Search results for: Computer decision support
3282 Proposal of a Model Supporting Decision-Making Based On Multi-Objective Optimization Analysis on Information Security Risk Treatment
Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu
Abstract:
Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.
Keywords: Information security risk treatment, Selection of risk measures, Risk acceptanceand Multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17213281 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15003280 Building an Interactive Web-Based GIS System for Planning of Geological Survey Works
Authors: Wu Defu, Kiefer Chiam, Yang Kin Seng
Abstract:
The planning of geological survey works is an iterative process which involves planner, geologist, civil engineer and other stakeholders, who perform different roles and have different points of view. Traditionally, the team used paper maps or CAD drawings to present the proposal which is not an efficient way to present and share idea on the site investigation proposal such as sitting of borehole location or seismic survey lines. This paper focuses on how a GIS approach can be utilised to develop a webbased system to support decision making process in the planning of geological survey works and also to plan site activities carried out by Singapore Geological Office (SGO). The authors design a framework of building an interactive web-based GIS system, and develop a prototype, which enables the users to obtain rapidly existing geological information and also to plan interactively borehole locations and seismic survey lines via a web browser. This prototype system is used daily by SGO and has shown to be effective in increasing efficiency and productivity as the time taken in the planning of geological survey works is shortened. The prototype system has been developed using the ESRI ArcGIS API 3.7 for Flex which is based on the ArcGIS 10.2.1 platform.
Keywords: Engineering geology, Flex, Geological survey planning, Geoscience, GIS, Site investigation, WebGIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36863279 A Framework for Identifying the Critical Factors Affecting the Decision to Adopt and Use Inter-Organizational Information Systems
Authors: K. Bouchbout, Z. Alimazighi
Abstract:
The importance of inter-organizational system (IOS) has been increasingly recognized by organizations. However, IOS adoption has proved to be difficult and, at this stage, why this is so is not fully uncovered. In practice, benefits have often remained concentrated, primarily accruing to the dominant party, resulting in low rates of adoption and usage, and often culminating in the failure of the IOS. The main research question is why organizations initiate or join IOS and what factors influence their adoption and use levels. This paper reviews the literature on IOS adoption and proposes a theoretical framework in order to identify the critical factors to capture a complete picture of IOS adoption. With our proposed critical factors, we are able to investigate their relative contributions to IOS adoption decisions. We obtain findings that suggested that there are five groups of factors that significantly affect the adoption and use decision of IOS in the Supply Chain Management (SCM) context: 1) interorganizational context, 2) organizational context, 3) technological context, 4) perceived costs, and 5) perceived benefits.Keywords: Business-to-Business relationships, buyer-supplier relationships, Critical factors, Interorganizational Information Systems, IOS adoption and use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20483278 Creating Entrepreneurial Universities: The Swedish Approach of Transformation
Authors: Fawaz Saad, Hamid Alalwany
Abstract:
Sweden has succeeded to maintain a high level of growth and development and has managed to sustain highly ranked position among the world’s developed countries. In this regard, Swedish universities are playing a vital role in supporting innovation and entrepreneurship at all levels and developing Swedish knowledge economy. This paper is aiming to draw on the experiences of two leading Swedish universities, addressing their transformation approach to create entrepreneurial universities and fulfilling their objectives in the era of knowledge economy. The objectives of the paper include: 1) Introducing the Swedish higher education and its characteristics. 2) Examining the infrastructure elements for innovation and Entrepreneurship at two of the Swedish entrepreneurial universities. 3) Addressing the key aspects of support systems in the initiatives of both Chalmers and Gothenburg universities to support innovation and advance entrepreneurial practices. The paper will contribute to two discourses: 1) Examining the relationship between support systems for innovation and entrepreneurship and the Universities’ policies and practices. 2) Lessons for University leaders to assist the development and implementation of effective innovation and entrepreneurship policies and practices.Keywords: Entrepreneurial university, Chalmers university, Gothenburg university, innovation and entrepreneurship policies, entrepreneurial transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23963277 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the least square support vector machine (LSSVM) optimized by an improved sparrow search algorithm combined with the variational mode decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of intrinsic mode functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the LSSVM. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.
Keywords: Load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 503276 Fuzzy Approach for Ranking of Motor Vehicles Involved in Road Accidents
Authors: Lazim Abdullah, N orhanadiah Zam
Abstract:
Increasing number of vehicles and lack of awareness among road users may lead to road accidents. However no specific literature was found to rank vehicles involved in accidents based on fuzzy variables of road users. This paper proposes a ranking of four selected motor vehicles involved in road accidents. Human and non-human factors that normally linked with road accidents are considered for ranking. The imprecision or vagueness inherent in the subjective assessment of the experts has led the application of fuzzy sets theory to deal with ranking problems. Data in form of linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. The Multi Criteria Decision Making, fuzzy TOPSIS was applied in computational procedures. From the analysis, it shows that motorcycles vehicles yielded the highest closeness coefficient at 0.6225. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the motorcycles recorded the first rank.
Keywords: Road accidents, decision making, closeness coefficient, fuzzy number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15413275 Technological Environment - International Marketing Strategy Relationship
Authors: Suthawan Chirapanda
Abstract:
International trade involves both large and small firms engaged in business overseas. Possible drivers that force companies to enter international markets include increasing competition at the domestic market, maturing domestic markets, and limited domestic market opportunities. Technology is an important driving factor in shaping international marketing strategy as well as in driving force towards a more global marketplace, especially technology in communication. It includes telephones, the internet, computer systems and e-mail. There are three main marketing strategy choices, namely standardization approach, adaptation approach and middleof- the-road approach that companies implement to overseas markets. The decision depends on situations and factors facing the companies in the international markets. In this paper, the contingency concept is considered that no single strategy can be effective in all contexts. The effect of strategy on performance depends on specific situational variables. Strategic fit is employed to investigate export marketing strategy adaptation under certain environmental conditions, which in turn can lead to superior performance.Keywords: Contingency approach, international marketing strategy, strategic fit, technological environment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67823274 Effect of Anion and Amino Functional Group on Resin for Lipase Immobilization with Adsorption-Cross Linking Method
Authors: Heri Hermansyah, Annisa Kurnia, A. Vania Anisya, Adi Surjosatyo, Yopi Sunarya, Rita Arbianti, Tania Surya Utami
Abstract:
Lipase is one of biocatalyst which is applied commercially for the process in industries, such as bioenergy, food, and pharmaceutical industry. Nowadays, biocatalysts are preferred in industries because they work in mild condition, high specificity, and reduce energy consumption (high pressure and temperature). But, the usage of lipase for industry scale is limited by economic reason due to the high price of lipase and difficulty of the separation system. Immobilization of lipase is one of the solutions to maintain the activity of lipase and reduce separation system in the process. Therefore, we conduct a study about lipase immobilization with the adsorption-cross linking method using glutaraldehyde because this method produces high enzyme loading and stability. Lipase is immobilized on different kind of resin with the various functional group. Highest enzyme loading (76.69%) was achieved by lipase immobilized on anion macroporous which have anion functional group (OH‑). However, highest activity (24,69 U/g support) through olive oil emulsion method was achieved by lipase immobilized on anion macroporous-chitosan which have amino (NH2) and anion (OH-) functional group. In addition, it also success to produce biodiesel until reach yield 50,6% through interesterification reaction and after 4 cycles stable 63.9% relative with initial yield. While for Aspergillus, niger lipase immobilized on anion macroporous-kitosan have unit activity 22,84 U/g resin and yield biodiesel higher than commercial lipase (69,1%) and after 4 cycles stable reach 70.6% relative from initial yield. This shows that optimum functional group on support for immobilization with adsorption-cross linking is the support that contains amino (NH2) and anion (OH-) functional group because they can react with glutaraldehyde and binding with enzyme prevent desorption of lipase from support through binding lipase with a functional group on support.
Keywords: Adsorption-Cross linking, lipase, resin, immobilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7953273 Learning Paradigms for Educating a New Generation of Computer Science Students
Authors: J. M. Breed, E. Taylor
Abstract:
In this paper challenges associated with a new generation of Computer Science students are examined. The mode of education in tertiary institutes has progressed slowly while the needs of students have changed rapidly in an increasingly technological world. The major learning paradigms and learning theories within these paradigms are studied to find a suitable strategy for educating modern students. These paradigms include Behaviourism, Constructivism, Humanism and Cogntivism. Social Learning theory and Elaboration theory are two theories that are further examined and a survey is done to determine how these strategies will be received by students. The results and findings are evaluated and indicate that students are fairly receptive to a method that incorporates both Social Learning theory and Elaboration theory, but that some aspects of all paradigms need to be implemented to create a balanced and effective strategy with technology as foundation.Keywords: Computer Science, Education, Elaboration Theory, Learning Paradigms, Social Learning Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21653272 Transient Stability Assessment Using Fuzzy SVM and Modified Preventive Control
Authors: B. Dora Arul Selvi, .N. Kamaraj
Abstract:
Transient Stability is an important issue in power systems planning, operation and extension. The objective of transient stability analysis problem is not satisfied with mere transient instability detection or evaluation and it is most important to complement it by defining fast and efficient control measures in order to ensure system security. This paper presents a new Fuzzy Support Vector Machines (FSVM) to investigate the stability status of power systems and a modified generation rescheduling scheme to bring back the identified unstable cases to a more economical and stable operating point. FSVM improves the traditional SVM (Support Vector Machines) by adding fuzzy membership to each training sample to indicate the degree of membership of this sample to different classes. The preventive control based on economic generator rescheduling avoids the instability of the power systems with minimum change in operating cost under disturbed conditions. Numerical results on the New England 39 bus test system show the effectiveness of the proposed method.
Keywords: Fuzzy Support Vector Machine (FSVM), Incremental Cost, Preventive Control, Transient stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14913271 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.
Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3833270 Behavior Analysis Based On Nine Degrees-of-Freedom Sensor for Emergency Rescue Evacuation Support System
Authors: Maeng-Hwan Hyun, Dae-Man Do, Young-Bok Choi
Abstract:
Around the world, there are frequent incidents of natural disasters, such as earthquakes, tsunamis, floods, and snowstorms, as well as manmade disasters such as fires, arsons, and acts of terror. These diverse and unpredictable adversities have resulted in a number of fatalities and injuries. If disaster occurrence can be assessed quickly and information such as the exact location of the disaster and evacuation routes can be provided, victims can promptly move to safe locations, minimizing losses. This paper proposes a behavior analysis method based on a nine degrees-of-freedom (9-DOF) sensor that is effective for the emergency rescue evacuation support system (ERESS), which is being researched with an objective of providing evacuation support during disasters. Based on experiments performed using the acceleration sensor and the gyroscope sensor in the 9-DOF sensor, data are analyzed for human behavior regarding stationary position, walking, running, and during emergency situation to suggest guidelines for system judgment. Using the results of the experiments performed to determine disaster occurrence, it was confirmed that the proposed method quickly determines whether a disaster has occurred.
Keywords: Behavior Analysis, Nine degrees-of-freedom sensor, Emergency rescue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16893269 A Bi-Objective Preventive Healthcare Facility Network Design with Incorporating Cost and Time Saving
Authors: Mehdi Seifbarghy, Keyvan Roshan
Abstract:
Main goal of preventive healthcare problems are at decreasing the likelihood and severity of potentially life-threatening illnesses by protection and early detection. The levels of establishment and staffing costs along with summation of the travel and waiting time that clients spent are considered as objectives functions of the proposed nonlinear integer programming model. In this paper, we have proposed a bi-objective mathematical model for designing a network of preventive healthcare facilities so as to minimize aforementioned objectives, simultaneously. Moreover, each facility acts as M/M/1 queuing system. The number of facilities to be established, the location of each facility, and the level of technology for each facility to be chosen are provided as the main determinants of a healthcare facility network. Finally, to demonstrate performance of the proposed model, four multi-objective decision making techniques are presented to solve the model.Keywords: Preventive healthcare problems, Non-linear integer programming models, Multi-objective decision making techniques
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17693268 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16703267 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.
Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13653266 FEM and Experimental Modal Analysis of Computer Mount
Authors: Vishwajit M. Ghatge, David Looper
Abstract:
Over the last few decades, oilfield service rolling equipment has significantly increased in weight, primarily because of emissions regulations, which require larger/heavier engines, larger cooling systems, and emissions after-treatment systems, in some cases, etc. Larger engines cause more vibration and shock loads, leading to failure of electronics and control systems. If the vibrating frequency of the engine matches the system frequency, high resonance is observed on structural parts and mounts. One such existing automated control equipment system comprising wire rope mounts used for mounting computers was designed approximately 12 years ago. This includes the use of an industrialgrade computer to control the system operation. The original computer had a smaller, lighter enclosure. After a few years, a newer computer version was introduced, which was 10 lbm heavier. Some failures of internal computer parts have been documented for cases in which the old mounts were used. Because of the added weight, there is a possibility of having the two brackets impact each other under off-road conditions, which causes a high shock input to the computer parts. This added failure mode requires validating the existing mount design to suit the new heavy-weight computer. This paper discusses the modal finite element method (FEM) analysis and experimental modal analysis conducted to study the effects of vibration on the wire rope mounts and the computer. The existing mount was modelled in ANSYS software, and resultant mode shapes and frequencies were obtained. The experimental modal analysis was conducted, and actual frequency responses were observed and recorded. Results clearly revealed that at resonance frequency, the brackets were colliding and potentially causing damage to computer parts. To solve this issue, spring mounts of different stiffness were modeled in ANSYS software, and the resonant frequency was determined. Increasing the stiffness of the system increased the resonant frequency zone away from the frequency window at which the engine showed heavy vibrations or resonance. After multiple iterations in ANSYS software, the stiffness of the spring mount was finalized, which was again experimentally validated.
Keywords: Experimental Modal Analysis, FEM Modal Analysis, Frequency, Modal Analysis, Resonance, Vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31933265 MIMCA: A Modelling and Simulation Approach in Support of the Design and Construction of Manufacturing Control Systems Using Modular Petri net
Authors: S. Ariffin, K. Hasnan, R.H. Weston
Abstract:
A new generation of manufacturing machines so-called MIMCA (modular and integrated machine control architecture) capable of handling much increased complexity in manufacturing control-systems is presented. Requirement for more flexible and effective control systems for manufacturing machine systems is investigated and dimensioned-which highlights a need for improved means of coordinating and monitoring production machinery and equipment used to- transport material. The MIMCA supports simulation based on machine modeling, was conceived by the authors to address the issues. Essentially MIMCA comprises an organized unification of selected architectural frameworks and modeling methods, which include: NISTRCS, UMC and Colored Timed Petri nets (CTPN). The unification has been achieved; to support the design and construction of hierarchical and distributed machine control which realized the concurrent operation of reusable and distributed machine control components; ability to handle growing complexity; and support requirements for real- time control systems. Thus MIMCA enables mapping between 'what a machine should do' and 'how the machine does it' in a well-defined but flexible way designed to facilitate reconfiguration of machine systems.Keywords: Machine control, architectures, Petri nets, modularity, modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15873264 Stock Characteristics and Herding Formation: Evidence from the United States Equity Market
Authors: Chih-Hsiang Chang, Fang-Jyun Su
Abstract:
This paper explores whether stock characteristics influence the herding formation among investors in the US equity market. To extend the research scope of the existing literature, this paper further examines the role that stock risk characteristics play in the US equity market, and the way they influence investors’ decision-making. First, empirical results show that whether general stocks or high-risk stocks, there are no herding behaviors among the investors in the US equity market during the whole research period or during four great events. Moreover, stock characteristics have great influence on investors’ trading decisions. Finally, there is a bidirectional lead-lag relationship of the herding formation between high-risk stocks and low-risk stocks, but the influence of high-risk stocks on the low-risk stocks is stronger than that of low-risk stocks on the high-risk stocks.
Keywords: Stock characteristics, herding formation, investment decision, US equity market, lead-lag relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9983263 Analyzing and Determining the Ideal Response Force for Combatting Terrorist Groups
Authors: Erhan Turgut, Salih Ergün, Abdülkadir Öz
Abstract:
Terror is a modern war strategy which uses violence as a means of communication in order to achieve political objectives. In today’s security environment narrowing the propaganda field of terrorist organization is the primary goal for the security forces. In this sense, providing and maintaining public support is the most necessary ability for security units. Rather than enemy and threat-oriented approach, homeland security oriented approach is essential to ensure public support. In this study, terror assumed as a homeland security issue and assigning the law enforcement forces with military status is analyzed.Keywords: Terrorism, Counter-terrorism, Military Status Law-enforcement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21943262 Finding Pareto Optimal Front for the Multi-Mode Time, Cost Quality Trade-off in Project Scheduling
Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo
Abstract:
Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.Keywords: FastPGA, Multi-Execution Activity Mode, ParetoOptimality, Project Scheduling, Time-Cost-Quality Trade-Off.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16843261 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.
Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27663260 NonStationary CMA for Decision Feedback Equalization of Markovian Time Varying Channels
Authors: S. Cherif, M. Turki-Hadj Alouane
Abstract:
In this paper, we propose a modified version of the Constant Modulus Algorithm (CMA) tailored for blind Decision Feedback Equalizer (DFE) of first order Markovian time varying channels. The proposed NonStationary CMA (NSCMA) is designed so that it explicitly takes into account the Markovian structure of the channel nonstationarity. Hence, unlike the classical CMA, the NSCMA is not blind with respect to the channel time variations. This greatly helps the equalizer in the case of realistic channels, and avoids frequent transmissions of training sequences. This paper develops a theoretical analysis of the steady state performance of the CMA and the NSCMA for DFEs within a time varying context. Therefore, approximate expressions of the mean square errors are derived. We prove that in the steady state, the NSCMA exhibits better performance than the classical CMA. These new results are confirmed by simulation. Through an experimental study, we demonstrate that the Bit Error Rate (BER) is reduced by the NSCMA-DFE, and the improvement of the BER achieved by the NSCMA-DFE is as significant as the channel time variations are severe.Keywords: Time varying channel, Markov model, Blind DFE, CMA, NSCMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12983259 A Visual Control Flow Language and Its Termination Properties
Authors: László Lengyel, Tihamér Levendovszky, Hassan Charaf
Abstract:
This paper presents the visual control flow support of Visual Modeling and Transformation System (VMTS), which facilitates composing complex model transformations out of simple transformation steps and executing them. The VMTS Visual Control Flow Language (VCFL) uses stereotyped activity diagrams to specify control flow structures and OCL constraints to choose between different control flow branches. This work discusses the termination properties of VCFL and provides an algorithm to support the termination analysis of VCFL transformations.
Keywords: Control Flow, Metamodel-Based Visual Model Transformation, OCL, Termination Properties, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20663258 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32813257 Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells
Authors: M. Altekin, R. F. Yükseler
Abstract:
Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained.
Keywords: Bending, nonlinear, plate, point support, shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18823256 Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy
Authors: Idris Elfeituri
Abstract:
In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant.
Keywords: Exergy, super-heater, fouling, steam power plant, off-design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11263255 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils
Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente
Abstract:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.Keywords: Artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L, Schinus terebinthifolius raddi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24223254 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease
Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg
Abstract:
Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.Keywords: Contrast analysis, early fire detection, video smoke detection, video surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15833253 Risk Management and Security Practice in Customs Supply Chain: Application of Cross ABC Method to the Moroccan Customs
Authors: Lamia Hammadi, Abdellah Ait Ouhman, Aomar Ibourk
Abstract:
It is widely assumed that the case of Customs Supply Chain is classified as a complex system, due to not only the variety and large number of actors, but also their complex structural links, and the interactions between these actors, that’s why this system is subject to various types of Risks. The economic, political and social impacts of those risks are highly detrimental to countries, businesses and the public, for this reason, Risk management in the customs supply chain is becoming a crucial issue to ensure the sustainability, security and safety. The main characteristic of customs risk management approach is determining which goods and means of transport should be examined? To what extend? And where future compliance resources should be directed? The purposes of this article are, firstly to deal with the concept of customs supply chain, secondly present our risk management approach based on Cross Activity Based Costing (ABC) Method as an interactive tool to support decision making in customs risk management. Finally, analysis of case study of Moroccan customs to putting theory into practice and will thus draw together the various elements of a structured and efficient risk management approach.
Keywords: Cross ABC Method, Customs Supply Chain, Risk, Risk Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3466