Search results for: 3D face recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1297

Search results for: 3D face recognition

397 Chaos Theory and Application in Foreign Exchange Rates vs. IRR (Iranian Rial)

Authors: M. A. Torkamani, S. Mahmoodzadeh, S. Pourroostaei, C. Lucas

Abstract:

Daily production of information and importance of the sequence of produced data in forecasting future performance of market causes analysis of data behavior to become a problem of analyzing time series. But time series that are very complicated, usually are random and as a result their changes considered being unpredictable. While these series might be products of a deterministic dynamical and nonlinear process (chaotic) and as a result be predictable. Point of Chaotic theory view, complicated systems have only chaotically face and as a result they seem to be unregulated and random, but it is possible that they abide by a specified math formula. In this article, with regard to test of strange attractor and biggest Lyapunov exponent probability of chaos on several foreign exchange rates vs. IRR (Iranian Rial) has been investigated. Results show that data in this market have complex chaotic behavior with big degree of freedom.

Keywords: Chaos, Exchange Rate, Nonlinear Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
396 Learning Programming for Hearing Impaired Students via an Avatar

Authors: Nihal Esam Abuzinadah, Areej Abbas Malibari, Arwa Abdulaziz Allinjawi, Paul Krause

Abstract:

Deaf and hearing-impaired students face many obstacles throughout their education, especially with learning applied sciences such as computer programming. In addition, there is no clear signs in the Arabic Sign Language that can be used to identify programming logic terminologies such as while, for, case, switch etc. However, hearing disabilities should not be a barrier for studying purpose nowadays, especially with the rapid growth in educational technology. In this paper, we develop an Avatar based system to teach computer programming to deaf and hearing-impaired students using Arabic Signed language with new signs vocabulary that is been developed for computer programming education. The system is tested on a number of high school students and results showed the importance of visualization in increasing the comprehension or understanding of concepts for deaf students through the avatar.

Keywords: Hearing-impaired students, isolation, self-esteem, learning difficulties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
395 Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet

Authors: Talbi Mourad, Salhi Lotfi, Chérif Adnen

Abstract:

In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non stationary noise level, we employ the spectral entropy. A comparison of our proposed technique to classical denoising methods based on thresholding and spectral subtraction is made in order to evaluate our approach. The experimental implementation uses speech signals corrupted by two sorts of noise, white and Volvo noises. The obtained results from listening tests show that our proposed technique is better than spectral subtraction. The obtained results from SNR computation show the superiority of our technique when compared to the classical thresholding method using the modified hard thresholding function based on u-law algorithm.

Keywords: Enhancement, spectral subtraction, SNR, discrete wavelet packet transform, spectral entropy Histogram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
394 Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization

Authors: Marcell S. A. Martins, Benedito S. R. Neto, Gerson L. Serejo, Carlos G. R. Santos

Abstract:

Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm was implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely.

Keywords: Multiscale recognition, indoor localization, tape-shaped marker, Fiducial Marker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176
393 Memory Types in Hemodialysis Patients: A Study Based on Hemodialysis Duration, Zahedan, South East of Iran

Authors: B. Sabayan, A. Alidadi, S. Ebrahimi, N. M. Bakhshani

Abstract:

Neuropsychological problems are more common in hemodialysis (HD) patients than in healthy individuals. The aim of this study was to investigate the effect of long term HD on memory types of HD patients. To assess the different type of memory, we used memory parts of the Persian Papers and Pencil Cognitive assessment package (PCAP) and Addenbrooke's Cognitive Examination (ACE-R). Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients and another group which had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% of them were female. The scores of patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had lower score in anterograde, explicit, visual, recall and recognition memory (5.44±1.07, 9.49±3.472, 22.805±6.6913, 5.59±10.435, 11.02±3.190 score) than the HD patients who underwent HD for a shorter term, where the median time was 3 to 5 months (P<0.01). The regression result shows that, by increasing the HD duration, all memory types are reduced (R2=0.600, P<0.01). The present study demonstrated that HD patients who were under HD for a long time had significantly lower scores in the different types of memory. However, additional researches are needed in this area.

Keywords: Hemodialysis patients, duration of hemodialysis, memory types, Zahedan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
392 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Authors: Pogula Rakesh, T. Kishore Kumar

Abstract:

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR) and SNR Loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

Keywords: Adaptive filter, Adaptive Noise Canceller, Mean Squared Error, Noise reduction, NLMS, RLS, SNR, SNR Loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3183
391 Standardization and Adaption Requirements in Production System Transplants

Authors: G. Schuh, T. Potente, D. Kupke, S. Ivanescu

Abstract:

As German companies roll out their standardized production systems to offshore manufacturing plants, they face the challenge of implementing them in different cultural environments. Studies show that the local adaptation is one of the key factors for a successful implementation. Thus the question arises of where the line between standardization and adaptation can be drawn. To answer this question the influence of culture on production systems is analysed in this paper. The culturally contingent components of production systems are identified. Also the contingency factors are classified according to their impact on the necessary adaptation changes and implementation effort. Culturally specific decision making, coordination, communication and motivation patterns require one-time changes in organizational and process design. The attitude towards rules requires more intense coaching and controlling. Lastly a framework is developed to depict standardization and adaption needs when transplanting production systems into different cultural environments.

Keywords: Culture, influence of national culture on production systems, lean production, production systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
390 Hydrodynamic Analysis of Reservoir Due to Vertical Component of Earthquake Using an Analytical Solution

Authors: M. Pasbani Khiavi, M. A. Ghorbani

Abstract:

This paper presents an analytical solution to get a reliable estimation of the hydrodynamic pressure on gravity dams induced by vertical component earthquake when solving the fluid and dam interaction problem. Presented analytical technique is presented for calculation of earthquake-induced hydrodynamic pressure in the reservoir of gravity dams allowing for water compressibility and wave absorption at the reservoir bottom. This new analytical solution can take into account the effect of bottom material on seismic response of gravity dams. It is concluded that because the vertical component of ground motion causes significant hydrodynamic forces in the horizontal direction on a vertical upstream face, responses to the vertical component of ground motion are of special importance in analysis of concrete gravity dams subjected to earthquakes.

Keywords: Dam, Reservoir, Analytical solution, Vertical component, Earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
389 Affective Adaptation Design for Better Gaming Experiences

Authors: Ollie Hall, Salma ElSayed

Abstract:

Affective adaptation is a creative way for game designers to add an extra layer of engagement to their productions. When player’s emotions are an explicit factor in mechanics design, endless possibilities for imaginative gameplay emerge. Whilst gaining popularity, existing affective game research mostly runs controlled experiments in restrictive settings and rely on one or more specialist devices for measuring player’s emotional state. These conditions albeit effective, are not necessarily realistic. Moreover, the simplified narrative and intrusive wearables may not be suitable for players. This exploratory study investigates delivering an immersive affective experience in the wild with minimal requirements, in an attempt for the average developer to reach the average player. A puzzle game is created with rich narrative and creative mechanics. It employs both explicit and implicit adaptation and only requires a web camera. Participants played the game on their own machines in various settings. Whilst it was rated feasible, very engaging and enjoyable, it remains questionable whether a fully immersive experience was delivered due to the limited sample size.

Keywords: affective games, dynamic adaptation, emotion recognition, game design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
388 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
387 A Proposed Innovation Management System Framework – A Solution for Organizations Aimed for Obtaining Performance

Authors: Andreea Maier, Stelian Brad, Mircea Fulea, Diana Nicoară, Dorin Maier

Abstract:

Today, any organization - regardless of the specific activity - must be prepared to face continuous radical changes, innovation thus becoming a condition of survival in a globalized market. Few managers have a wider vision that includes innovation, to enable better performance of the critical activities, namely the degree of novelty that it must submit an innovation to be considered as such. Companies need not only radical changes in the products or their services, but also to their business strategies. Not all managers have an overall view on the real size of necessary innovation potential. Unfortunately there is still no common understanding (and correct) of the term of innovation among managers. Moreover, not all managers are aware of the need for innovation. In these conditions, increasing the processes adaptability of firms (through innovation) to meet the needs and performance requirements is difficult without a systematic framework. To overcome this disadvantage, the authors propose a framework for designing an innovation management system,, to cover all the important aspects of a business system, to reach the actual performance of an organization.

Keywords: Innovation, innovation framework, innovation management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
386 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection

Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung

Abstract:

This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.

Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938
385 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: H. AbdelRahman, S. Rostom, Y. Lotfy, S. Salah Eldeen, R. Yassein, N. Awny

Abstract:

People are growing more concerned with their appearance in today's society. But they are terrified of what they will look like after a plastic surgery. People's mental health suffers when they have accidents, burns, or genetic issues that cause them to cleave certain body parts, which makes them feel uncomfortable and unappreciated. The method provides an innovative deep learning-based technique for image inpainting that analyzes different picture structures and fixes damaged images. This study proposes a model based on the Stable Diffusion Inpainting method for in-painting medical images. One significant advancement made possible by deep neural networks is image inpainting, which is the process of reconstructing damaged and missing portions of an image. The patient can see the outcome more easily since the system uses the user's input of an image to identify a problem. It then modifies the image and outputs a fixed image.

Keywords: Generative Adversarial Network, GAN, Large Mask Inpainting, LAMA, Stable Diffusion Inpainting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107
384 Contraception in Guatemala, Panajachel and the Surrounding Areas: Barriers Affecting Women’s Contraceptive Usage

Authors: Natasha Bhate

Abstract:

Contraception is important in helping to reduce maternal and infant mortality rates by allowing women to control the number and spacing in-between their children. It also reduces the need for unsafe abortions. Women worldwide use contraception; however, the contraceptive prevalence rate is still relatively low in Central American countries like Guatemala. There is also an unmet need for contraception in Guatemala, which is more significant in rural, indigenous women due to barriers preventing contraceptive use. The study objective was to investigate and analyse the current barriers women face, in Guatemala, Panajachel and the surrounding areas, in using contraception, with a view of identifying ways to overcome these barriers. This included exploring the contraceptive barriers women believe exist and the influence of males in contraceptive decision making. The study took place at a charity in Panajachel, Guatemala, and had a cross-sectional, qualitative design to allow an in-depth understanding of information gathered. This particular study design was also chosen to help inform the charity with qualitative research analysis, in view of their intent to create a local reproductive health programme. A semi-structured interview design, including photo facilitation to improve cross-cultural communication, with interpreter assistance, was utilized. A pilot interview was initially conducted with small improvements required. Participants were recruited through purposive and convenience sampling. The study host at the charity acted as a gatekeeper; participants were identified through attendance of the charity’s women’s-initiative programme workshops. 20 participants were selected and agreed to study participation with two not attending; a total of 18 participants were interviewed in June 2017. Interviews were audio-recorded and data were stored on encrypted memory sticks. Framework analysis was used to analyse the data using NVivo11 software. The University of Leeds granted ethical approval for the research. Religion, language, the community, and fear of sickness were examples of existing contraceptive barrier themes recognized by many participants. The influence of men was also an important barrier identified, with themes of machismo and abuse preventing contraceptive use in some women. Women from more rural areas were believed to still face barriers which some participants did not encounter anymore, such as distance and affordability of contraceptives. Participants believed that informative workshops in various settings were an ideal method of overcoming existing contraceptive barriers and allowing women to be more empowered. The involvement of men in such workshops was also deemed important by participants to help reduce their negative influence in contraceptive usage. Overall, four recommendations following this study were made, including contraceptive educational courses, a gender equality campaign, couple-focused contraceptive workshops, and further qualitative research to gain a better insight into men’s opinions regarding women using contraception.

Keywords: Barrier, contraception, machismo, religion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
383 Harris Extraction and SIFT Matching for Correlation of Two Tablets

Authors: Ali Alzaabi, Georges Alquié, Hussain Tassadaq, Ali Seba

Abstract:

This article presents the developments of efficient algorithms for tablet copies comparison. Image recognition has specialized use in digital systems such as medical imaging, computer vision, defense, communication etc. Comparison between two images that look indistinguishable is a formidable task. Two images taken from different sources might look identical but due to different digitizing properties they are not. Whereas small variation in image information such as cropping, rotation, and slight photometric alteration are unsuitable for based matching techniques. In this paper we introduce different matching algorithms designed to facilitate, for art centers, identifying real painting images from fake ones. Different vision algorithms for local image features are implemented using MATLAB. In this framework a Table Comparison Computer Tool “TCCT" is designed to facilitate our research. The TCCT is a Graphical Unit Interface (GUI) tool used to identify images by its shapes and objects. Parameter of vision system is fully accessible to user through this graphical unit interface. And then for matching, it applies different description technique that can identify exact figures of objects.

Keywords: Harris Extraction and SIFT Matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
382 Developing Rice Disease Analysis System on Mobile via iOS Operating System

Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit

Abstract:

This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.

Keywords: Rice disease, analysis system, mobile application, iOS operating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
381 Enhance Power Quality by HVDC System, Comparison Technique between HVDC and HVAC Transmission Systems

Authors: Smko Zangana, Ergun Ercelebi

Abstract:

The alternating current is the main power in all industries and other aspects especially for the short and mid distances, but as far as long a distance which exceeds 500 KMs, using the alternating current technically will face many difficulties and more costs because it's difficult to control the current and also other restrictions. Therefore, recently those reasons led to building transmission lines HVDC to transmit power for long distances. This document presents technical comparison and assessments for power transmission system among distances either ways and studying the stability of the system regarding the proportion of losses in the actual power sent and received between both sides in different systems and also categorizing filters used in the HVDC system and its impact and effect on reducing Harmonic in the power transmission. MATLAB /Simulink simulation software is used to simulate both HVAC & HVDC power transmission system topologies.

Keywords: HVAC power system, HVDC power system, power system simulation (MATLAB), the alternating current, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
380 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

Authors: Omer Nebil Yaveroglu, Tolga Can

Abstract:

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
379 Political and Economic Transition of People with Disabilities Related to Globalization

Authors: Jihye Jeon

Abstract:

This paper analyzes the political and economic issues that people with disabilities face related to globalization; how people with disabilities have been adapting globalization and surviving under worldwide competition system. It explains that economic globalization exacerbates inequality and deprivation of people with disabilities. The rising tide of neo-liberal welfare policies emphasized efficiency, downsized social expenditure for people with disabilities, excluded people with disabilities against labor market, and shifted them from welfare system to nothing. However, there have been people with disabilities' political responses to globalization, which are characterized by a global network of people with disabilities as well as participation to global governance. Their resistance can be seen as an attempt to tackle the problems that economic globalization has produced. It is necessary paradigm shift of disability policy from dependency represented by disability benefits to independency represented by labor market policies for people with disabilities.

Keywords: Economic Globalization, People with Disability, Deprivation, Welfare Cut, Disability Right Movement, Resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
378 Governance of Inter-Organizational Research Cooperation

Authors: Guenther Schuh, Sebastian Woelk

Abstract:

Companies face increasing challenges in research due to higher costs and risks. The intensifying technology complexity and interdisciplinarity require unique know-how. Therefore, companies need to decide whether research shall be conducted internally or externally with partners. On the other hand, research institutes meet increasing efforts to achieve good financing and to maintain high research reputation. Therefore, relevant research topics need to be identified and specialization of competency is necessary. However, additional competences for solving interdisciplinary research projects are also often required. Secured financing can be achieved by bonding industry partners as well as public fundings. The realization of faster and better research drives companies and research institutes to cooperate in organized research networks, which are managed by an administrative organization. For an effective and efficient cooperation, necessary processes, roles, tools and a set of rules need to be determined. Goal of this paper is to show the state-of-art research and to propose a governance framework for organized research networks.

Keywords: Interorganizational cooperation, design of network governance, research network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
377 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning

Authors: Yasaswi Palagummi, Sareh Rowlands

Abstract:

Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GZSL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets - AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.

Keywords: Generalised Zero-shot Learning, Inductive Learning, Shifted-Window Attention, Swin Transformer, Vision Transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221
376 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.

Authors: Qasim M. Kriri

Abstract:

Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.

Keywords: Parameter linear programming, objective function, sensitivity analysis, optimize profit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908
375 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy

Abstract:

This paper aims to provide an interpretation of artificial neural networks (ANNs) and explore some of its implications. The interpretation views ANNs as a memory which encodes instances of experience. An experiment explores the behavior of encoding and retrieval of instances from memory. A localised representation ANN is created that allows control over encoding and retrieved memory sample size and is experimented with using the MNIST digits dataset. The relationship between input familiarity, conflict within retrieved samples, and error rates is described and demonstrated to be an effective driver for memory encoding. Results indicate that selective encoding and retrieval samples that allow detection of memory conflicts produce optimal performance, and that error rates are normally distributed with input familiarity and conflict. By using input familiarity and sample consistency to guide memory encoding, the number of encoding trials on the dataset were reduced to 18.33% of the training data while maintaining good recognition performance on the test data.

Keywords: Artificial Neural Networks, ANNs, representation, memory, conflict monitoring, confidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
374 Experimental Simulation of Soil Boundary Condition for Dynamic Studies

Authors: Omar.S. Qaftan, T. T. Sabbagh

Abstract:

This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container.

Keywords: Soil, boundary, seismic, earthquake, ground motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
373 3DARModeler: a 3D Modeling System in Augmented Reality Environment

Authors: Trien V. Do, Jong-Weon Lee

Abstract:

This paper describes a 3D modeling system in Augmented Reality environment, named 3DARModeler. It can be considered a simple version of 3D Studio Max with necessary functions for a modeling system such as creating objects, applying texture, adding animation, estimating real light sources and casting shadows. The 3DARModeler introduces convenient, and effective human-computer interaction to build 3D models by combining both the traditional input method (mouse/keyboard) and the tangible input method (markers). It has the ability to align a new virtual object with the existing parts of a model. The 3DARModeler targets nontechnical users. As such, they do not need much knowledge of computer graphics and modeling techniques. All they have to do is select basic objects, customize their attributes, and put them together to build a 3D model in a simple and intuitive way as if they were doing in the real world. Using the hierarchical modeling technique, the users are able to group several basic objects to manage them as a unified, complex object. The system can also connect with other 3D systems by importing and exporting VRML/3Ds Max files. A module of speech recognition is included in the system to provide flexible user interfaces.

Keywords: 3D Modeling, Augmented Reality, GeometricModeling, Virtual Reality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
372 Optimization of the Nutrient Supplients for Cellulase Production with the Basal Medium Palm Oil Mill Effluent

Authors: Rashid S S, Alam M Z, Karim M I A, Salleh, M H

Abstract:

A statistical optimization was studied to design a media composition to produce optimum cellulolytic enzyme where palm oil mill effluent (POME) as a basal medium and filamentous fungus, Trichoderma reesei RUT-C30 were used in the liquid state bioconversion(LSB). 2% (w/v) total suspended solid, TSS, of the POME supplemented with 1% (w/v) cellulose, 0.5%(w/v) peptone and 0.02% (v/v) Tween 80 was estimated to produce the optimum CMCase activity of 18.53 U/ml through the statistical analysis followed by the faced centered central composite design(FCCCD). The probability values of cellulose (<0.0011) and peptone (0.0021) indicated the significant effect on the production of cellulase with the determination coefficient (R2) of 0.995.

Keywords: Face centered central composite design (FCCCD), Liquid state bioconversion (LSB), Palm oil mill effluent, Trichoderma reesei RUT C-30.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
371 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement

Authors: M. Mlhem

Abstract:

Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.

Keywords: Additives, clay, compression strength, epoxy, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717
370 Artificial Intelligence Techniques Applications for Power Disturbances Classification

Authors: K.Manimala, Dr.K.Selvi, R.Ahila

Abstract:

Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.

Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
369 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data

Authors: Hyun-Woo Cho

Abstract:

Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
368 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282