Search results for: solar and wind energy potential
4392 Introduction to Electron Spectroscopy for Surfaces Characterization
Authors: Abdelkader Benzian
Abstract:
Spectroscopy is the study of the spectrum produced by the radiation-matter interaction which requires the study of electromagnetic radiation (or electrons) emitted, absorbed, or scattered by matter. Thus, the spectral analysis is using spectrometers which enables us to obtain curves that express the distribution of the energy emitted (spectrum). Analysis of emission spectra can therefore constitute several methods depending on the range of radiation energy. The most common methods used are Auger electron spectroscopy (AES) and Electron Energy Losses Spectroscopy (EELS), which allow the determination of the atomic structure on the surface. This paper focalized essentially on the Electron Energy Loss Spectroscopy.
Keywords: Dielectric, plasmon, mean free path, spectroscopy of electron energy losses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7774391 Structural Analysis of a Composite Wind Turbine Blade
Abstract:
The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.
Keywords: Dynamic analysis, Fiber Reinforced Composites, Horizontal axis wind turbine blade, Hand-wet layup, Modal Testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50274390 Optimization of Energy Consumption in Sequential Distillation Column
Authors: M.E. Masoumi, S. Kadkhodaie
Abstract:
Distillation column is one of the most common operations in process industries and is while the most expensive unit of the amount of energy consumption. Many ideas have been presented in the related literature for optimizing energy consumption in distillation columns. This paper studies the different heat integration methods in a distillation column which separate Benzene, Toluene, Xylene, and C9+. Three schemes of heat integration including, indirect sequence (IQ), indirect sequence with forward energy integration (IQF), and indirect sequence with backward energy integration (IQB) has been studied in this paper. Using shortcut method these heat integration schemes were simulated with Aspen HYSYS software and compared with each other with regarding economic considerations. The result shows that the energy consumption has been reduced 33% in IQF and 28% in IQB in comparison with IQ scheme. Also the economic result shows that the total annual cost has been reduced 12% in IQF and 8% in IQB regarding with IQ scheme. Therefore, the IQF scheme is most economic than IQB and IQ scheme.Keywords: Optimization, Distillation Column Sequence, Energy Savings
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30194389 The Effect of Tmax in Energy Consumption in 0IEEE 802.16e with Traffic Load
Authors: Mohammadreza Sahebi, Arash Azizi Mazreah, Asadollah Shahbahrami, Bahram Bakhshi
Abstract:
Energy consumption is an important design issue for Mobile Subscriber Station (MSS) in the standard IEEE 802.16e. Because mobility of MSS implies that energy saving becomes an issue so that lifetime of MSS can be extended before re-charging. Also, the mechanism in efficiently managing the limited energy is becoming very significant since a MSS is generally energized by battery. For these, sleep mode operation is recently specified in the MAC (Medium Access Control) protocol. In order to reduce the energy consumption, we focus on the sleep-mode and wake-mode of the MAC layer, which are included in the IEEE 802.16 standards [1- 2].Keywords: IEEE 802.16e, Sleep-mode, Wake-mode, Downlink, Mobile Subscriber Station.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14874388 Towards Benchmarking English Residential Gas Consumption
Authors: J.Morris, D.Allinson, J.Harrison, K.J. Lomas
Abstract:
The UK Government has emphasized the role of Local Authorities as a key player in its flagship residential energy efficiency strategies, by identifying and targeting areas for energy efficiency improvements. Residential energy consumption in England is characterized by significant geographical variation in energy demand, which makes centralized targeting of areas for energy efficiency intervention difficult. This paper draws on research which aims to understand how demographic, social, economic, urban form and climatic factors influence the geographical variations in English residential gas consumption. The paper reports the findings of a multiple regression model that shows how 64% of the geographical variation in residential gas consumption is accounted for by variations in these factors. Results from this study, after further refinement and validation, can be used by Local Authorities to identify areas within their boundaries that have higher than expected gas consumption, these may be prime targets for energy efficiency initiatives.
Keywords: UK Housing, Heating Energy, Socio-Economics, Statistical Modelling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16734387 Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite
Authors: Mohsen Farahat, Tsuyoshi Hirajima
Abstract:
Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment.Keywords: Bacillus megaterium, surface modification, flotation, dolomite, adhesion energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20154386 Assessment of Energy Consumption in Cluster Redevelopment: A Case Study of Bhendi Bazar in Mumbai
Authors: Insiya Kapasi, Roshni Udyavar Yehuda
Abstract:
Cluster Redevelopment is a new concept in the city of Mumbai. Its regulations were laid down by the government in 2009. The concept of cluster redevelopment encompasses a group of buildings defined by a boundary as specified by the municipal authority (in this case, Mumbai), which may be dilapidated or approved for redevelopment. The study analyses the effect of cluster redevelopment in the form of renewal of old group of buildings as compared to refurbishment or restoration - on energy consumption. The methodology includes methods of assessment to determine increase or decrease in energy consumption in cluster redevelopment based on different criteria such as carpet area of the units, building envelope and its architectural elements. Results show that as the area and number of units increase the Energy consumption increases and the EPI (energy performance index) decreases as compared to the base case. The energy consumption per unit area declines by 29% in the proposed cluster redevelopment as compared to the original settlement. It is recommended that although the development is spacious and provides more light and ventilation, aspects such as glass type, traditional architectural features and consumer behavior are critical in the reduction of energy consumption.
Keywords: Cluster redevelopment, energy consumption, energy efficiency, typologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6384385 Post Occupancy Life Cycle Analysis of a Green Building Energy Consumption at the University of Western Ontario in London - Canada
Authors: M. Bittencourt, E. K. Yanful, D. Velasquez, A. E. Jungles
Abstract:
The CMLP building was developed to be a model for sustainability with strategies to reduce water, energy and pollution, and to provide a healthy environment for the building occupants. The aim of this paper is to investigate the environmental effects of energy used by this building. A LCA (life cycle analysis) was led to measure the real environmental effects produced by the use of energy. The impact categories most affected by the energy use were found to be the human health effects, as well as ecotoxicity. Natural gas extraction, uranium milling for nuclear energy production, and the blasting for mining and infrastructure construction are the processes contributing the most to emissions in the human health effect. Data comparing LCA results of CMLP building with a conventional building results showed that energy used by the CMLP building has less damage for the environment and human health than a conventional building.Keywords: Environmental Impacts, Green buildings, Life CycleAnalysis, Sustainability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17774384 Effect of Temperature on the Performance of Multi-Stage Distillation
Authors: A. Diaf, H. Aburideh, Z.Tigrine, D. Tassalit, F.Alaoui
Abstract:
The tray/multi-tray distillation process is a topic that has been investigated to great detail over the last decade by many teams such as Jubran et al. [1], Adhikari et al. [2], Mowla et al. [3], Shatat et al. [4] and Fath [5] to name a few. A significant amount of work and effort was spent focusing on modeling and/simulation of specific distillation hardware designs. In this work, we have focused our efforts on investigating and gathering experimental data on several engineering and design variables to quantify their influence on the yield of the multi-tray distillation process. Our goals are to generate experimental performance data to bridge some existing gaps in the design, engineering, optimization and theoretical modeling aspects of the multi-tray distillation process.Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18174383 Emission Assessment of Rice Husk Combustion for Power Production
Authors: Thipwimon Chungsangunsit, Shabbir H. Gheewala, Suthum Patumsawad
Abstract:
Rice husk is one of the alternative fuels for Thailand because of its high potential and environmental benefits. Nonetheless, the environmental profile of the electricity production from rice husk must be assessed to ensure reduced environmental damage. A 10 MW pilot plant using rice husk as feedstock is the study site. The environmental impacts from rice husk power plant are evaluated by using the Life Cycle Assessment (LCA) methodology. Energy, material and carbon balances have been determined for tracing the system flow. Carbon closure has been used for describing of the net amount of CO2 released from the system in relation to the amount being recycled between the power plant and the CO2 adsorbed by rice husk. The transportation of rice husk to the power plant has significant on global warming, but not on acidification and photo-oxidant formation. The results showed that the impact potentials from rice husk power plant are lesser than the conventional plants for most of the categories considered; except the photo-oxidant formation potential from CO. The high CO from rice husk power plant may be due to low boiler efficiency and high moisture content in rice husk. The performance of the study site can be enhanced by improving the combustion efficiency.
Keywords: Environmental impact, Fossil fuels, Life Cycle Assessment (LCA), Renewable energy, Rice husk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74444382 Energy Efficiency Index Applied to Reactive Systems
Abstract:
This paper focuses on the development of an energy efficiency index that will be applied to reactive systems, which is based in the First and Second Law of Thermodynamics, by giving particular consideration to the concept of maximum entropy. Among the requirements of such energy efficiency index, the practical feasibility must be essential. To illustrate the performance of the proposed index, such an index was used as decisive factor of evaluation for the optimization process of an industrial reactor. The results allow the conclusion to be drawn that the energy efficiency index applied to the reactive system is consistent because it extracts the information expected of an efficient indicator, and that it is useful as an analytical tool besides being feasible from a practical standpoint. Furthermore, it has proved to be much simpler to use than tools based on traditional methodologies.Keywords: Energy efficiency, maximum entropy, reactive systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11274381 Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX
Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu
Abstract:
This paper presents the results obtained by numerical simulation using the software ANSYS CFX-CFD for the air pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion in an electric thermal power plant. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. It is considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations it is measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that the average concentration are calculated, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.Keywords: Air pollutants, computational fluid dynamics, dispersion, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44784380 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback
Authors: P. Nafisi Poor, P. Javid
Abstract:
Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.
Keywords: Adaptive buildings, energy efficiency, intelligent buildings, user comfortability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6854379 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation
Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang
Abstract:
In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building. Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that no more than 7% prediction error of annual cooling/heating load will be caused by the geometric simplification for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which means this method is applicable for building performance simulation.
Keywords: building energy model, simulation, geometric simplification, design, regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6314378 Wind Fragility for Honeycomb Roof Cladding Panels Using Screw Pull-Out Capacity
Authors: Viriyavudh Sim, Woo Young Jung
Abstract:
The failure of roof cladding mostly occurs due to the failing of the connection between claddings and purlins, which is the pull-out of the screw connecting the two parts when the pull-out load, i.e. typhoon, is higher than the resistance of the connection screw. As typhoon disasters in Korea are constantly on the rise, probability risk assessment (PRA) has become a vital tool to evaluate the performance of civil structures. In this study, we attempted to determine the fragility of roof cladding with the screw connection. Experimental study was performed to evaluate the pull-out resistance of screw joints between honeycomb panels and back frames. Subsequently, by means of Monte Carlo Simulation method, probability of failure for these types of roof cladding was determined. The results that the failure of roof cladding was depends on their location on the roof, for example, the edge most panel has the highest probability of failure.Keywords: Monte Carlo Simulation, roof cladding, screw pull-out strength, wind fragility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9584377 Engineering Study and Equipment Design: Effects of Temperature and design variables on Yield of a Multi-Stage Distillator
Authors: A.Diaf, Z.Tigrine, H. Aburideh, D.Tassalit , F.Alaoui, B .Abbad
Abstract:
The distillation process in the general sense is a relatively simple technique from the standpoints of its principles. When dedicating distillation to water treatment and specifically producing fresh water from sea, ocean and/ briny waters it is interesting to notice that distillation has no limitations or domains of applicability regarding the nature or the type of the feedstock water. This is not the case however for other techniques that are technologically quite complex, necessitate bigger capital investments and are limited in their usability. In a previous paper we have explored some of the effects of temperature on yield. In this paper, we continue building onto that knowledge base and focus on the effects of several additional engineering and design variables on productivity.Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18004376 Using Data Mining Techniques for Estimating Minimum, Maximum and Average Daily Temperature Values
Authors: S. Kotsiantis, A. Kostoulas, S. Lykoudis, A. Argiriou, K. Menagias
Abstract:
Estimates of temperature values at a specific time of day, from daytime and daily profiles, are needed for a number of environmental, ecological, agricultural and technical applications, ranging from natural hazards assessments, crop growth forecasting to design of solar energy systems. The scope of this research is to investigate the efficiency of data mining techniques in estimating minimum, maximum and mean temperature values. For this reason, a number of experiments have been conducted with well-known regression algorithms using temperature data from the city of Patras in Greece. The performance of these algorithms has been evaluated using standard statistical indicators, such as Correlation Coefficient, Root Mean Squared Error, etc.
Keywords: regression algorithms, supervised machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34214375 Viscosity Model for Predicting the Power Output from Ocean Salinity and Temperature Energy Conversion System (OSTEC) Part 1: Theoretical Formulation
Authors: Ag. S. Abd. Hamid, S. K. Lee, J. Dayou, R. Yusoff, F. Sulaiman
Abstract:
The mixture between two fluids of different salinity has been proven to capable of producing electricity in an ocean salinity energy conversion system known as hydrocratic generator. The system relies on the difference between the salinity of the incoming fresh water and the surrounding sea water in the generator. In this investigation, additional parameter is introduced which is the temperature difference between the two fluids; hence the system is known as Ocean Salinity and Temperature Energy Conversion System (OSTEC). The investigation is divided into two papers. This first paper of Part 1 presents the theoretical formulation by considering the effect of fluid dynamic viscosity known as Viscosity Model and later compares with the conventional formulation which is Density Model. The dynamic viscosity model is used to predict the dynamic of the fluids in the system which in turns gives the analytical formulation of the potential power output that can be harvested.
Keywords: Buoyancy, density, frictional head loss, kinetic power, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18714374 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.
Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9434373 Optimisation of A Phase Change Thermal Storage System
Authors: Nasrul Amri Mohd Amin, Martin Belusko, Frank Bruno
Abstract:
PCMs have always been viewed as a suitable candidate for off peak thermal storage, particularly for refrigeration systems, due to the high latent energy densities of these materials. However, due to the need to have them encapsulated within a container this density is reduced. Furthermore, PCMs have a low thermal conductivity which reduces the useful amount of energy which can be stored. To consider these factors, the true energy storage density of a PCM system was proposed and optimised for PCMs encapsulated in slabs. Using a validated numerical model of the system, a parametric study was undertaken to investigate the impact of the slab thickness, gap between slabs and the mass flow rate. The study showed that, when optimised, a PCM system can deliver a true energy storage density between 53% and 83% of the latent energy density of the PCM.Keywords: Phase change material, refrigeration, sustainability, thermal energy storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23034372 An Overview of Energy Efficient Routing Protocols for Acoustic Sensor Network
Authors: V. P. Dhivya, R. Arthi
Abstract:
Underwater acoustic network is one of the rapidly growing areas of research and finds different applications for monitoring and collecting various data for environmental studies. The communication among dynamic nodes and high error probability in an acoustic medium forced to maximize energy consumption in Underwater Sensor Networks (USN) than in traditional sensor networks. Developing energy-efficient routing protocol is the fundamental and a curb challenge because all the sensor nodes are powered by batteries, and they cannot be easily replaced in UWSNs. This paper surveys the various recent routing techniques that mainly focus on energy efficiency.
Keywords: Acoustic channels, Energy efficiency, Routing in sensor networks, Underwater Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29924371 Application of Relative Regional Total Energy in Rotary Drums with Axial Segregation Characteristics
Authors: Qiuhua Miao, Peng Huang, Yifei Ding
Abstract:
Particles with different properties tend to be unevenly distributed along an axial direction of the rotating drum, which is usually ignored. Therefore, it is important to study the relationship between axial segregation characteristics and particle crushing efficiency in longer drums. In this paper, a relative area total energy (RRTE) index is proposed, which aims to evaluate the overall crushing energy distribution characteristics. Based on numerical simulation verification, the proposed RRTE index can reflect the overall grinding effect more comprehensively, clearly representing crushing energy distribution in different drum areas. Furthermore, the proposed method is applied to the relation between axial segregation and crushing energy in drums. Compared with the radial section, the collision loss energy of the axial section can better reflect the overall crushing effect in long drums. The axial segregation characteristics directly affect the total energy distribution between medium and abrasive, reducing overall crushing efficiency. Therefore, the axial segregation characteristics should be avoided as much as possible in the crushing of the long rotary drum.
Keywords: Relative regional total energy, crushing energy, axial segregation characteristics, rotary drum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3834370 Evaluating the Impact of Replacement Policies on the Cache Performance and Energy Consumption in Different Multicore Embedded Systems
Authors: Sajjad Rostami-Sani, Mojtaba Valinataj, Amir-Hossein Khojir-Angasi
Abstract:
The cache has an important role in the reduction of access delay between a processor and memory in high-performance embedded systems. In these systems, the energy consumption is one of the most important concerns, and it will become more important with smaller processor feature sizes and higher frequencies. Meanwhile, the cache system dissipates a significant portion of energy compared to the other components of a processor. There are some elements that can affect the energy consumption of the cache such as replacement policy and degree of associativity. Due to these points, it can be inferred that selecting an appropriate configuration for the cache is a crucial part of designing a system. In this paper, we investigate the effect of different cache replacement policies on both cache’s performance and energy consumption. Furthermore, the impact of different Instruction Set Architectures (ISAs) on cache’s performance and energy consumption has been investigated.Keywords: L1-cache, energy consumption, replacement policy, Instruction set architecture, multicore processor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9664369 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption
Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu
Abstract:
In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.
Keywords: Comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6464368 Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions
Authors: Hector A. Tinoco, Cesar Garcia-Diaz, Olga L. Ocampo-Lopez
Abstract:
In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams.
Keywords: Hard disk drive, HDD, energy harvesting, voice coil motor, VCM, energy harvester, gait motions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14874367 Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
In this paper a PID control strategy using neural network adaptive RASP1 wavelet for WECS-s control is proposed. It is based on single layer feedforward neural networks with hidden nodes of adaptive RASP1 wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. This particular neuro PID controller assumes a certain model structure to approximately identify the system dynamics of the unknown plant (WECS-s) and generate the control signal. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.Keywords: Adaptive PID Control, RASP1 Wavelets, WindEnergy Conversion Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20074366 The Optimization of Sun Collector Parameters
Authors: István Patkó, Hosam Bayoumi Hamuda, András Medve, András Szeder
Abstract:
In order to efficiently solve the problems created by the deepening energy crisis affecting Europe and the world, governments cannot neglect the opportunities of using the energy produced by sun collectors. In many of the EU countries there are sun collectors producing heat energy, e.g. in 2011 in the area of EU27 (countries which belong to European Union) + Switzerland altogether 37519126 m2 were operated, which are capable of producing 26.3 GWh heat energy. The energy produced by these sun collectors is utilized at the place of production. In the near future governments will have to focus more on spreading and using sun collectors. Among the complex problems of operating sun collectors, this article deals with determining the optimal tilt angle, directions of sun collectors. We evaluate the contamination of glass surface of sun collector to the produced energy. Our theoretically results are confirmed by laboratory measurements. The purpose of our work is to help users and engineers in determination of optimal operation parameters of sun collectors.
Keywords: Heat energy, tilt angle, direction of sun collector, contamination of surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17604365 The Effect of Raindrop Kinetic Energy on Soil Erodibility
Authors: A. Moussouni, L. Mouzai, M. Bouhadef
Abstract:
Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.
Keywords: Erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41134364 Value Engineering and Its Effect in Reduction of Industrial Organization Energy Expenses
Authors: Habibollah Najafi, Amir Abbas Yazdani, Hosseinali Nahavandi
Abstract:
The review performed on the condition of energy consumption & rate in Iran, shows that unfortunately the subject of optimization and conservation of energy in active industries of country lacks a practical & effective method and in most factories, the energy consumption and rate is more than in similar industries of industrial countries. The increasing demand of electrical energy and the overheads which it imposes on the organization, forces companies to search for suitable approaches to optimize energy consumption and demand management. Application of value engineering techniques is among these approaches. Value engineering is considered a powerful tool for improving profitability. These tools are used for reduction of expenses, increasing profits, quality improvement, increasing market share, performing works in shorter durations, more efficient utilization of sources & etc. In this article, we shall review the subject of value engineering and its capabilities for creating effective transformations in industrial organizations, in order to reduce energy costs & the results have been investigated and described during a case study in Mazandaran wood and paper industries, the biggest consumer of energy in north of Iran, for the purpose of presenting the effects of performed tasks in optimization of energy consumption by utilizing value engineering techniques in one case study.Keywords: Value Engineering (VE), Expense, Energy, Industrial
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22744363 Effect of Blade Number on a Straight-Bladed Vertical-Axis Darreius Wind Turbine
Authors: Marco Raciti Castelli, Stefano De Betta, Ernesto Benini
Abstract:
This paper presents a mean for reducing the torque variation during the revolution of a vertical-axis wind turbine (VAWT) by increasing the blade number. For this purpose, twodimensional CDF analysis have been performed on a straight-bladed Darreius-type rotor. After describing the computational model, a complete campaign of simulations based on full RANS unsteady calculations is proposed for a three, four and five-bladed rotor architecture characterized by a NACA 0025 airfoil. For each proposed rotor configuration, flow field characteristics are investigated at several values of tip speed ratio, allowing a quantification of the influence of blade number on flow geometric features and dynamic quantities, such as rotor torque and power. Finally, torque and power curves are compared for the analyzed architectures, achieving a quantification of the effect of blade number on overall rotor performance.Keywords: CFD, VAWT, NACA 0021, blade number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5344