematic correlation and regression analysis.Keywords: Academic performance, correlation, grade sensitivity, learning motivation, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 278016170 Improved Wi-Fi Backscatter System for Multi-to-Multi Communication
Authors: Chang-Bin Ha, Yong-Jun Kim, Dong-Hyun Ha, Hyoung-Kyu Song
Abstract:
The conventional Wi-Fi backscatter system can only process one-to-one communication between the Wi-Fi reader and the Wi-Fi tag. For improvement of throughput of the conventional system, this paper proposes the multi-to-multi communication system. In the proposed system, the interference by the multi-to-multi communication is effectively cancelled by the orthogonal multiple access based on the identification code of the tag. Although the overhead is generated by the procedure for the multi-to-multi communication, because the procedure is processed by the Wi-Fi protocol, the overhead is insignificant for the entire communication procedure. From the numerical results, it is confirmed that the proposed system has nearly proportional increased throughput in according to the number of the tag that simultaneously participates in communication.Keywords: Backscatter, Multi-to-multi communication, Orthogonality, Wi-Fi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207516169 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction
Authors: Talal Alsulaiman, Khaldoun Khashanah
Abstract:
In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent’s attributes. Also, the influence of social networks in the developing of agents interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.Keywords: Artificial stock markets, agent based simulation, bounded rationality, behavioral finance, artificial neural network, interaction, scale-free networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252816168 Modified Techniques for Distribution System Reliability Improvement by Parallel Operation of Transformers
Authors: Ohn Zin Lin, Okka, Cho Cho Myint
Abstract:
It is important to consider the effects of transformers on distribution system because they have the highest impact on system reliability. It is generally said that parallel operation of transformers (POT) can improve the system reliability. However, the estimation approach can be also considered for accuracy. In this paper, we propose a three-state components model and equations to determine the reliability improvement by POT, and cooperation of POT and distributed generation (DG). Based on the proposed model and techniques, the effect of POT is analyzed in four different tests with the consideration of conventional distribution system, distribution automation system (DAS) and DG. According to the results, the reliability is greatly improved by cooperation of POT, DAS and DG. The proposed model and methods are applicable to not only developing countries which have conventional distribution system but also developed countries in which DAS has already installed.
Keywords: Distribution system, reliability, dispersed generator, energy not supply, transformer parallel operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70216167 Design and Development of an Efficient and Cost-Effective Microcontroller-Based Irrigation Control System to Enhance Food Security
Authors: Robert A. Sowah, Stephen K. Armoo, Koudjo M. Koumadi, Rockson Agyeman, Seth Y. Fiawoo
Abstract:
The development of the agricultural sector in Ghana has been reliant on the use of irrigation systems to ensure food security. However, the manual operation of these systems has not facilitated their maximum efficiency due to human limitations. This paper seeks to address this problem by designing and implementing an efficient, cost effective automated system which monitors and controls the water flow of irrigation through communication with an authorized operator via text messages. The automatic control component of the system is timer based with an Atmega32 microcontroller and a real time clock from the SM5100B cellular module. For monitoring purposes, the system sends periodic notification of the system on the performance of duty via SMS to the authorized person(s). Moreover, the GSM based Irrigation Monitoring and Control System saves time and labour and reduces cost of operating irrigation systems by saving electricity usage and conserving water. Field tests conducted have proven its operational efficiency and ease of assessment of farm irrigation equipment due to its costeffectiveness and data logging capabilities.
Keywords: Agriculture, control system, data logging, food security, irrigation system, microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 520816166 A Cognitive Model of Character Recognition Using Support Vector Machines
Authors: K. Freedman
Abstract:
In the present study, a support vector machine (SVM) learning approach to character recognition is proposed. Simple feature detectors, similar to those found in the human visual system, were used in the SVM classifier. Alphabetic characters were rotated to 8 different angles and using the proposed cognitive model, all characters were recognized with 100% accuracy and specificity. These same results were found in psychiatric studies of human character recognition.Keywords: Character recognition, cognitive model, support vector machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187816165 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96716164 1Malaysia: National Education Challenge and Nation Building
Authors: Mohd Ridhuan Tee Abdullah, Ong Hai Liaw, Wan Norhasniah Wan Husin
Abstract:
The main issue discussed is on the role of education system in the process of nation building as a means in uniting different community ethnics which later on, hoped to shape the future ethnic relation of this country. It is generally known that political socialization experienced by each ethnic community has given birth to a vernacular education system, separated along the ethnic line. Every community shapes their own education system based on their respective mother tongue language, however all are based on the same curriculum. As a result the role of education as a uniting force is not significantly effective. Historically, it has been shown that government efforts to unite the country education system under the wing of national education system (national school) is not that successful since every community (Chinese) will defend the existence of their community education system because they want to spur their mother tongue language. The clash between national education system and vernacular education system is the root cause of stalemate in the ethnic relation in Malaysia and it always becomes a flash point when the issue is raised. The question now is what is the best solution to enhance the national education system in multiethnic Malaysia?
Keywords: Political socialization, education, national unity, national school, vernacular school and 1Malaysia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384116163 Critical Issues Affecting the Engagement by Staff in Professional Development for E-Learning: Findings from a Research Project within the Context of a National Tertiary Education Sector
Authors: J. Mansvelt, G. Suddaby, D. O'Hara
Abstract:
This paper focuses on issues of engagement by staff in professional development related to the delivery of e-learning. The paper reports on findings drawn from a New Zealand research project which is producing a sector-wide framework for professional development in tertiary e-learning. The research findings indicate that staff engaged in e-learning in tertiary institutions is not making the most effective use of the professional development opportunities available to them; rather they seem to gain their knowledge and support from a variety of informal means. This is despite an emphasis on the provision of professional development opportunities by both Government Policies and Institutions themselves. The conclusion drawn from the findings is that institutional approaches to professional development for e-learning do not yet fully reflect the demands and constraints that working in a digital context impose.
Keywords: Academic development, e-learning, engagement, professional development, tertiary education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144816162 Hybrid Model Based on Artificial Immune System and Cellular Automata
Authors: Ramin Javadzadeh, Zahra Afsahi, MohammadReza Meybodi
Abstract:
The hybridization of artificial immune system with cellular automata (CA-AIS) is a novel method. In this hybrid model, the cellular automaton within each cell deploys the artificial immune system algorithm under optimization context in order to increase its fitness by using its neighbor-s efforts. The hybrid model CA-AIS is introduced to fix the standard artificial immune system-s weaknesses. The credibility of the proposed approach is evaluated by simulations and it shows that the proposed approach achieves better results compared to standard artificial immune system.Keywords: Artificial Immune System, Cellular Automat, neighborhood
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160316161 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.
Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137116160 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149816159 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.
Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56716158 Using Data Mining Technique for Scholarship Disbursement
Authors: J. K. Alhassan, S. A. Lawal
Abstract:
This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations.Keywords: Decision tree, classification, data mining, scholarship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215616157 Students’ Perceptions of the Use of Social Media in Higher Education in Saudi Arabia
Authors: Omar Alshehri, Vic Lally
Abstract:
This paper examined the attitudes of using social media tools to support learning at a university in Saudi Arabia. Moreover, it investigated the students’ current usage of these tools and examined the barriers they could face during the use of social media tools in the education process. Participants in this study were 42 university students. A web-based survey was used to collect data for this study. The results indicate that all of the students were familiar with social media and had used at least one type of social media for learning. It was found out that all students had very positive attitudes towards the use of social media and welcomed using these tools as a supplementary to the curriculum. However, the results indicated that the major barriers to using these tools in learning were distraction, opposing Islamic religious teachings, privacy issues, and cyberbullying. The study recommended that this study could be replicated at other Saudi universities to investigate factors and barriers that might affect Saudi students’ attitudes toward using social media to support learning.Keywords: Saudi Arabia, social media, benefits of social media use, barriers to social media use, higher education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234916156 Temporal Case-Based Reasoning System for Automatic Parking Complex
Authors: Alexander P. Eremeev, Ivan E. Kurilenko, Pavel R. Varshavskiy
Abstract:
In this paper the problem of the application of temporal reasoning and case-based reasoning in intelligent decision support systems is considered. The method of case-based reasoning with temporal dependences for the solution of problems of real-time diagnostics and forecasting in intelligent decision support systems is described. This paper demonstrates how the temporal case-based reasoning system can be used in intelligent decision support systems of the car access control. This work was supported by RFBR.Keywords: Analogous reasoning, case-based reasoning, intelligent decision support systems, temporal reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197916155 Application of H2 -based Sliding Mode Control for an Active Magnetic Bearing System
Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd. Yatim
Abstract:
In this paper, application of Sliding Mode Control (SMC) technique for an Active Magnetic Bearing (AMB) system with varying rotor speed is considered. The gyroscopic effect and mass imbalance inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Transformation of the AMB dynamic model into regular system shows that these gyroscopic effect and imbalance lie in the mismatched part of the system. A H2-based sliding surface is designed which bound the mismatched parts. The solution of the surface parameter is obtained using Linear Matrix Inequality (LMI). The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.
Keywords: Active magnetic bearing, sliding mode control, linear matrix inequality, mismatched uncertainty and imbalance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160516154 Role-play Gaming Simulation for Flood Management on Cultural Heritage: A Case Study of Ayutthaya Historic City
Authors: Pongpisit Huyakorn, Chaweewan Denpaiboon, Hidehiko Kanegae
Abstract:
The main aim of this research is to develop a methodology to encourage people's awareness, knowledge and understanding on the participation of flood management for cultural heritage, as the cooperation and interaction among government section, private section, and public section through role-play gaming simulation theory. The format of this research is to develop Role-play gaming simulation from existing documents, game or role-playing from several sources and existing data of the research site. We found that role-play gaming simulation can be implemented to help improving the understanding of the existing problem and the impact of the flood on cultural heritage, and the role-play game can be developed into the tool to improve people's knowledge, understanding and awareness about people's participation for flood management on cultural heritage, moreover the cooperation among the government, private section and public section will be improved through the theory of role-play gaming simulation.
Keywords: Climate change, Role-play gaming simulation, Sustainable development, Public participation, Cultural heritage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 275016153 Human Capital and the Innovation System – Case Study of the Mpumalanga Province, South Africa
Authors: Maria E. Eggink
Abstract:
Innovation plays an important role in economic growth and development. Evolutionary economics has entrepreneurs at the centre of the innovation system, but includes all other participants as contributors to the performance of the innovation system. Education and training institutions, one of the participants in the innovation system, contributes in different ways to human capital. The gap in literature on the competence building as part of human capital in the analysis of innovation systems is addressed in this paper. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.
Keywords: Education institutions, human capital, innovation systems, Mpumalanga Province.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203316152 Fuzzy Logic Based Determination of Battery Charging Efficiency Applied to Hybrid Power System
Authors: Priyanka Paliwal, N. P. Patidar, R. K. Nema
Abstract:
Battery storage system is emerging as an essential component of hybrid power system based on renewable energy resources such as solar and wind in order to make these sources dispatchable. Accurate modeling of battery storage system is ssential in order to ensure optimal planning of hybrid power systems incorporating battery storage. Majority of the system planning studies involving battery storage assume battery charging efficiency to be constant. However a strong correlation exists between battery charging efficiency and battery state of charge. In this work a Fuzzy logic based model has been presented for determining battery charging efficiency relative to a particular SOC. In order to demonstrate the efficacy of proposed approach, reliability evaluation studies are carried out for a hypothetical autonomous hybrid power system located in Jaisalmer, Rajasthan, India. The impact of considering battery charging efficiency as a function of state of charge is compared against the assumption of fixed battery charging efficiency for three different configurations comprising of wind-storage, solar-storage and wind-solar-storage.
Keywords: Battery Storage, Charging efficiency, Fuzzy Logic, Hybrid Power System, Reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209316151 MPPT Operation for PV Grid-connected System using RBFNN and Fuzzy Classification
Authors: A. Chaouachi, R. M. Kamel, K. Nagasaka
Abstract:
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Function Neural Networks (RBFNN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated RBFNN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and non-linear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network.
Keywords: MPPT, neuro-fuzzy, RBFN, grid-connected, photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 318216150 Meta Random Forests
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.Keywords: Random Forests [RF], ensembles, UCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271116149 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.
Keywords: Computer vision, human motion analysis, random forest, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3816148 Determination of Sensitive Transmission Lines Due to the Effect of Protection System Hidden Failure in a Critical System Cascading Collapse
Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan
Abstract:
Protection system hidden failures have been identified as one of the main causes of system cascading collapse resulting to power system instability. In this paper, a systematic approach is presented in order to identify the probability of a system cascading collapse by taking into consideration the effect of protection system hidden failure. This includes the accurate calculation of the probability of hidden failure as it will provide significant impinge on the findings of the probability of system cascading collapse. The probability of a system cascading collapse is then used to identify the initial tripping of sensitive transmission lines which will contribute to a critical system cascading collapse. Based on the results obtained from this study, it is important to decide on the accurate value of the hidden failure probability as it will affect the probability of a system cascading collapse.
Keywords: Critical system cascading collapse, hidden failure, probability of cascading collapse, sensitive transmission lines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178516147 Time Series Forecasting Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.
Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117016146 Design and Implementation of a WiFi Based Home Automation System
Authors: Ahmed ElShafee, Karim Alaa Hamed
Abstract:
This paper presents a design and prototype implementation of new home automation system that uses WiFi technology as a network infrastructure connecting its parts. The proposed system consists of two main components; the first part is the server (web server), which presents system core that manages, controls, and monitors users- home. Users and system administrator can locally (LAN) or remotely (internet) manage and control system code. Second part is hardware interface module, which provides appropriate interface to sensors and actuator of home automation system. Unlike most of available home automation system in the market the proposed system is scalable that one server can manage many hardware interface modules as long as it exists on WiFi network coverage. System supports a wide range of home automation devices like power management components, and security components. The proposed system is better from the scalability and flexibility point of view than the commercially available home automation systems.Keywords: Home automation, Wireless LAN, WiFi, MicroControllers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3629716145 Extending the Flipped Classroom Approach: Using Technology in Module Delivery to Students of English Language and Literature at the British University in Egypt
Authors: Azza Taha Zaki
Abstract:
Technology-enhanced teaching has been in the limelight since the 90s when educators started investigating and experimenting with using computers in the classroom as a means of building 21st. century skills and motivating students. The concept of technology-enhanced strategies in education is kaleidoscopic! It has meant different things to different educators. For the purpose of this paper, however, it will be used to refer to the diverse technology-based strategies used to support and enrich the flipped learning process, in the classroom and outside. The paper will investigate how technology is put in the service of teaching and learning to improve the students’ learning experience as manifested in students’ attendance and engagement, achievement rates and finally, students’ projects at the end of the semester. The results will be supported by a student survey about relevant specific aspects of their learning experience in the modules in the study.
Keywords: Attendance, British University, Egypt, flipped, student achievement, student-centred, student engagement, students’ projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67216144 Neural-Symbolic Machine-Learning for Knowledge Discovery and Adaptive Information Retrieval
Authors: Hager Kammoun, Jean Charles Lamirel, Mohamed Ben Ahmed
Abstract:
In this paper, a model for an information retrieval system is proposed which takes into account that knowledge about documents and information need of users are dynamic. Two methods are combined, one qualitative or symbolic and the other quantitative or numeric, which are deemed suitable for many clustering contexts, data analysis, concept exploring and knowledge discovery. These two methods may be classified as inductive learning techniques. In this model, they are introduced to build “long term" knowledge about past queries and concepts in a collection of documents. The “long term" knowledge can guide and assist the user to formulate an initial query and can be exploited in the process of retrieving relevant information. The different kinds of knowledge are organized in different points of view. This may be considered an enrichment of the exploration level which is coherent with the concept of document/query structure.Keywords: Information Retrieval Systems, machine learning, classification, Galois lattices, Self Organizing Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118916143 WhatsApp as Part of a Blended Learning Model to Help Programming Novices
Authors: Tlou J. Ramabu
Abstract:
Programming is one of the challenging subjects in the field of computing. In the higher education sphere, some programming novices’ performance, retention rate, and success rate are not improving. Most of the time, the problem is caused by the slow pace of learning, difficulty in grasping the syntax of the programming language and poor logical skills. More importantly, programming forms part of major subjects within the field of computing. As a result, specialized pedagogical methods and innovation are highly recommended. Little research has been done on the potential productivity of the WhatsApp platform as part of a blended learning model. In this article, the authors discuss the WhatsApp group as a part of blended learning model incorporated for a group of programming novices. We discuss possible administrative activities for productive utilisation of the WhatsApp group on the blended learning overview. The aim is to take advantage of the popularity of WhatsApp and the time students spend on it for their educational purpose. We believe that blended learning featuring a WhatsApp group may ease novices’ cognitive load and strengthen their foundational programming knowledge and skills. This is a work in progress as the proposed blended learning model with WhatsApp incorporated is yet to be implemented.
Keywords: Blended learning, higher education, WhatsApp, programming, novices, lecturers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117716142 Design of Nonlinear Observer by Using Augmented Linear System based on Formal Linearization of Polynomial Type
Authors: Kazuo Komatsu, Hitoshi Takata
Abstract:
The objective of this study is to propose an observer design for nonlinear systems by using an augmented linear system derived by application of a formal linearization method. A given nonlinear differential equation is linearized by the formal linearization method which is based on Taylor expansion considering up to the higher order terms, and a measurement equation is transformed into an augmented linear one. To this augmented dimensional linear system, a linear estimation theory is applied and a nonlinear observer is derived. As an application of this method, an estimation problem of transient state of electric power systems is studied, and its numerical experiments indicate that this observer design shows remarkable performances for nonlinear systems.
Keywords: nonlinear system, augmented linear system, nonlinear observer, formal linearization, electric power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583