Search results for: load flow analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11157

Search results for: load flow analysis

10287 Transmission Pricing based on Voltage Angle Decomposition

Authors: M. Oloomi-Buygi, M. Reza Salehizadeh

Abstract:

In this paper a new approach for transmission pricing is presented. The main idea is voltage angle allocation, i.e. determining the contribution of each contract on the voltage angle of each bus. DC power flow is used to compute a primary solution for angle decomposition. To consider the impacts of system non-linearity on angle decomposition, the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow. Then, the contribution of each contract on power flow of each transmission line is computed based on angle decomposition. Contract-related flows are used as a measure for “extent of use" of transmission network capacity and consequently transmission pricing. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system.

Keywords: Deregulation, Power electric markets, Transmission pricing methodologies, decoupled Newton-Raphson power flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
10286 Experimental Study of Performance of a Counter Flow Ranque-Hilsch Vortex Tube with Inner Threaded Body

Authors: Gürol Önal, Kevser Dincer

Abstract:

In this experimental study, performance of a counter flow Ranque-Hilsch vortex tube (RHVT) with threads cut on its inner surface was investigated experimentally (pitch is 1 and 2 mm). The inner diameter of the vortex tube used was D=9 mm and the ratio of the tube’s length to diameter was L/D=12. The experimental system was a thermodynamic open system. Flow was controlled by a valve on the hot outlet side, where the valve was changed from a nearly closed position to its nearly open position. Fraction of cold flow (ξ) = 0.1-0.9, was determined under 300 and 350 kPa pressurized air. All experimental data were compared with each other, the maximum heating performance of the RHVT system was found to be 38.2 oC and the maximum cooling performance of the RHVT in this study was found to be -30.9 oC at pitch 1 mm.

Keywords: Ranque-Hilsch vortex tube, heating, cooling, temperature separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2854
10285 Effect of Impact Load on the Bond between Steel and CFRP Laminate

Authors: A. Al-Mosawe, R. Al-Mahaidi

Abstract:

Carbon fiber reinforced polymersarewidely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. CFRP laminate is commonly used to strengthen these structures under the subjected loads. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behavior between CFRP laminates and steel members under impact loading. This paper shows the effect of high load rates on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joints using Araldite 420 epoxy. The results show that applying a high load rate significantly affects the bond strength but has little influence on the effective bond length.

Keywords: Adhesively-bonded joints, Bond strength, CFRP laminate, Impact tensile loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
10284 A Mesh Free Moving Node Method To Analyze Flow Through Spirals of Orbiting Scroll Pump

Authors: I.Banerjee, A.K.Mahendra, T.K.Bera, B.G.Chandresh

Abstract:

The scroll pump belongs to the category of positive displacement pump can be used for continuous pumping of gases at low pressure apart from general vacuum application. The shape of volume occupied by the gas moves and deforms continuously as the spiral orbits. To capture flow features in such domain where mesh deformation varies with time in a complicated manner, mesh less solver was found to be very useful. Least Squares Kinetic Upwind Method (LSKUM) is a kinetic theory based mesh free Euler solver working on arbitrary distribution of points. Here upwind is enforced in molecular level based on kinetic flux vector splitting scheme (KFVS). In the present study we extended the LSKUM to moving node viscous flow application. This new code LSKUM-NS-MN for moving node viscous flow is validated for standard airfoil pitching test case. Simulation performed for flow through scroll pump using LSKUM-NS-MN code agrees well with the experimental pumping speed data.

Keywords: Least Squares, Moving node, Pitching, Spirals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
10283 Permanent Magnet Synchronous Generator – Unsymmetrical Point Operation

Authors: P. Pistelok

Abstract:

The article presents the concept of an electromagnetic circuit generator with permanent magnets mounted on the surface rotor core designed for single phase work. Computation field-circuit model was shown. The spectrum of time course of voltages in the idle work was presented. The cross section with graphically presentation of magnetic induction in particular parts of electromagnetic circuits was presented. Distribution of magnetic induction at the rated load point for each phase was shown. The time course of voltages and currents for each phases for rated power were displayed. An analysis of laboratory results and measurement of load characteristics of the generator was discussed. The work deals with three electromagnetic circuits of generators with permanent magnet where output voltage characteristics versus rated power were expressed.

Keywords: Permanent magnet generator, permanent magnets, vibration, course of torque, single phase work, asymmetrical three phase work.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
10282 Conceptual Synthesis of Multi-Source Renewable Energy Based Microgrid

Authors: Bakari M. M. Mwinyiwiwa, Mighanda J. Manyahi, Nicodemu Gregory, Alex L. Kyaruzi

Abstract:

Microgrids are increasingly being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. However, the technical challenges associated with the operation and controls are immense. Management of dynamic power balances, power flow, and network voltage profiles imposes unique challenges in the context of microgrids. Stability of the microgrid during both grid-connected and islanded mode is considered as the major challenge during its operation. Traditional control methods have been employed are based on the assumption of linear loads. For instance the concept of PQ, voltage and frequency control through decoupled PQ are some of very useful when considering linear loads, but they fall short when considering nonlinear loads. The deficiency of traditional control methods of microgrid suggests that more research in the control of microgrids should be done. This research aims at introducing the dq technique concept into decoupled PQ for dynamic load demand control in inverter interfaced DG system operating as isolated LV microgrid. Decoupled PQ in exact mathematical formulation in dq frame is expected to accommodate all variations of the line parameters (resistance and inductance) and to relinquish forced relationship between the DG variables such as power, voltage and frequency in LV microgrids and allow for individual parameter control (frequency and line voltages). This concept is expected to address and achieve accurate control, improve microgrid stability and power quality at all load conditions.

Keywords: Decoupled PQ, microgrid, multisource, renewable energy, dq control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
10281 Minimizing Makespan Subject to Budget Limitation in Parallel Flow Shop

Authors: Amin Sahraeian

Abstract:

One of the criteria in production scheduling is Make Span, minimizing this criteria causes more efficiently use of the resources specially machinery and manpower. By assigning some budget to some of the operations the operation time of these activities reduces and affects the total completion time of all the operations (Make Span). In this paper this issue is practiced in parallel flow shops. At first we convert parallel flow shop to a network model and by using a linear programming approach it is identified in order to minimize make span (the completion time of the network) which activities (operations) are better to absorb the predetermined and limited budget. Minimizing the total completion time of all the activities in the network is equivalent to minimizing make span in production scheduling.

Keywords: parallel flow shop, make span, linear programming, budget

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
10280 Vortex-Shedding Suppression in Mixed Convective Flow past a Heated Square Cylinder

Authors: A. Rashid, N. Hasan

Abstract:

The present study investigates numerically the phenomenon of vortex-shedding and its suppression in twodimensional mixed convective flow past a square cylinder under the joint influence of buoyancy and free-stream orientation with respect to gravity. The numerical experiments have been conducted at a fixed Reynolds number (Re) of 100 and Prandtl number (Pr) of 0.71, while Richardson number (Ri) is varied from 0 to 1.6 and freestream orientation, α, is kept in the range 0o≤ α ≤ 90o, with 0o corresponding to an upward flow and 90o representing a cross-flow scenario, respectively. The continuity, momentum and energy equations, subject to Boussinesq approximation, are discretized using a finite difference method and are solved by a semi-explicit pressure correction scheme. The critical Richardson number, leading to the suppression of the vortex-shedding (Ric), is estimated by using Stuart-Landau theory at various free-stream orientations and the neutral curve is obtained in the Ri-α plane. The neutral curve exhibits an interesting non-monotonic behavior with Ric first increasing with increasing values of α upto 45o and then decreasing till 70o. Beyond 70o, the neutral curve again exhibits a sharp increasing asymptotic trend with Ric approaching very large values as α approaches 90o. The suppression of vortex shedding is not observed at α = 90o (cross-flow). In the unsteady flow regime, the Strouhal number (St) increases with the increase in Richardson number.

Keywords: bluff body, buoyancy, free-stream orientation, vortex-shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
10279 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: Cold Formed Steel Shear Wall Panel, CFS-SWP, micro modeling, nonlinear analysis, strip method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
10278 Sensitivity of the SHARC Model to Variations of Manning Coefficient and Effect of “n“ on the Sediment Materials Entry into the Eastern Water intake- A Case in the Dez Diversion Weir in Iran

Authors: M.R.Mansoujian, A.Rohani, N.Hedayat , M.Qamari, M. Osroosh

Abstract:

Permanent rivers are the main sources of renewable water supply for the croplands under the irrigation and drainage schemes. They are also the major source of sediment loads transport into the storage reservoirs of the hydro-electrical dams, diversion weirs and regulating dams. Sedimentation process results from soil erosion which is related to poor watershed management and human intervention ion in the hydraulic regime of the rivers. These could change the hydraulic behavior and as such, leads to riverbed and river bank scouring, the consequences of which would be sediment load transport into the dams and therefore reducing the flow discharge in water intakes. The present paper investigate sedimentation process by varying the Manning coefficient "n" by using the SHARC software along the watercourse in the Dez River. Results indicated that the optimum "n" within that river range is 0.0315 at which quantity minimum sediment loads are transported into the Eastern intake. Comparison of the model results with those obtained by those from the SSIIM software within the same river reach showed a very close proximity between them. This suggests a relative accuracy with which the model can simulate the hydraulic flow characteristics and therefore its suitability as a powerful analytical tool for project feasibility studies and project implementation.

Keywords: Sediment transport, Manning coefficient, Eastern Intake, SHARC, Dez River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
10277 Flow Characteristics and Heat Transfer Enhancement in 2D Corrugated Channels

Authors: Veli Ozbolat, Nehir Tokgoz, Besir Sahin

Abstract:

Present study numerically investigates the flow field and heat transfer of water in two dimensional sinusoidal and rectangular corrugated wall channels. Simulations are performed for fully developed flow conditions at inlet sections of the channels that have 12 waves. The temperature of the input fluid is taken to be less than that temperature of wavy walls. The governing continuity, momentum and energy equations are numerically solved using finite volume method based on SIMPLE technique. The investigation covers Reynolds number in the rage of 100-1000. The effects of the distance between upper and lower corrugated walls are studied by varying Hmin/Hmax ratio from 0.3 to 0.5 for keeping wave length and wave amplitude values fixed for both geometries. The effects of the wall geometry, Reynolds number and the distance between walls on the flow characteristics, the local Nusselt number and heat transfer are studied. It is found that heat transfer enhancement increases by usage of corrugated horizontal walls in an appropriate Reynolds number regime and channel height.

Keywords: Corrugated Channel, CFD, Flow Characteristics, Heat Transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3289
10276 Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network

Authors: A.V.Naresh Babu, S.Sivanagaraju

Abstract:

A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.

Keywords: Flexible alternating current transmission system (FACTS), first swing stability, interline power flow controller (IPFC), power injection model (PIM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
10275 Effect of Twin Cavities on the Axially Loaded Pile in Clay

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

Presence of cavities in soil predictably induces ground deformation and changes in soil stress, which might influence adjacent existing pile foundations, though the effect of twin cavities on a nearby pile needs to be understood. This research is an attempt to identify the behaviour of piles subjected to axial load and embedded in cavitied clayey soil. A series of finite element modelling were conducted to investigate the performance of piled foundation located in such soils. The validity of the numerical simulation was evaluated by comparing it with available field test and alternative analytical model. The study involved many parameters such as twin cavities size, depth, spacing between cavities, and eccentricity of cavities from the pile axis on the pile performance subjected to axial load. The study involved many cases; in each case, a critical value has been found in which cavities’ presence has shown minimum impact on the behaviour of pile. Load-displacement relationships of the affecting parameters on the pile behaviour were presented to provide helpful information for designing piled foundation situated near twin underground cavities. It was concluded that the presence of the cavities within the soil mass reduces the ultimate capacity of pile. This reduction differs according to the size and location of the cavity.

Keywords: Axial load, clay, finite element, pile, twin cavities, ultimate capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
10274 Experimental Testing of Composite Tubes with Different Corrugation Profile Subjected to Lateral Compression Load

Authors: Elfetori F. Abdewi

Abstract:

This paper presents the effect of corrugation profile geometry on the crushing behavior, energy absorption, failure mechanism, and failure mode of woven roving glass fibre/epoxy laminated composite tube. Experimental investigations were carried out on composite tubes with three different profile shapes: sinusoidal, triangular and trapezoidal. The tubes were subjected to lateral compressive loading. On the addition to a radial corrugated composite tube, cylindrical composite tube, were fabricated and tested under the same condition in order to know the effect of corrugation geometry. Typical histories of their deformation are presented. Behavior of tubes as regards the peak crushing load, energy absorbed and mode of crushing has been discussed. The results show that the behavior of the tube under lateral compression load is influenced by the geometry of the tube itself.

Keywords: Corrugated composite specimens, Energy absorption, Lateral crushing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
10273 Experimental Measurements of the Mean Flow Field in Wide-Angled Diffusers: A Data Bank Contribution

Authors: Karanja Kibicho, Anthony Sayers

Abstract:

Due to adverse pressure gradient along the diverging walls of wide-angled diffusers, the attached flow separates from one wall and remains attached permanently to the other wall in a process called stalling. Stalled diffusers render the whole fluid flow system, in which they are part of, very inefficient. There is then an engineering need to try to understand the whole process of diffuser stall if any meaningful attempts to improve on diffuser efficiency are to be made. In this regard, this paper provides a data bank contribution for the mean flow-field in wide-angled diffusers where the complete velocity and static pressure fields, and pressure recovery data for diffusers in the fully stalled flow regime are experimentally measured. The measurements were carried out at Reynolds numbers between 1.07×105 and 2.14×105 based on inlet hydraulic diameter and centreline velocity for diffusers whose divergence angles were between 30Ôùª and 50Ôùª. Variation of Reynolds number did not significantly affect the velocity and static pressure profiles. The wall static pressure recovery was found to be more sensitive to changes in the Reynolds number. By increasing the velocity from 10 m/s to 20 m/s, the wall static pressure recovery increased by 8.31%. However, as the divergence angle was increased, a similar increase in the Reynolds number resulted in a higher percentage increase in pressure recovery. Experimental results showed that regardless of the wall to which the flow was attached, both the velocity and pressure fields were replicated with discrepancies below 2%.

Keywords: Two-dimensional, wide-angled, diffuser, stall, separated flows, subsonic flows, diffuser flow regimes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
10272 Bubble Growth in a Two Phase Upward Flow in a Miniature Tube

Authors: R. S. Hassani, S. Chikh, L. Tadrist, S. Radev

Abstract:

A bubbly flow in a vertical miniature tube is analyzed theoretically. The liquid and gas phase are co-current flowing upward. The gas phase is injected via a nozzle whose inner diameter is 0.11mm and it is placed on the axis of the tube. A force balance is applied on the bubble at its detachment. The set of governing equations are solved by use of Mathematica software. The bubble diameter and the bubble generation frequency are determined for various inlet phase velocities represented by the inlet mass quality. The results show different behavior of bubble growth and detachment depending on the tube size.

Keywords: Two phase flow, bubble growth, minichannel, generation frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
10271 Development of a Smart System for Measuring Strain Levels of Natural Gas and Petroleum Pipelines on Earthquake Fault Lines in Türkiye

Authors: Ahmet Yetik, Seyit Ali Kara, Cevat Özarpa

Abstract:

Load changes occur on natural gas and oil pipelines due to natural disasters. The displacement of the soil around the natural gas and oil pipes due to situations that may cause erosion, such as earthquakes, landslides, and floods, is the source of this load change. The exposure of natural gas and oil pipes to variable loads causes deformation, cracks, and breaks in these pipes. Such cracks and breaks can cause significant damage to people and the environment, including the risk of explosions. Especially with the examinations made after natural disasters, it can be easily understood which of the pipes has sustained more damage in those quake-affected regions. It has been determined that earthquakes in Türkiye have caused permanent damage to pipelines. This project was initiated in response to the identification of cracks and gas leaks in the insulation gaskets placed in the pipelines, especially at the junction points. In this study, a SCADA (Supervisory Control and Data Acquisition) application has been developed to monitor load changes caused by natural disasters. The developed SCADA application monitors the changes in the x, y, and z axes of the stresses occurring in the pipes with the help of strain gauge sensors placed on the pipes. For the developed SCADA system, test setups in accordance with the standards were created during the fieldwork. The test setups created were integrated into the SCADA system, and the system was followed up. Thanks to the SCADA system developed with the field application, the load changes that will occur on the natural gas and oil pipes are instantly monitored, and the accumulations that may create a load on the pipes and their surroundings are immediately intervened, and new risks that may arise are prevented. It has contributed to energy supply security, asset management, pipeline holistic management, and overall sustainability in the industry.

Keywords: Earthquake, natural gas pipes, oil pipes, voltage measurement, landslide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57
10270 A Water Reuse System in Wetland Paddy Supports the Growing Industrial Water Needs

Authors: Yu-Chuan Chang, Chen Shi-Kai

Abstract:

A water reuse system in wetland paddy was simulated to supply water for industrial in this paper. A two-tank model was employed to represent the return flow of the wetland paddy.Historical data were performed for parameter estimation and model verification. With parameters estimated from the data, the model was then used to simulate a reasonable return flow rate from the wetland paddy. The simulation results show that the return flow ratio was 11.56% in the first crop season and 35.66% in the second crop season individually; the difference may result from the heavy rainfall in the second crop season. Under the existent pond with surplus active capacity, the water reuse ratio was 17.14%, and the water supplementary ratio was 21.56%. However, the pattern of rainfall, the active capacity of the pond, and the rate of water treatment limit the volume of reuse water. Increasing the irrigation water, dredging the depth of pond before rainy season and enlarging the scale of module are help to develop water reuse system to support for the industrial water use around wetland paddy.

Keywords: Return flow, water reuse, wetland paddy, return flow ratio (RR), water reuse ratio (WRR), water supplementary ratio(WSR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
10269 Effects of Synthetic Jet in Suppressing Cavity Oscillations

Authors: S. Sarkar, R. Mandal

Abstract:

The three-dimensional incompressible flow past a rectangular open cavity is investigated, where the aspect ratio of the cavity is considered as 4. The principle objective is to use large-eddy simulation to resolve and control the large-scale structures, which are largely responsible for flow oscillations in a cavity. The flow past an open cavity is very common in aerospace applications and can be a cause of acoustic source due to hydrodynamic instability of the shear layer and its interactions with the downstream edge. The unsteady Navier-stokes equations have been solved on a staggered mesh using a symmetry-preserving central difference scheme. Synthetic jet has been used as an active control to suppress the cavity oscillations in wake mode for a Reynolds number of ReD = 3360. The effect of synthetic jet has been studied by varying the jet amplitude and frequency, which is placed at the upstream wall of the cavity. The study indicates that there exits a frequency band, which is larger than a critical value, is effective in attenuating cavity oscillations when blowing ratio is more than 1.0.

Keywords: Cavity oscillation, Large Eddy Simulation, Synthetic Jet, Flow Control, Turbulence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
10268 Steady State Simulation of Power Systems with Change in Topology

Authors: Aidil Azwin Zainul Abidin, Farrukh Hafiz Nagi, Agileswari K. Ramasamy, Izham Zainal Abidin

Abstract:

In power system protection, the need to know the load current together with the fault level detected by a relay is important. This is due to the fact that the relay is required to isolate the equipment being protected if a fault is present and keep the breaker associated with it closed if the current level is lower than the maximum load level. This is not an issue for a radial system. This is not the same however in a looped power system. In a looped power system, the isolation of an equipment system will contribute to a topology change. The change in the power system topology will then influence or change the maximum load current and the fault level detected by each relay. In this paper, a method of data collection for changing topology using matlab and sim-power will be presented. The method will take into consideration the change in topology and collect data for each possible topology.

Keywords: Topology Change, Power System Protection, Power System simulation, Matlab, Sim-power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
10267 Numerical Flow Simulation around HSP Propeller in Open Water and behind a Vessel Wake Using RANS CFD Code

Authors: Kadda Boumediene, Mohamed Bouzit

Abstract:

The prediction of the flow around marine propellers and vessel hulls propeller interaction is one of the challenges of Computational fluid dynamics (CFD). The CFD has emerged as a potential tool in recent years and has promising applications. The objective of the current study is to predict the hydrodynamic performances of HSP marine propeller in open water and behind a vessel. The unsteady 3-D flow was modeled numerically along with respectively the K-ω standard and K-ω SST turbulence models for steady and unsteady cases. The hydrodynamic performances such us a torque and thrust coefficients and efficiency show good agreement with the experiment results.

Keywords: Seiun Maru propeller, steady, unsteady, CFD, HSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
10266 Payment Problems, Cash Flow and Profitability of Construction Project: A System Dynamics Model

Authors: Wenhua Hou, Xing Liu, Deqiang Chen

Abstract:

The ubiquitous payment problems within construction industry of China are notoriously hard to be resolved, thus lead to a series of impacts to the industry chain. Among of them, the most direct result is affecting the normal operation of contractors negatively. A wealth of research has already discussed reasons of the payment problems by introducing a number of possible improvement strategies. But the causalities of these problems are still far from harsh reality. In this paper, the authors propose a model for cash flow system of construction projects by introducing System Dynamics techniques to explore causal facets of the payment problem. The effects of payment arrears on both cash flow and profitability of project are simulated into four scenarios by using data from real projects. Simulating results show visible clues to help contractors quantitatively determining the consequences for the construction project that arise from payment delay.

Keywords: payment problems, cash flow, profitability, system dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696
10265 Soil Moisture Regulation in Irrigated Agriculture

Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili

Abstract:

Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.

Keywords: Seepage, soil, velocity, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
10264 Alignment of a Combined Groin for Flow through a Straight Open Channel

Authors: M. Alauddin, M. A. Ullah, M. Alom, M. N. Islam

Abstract:

The rivers in Bangladesh are highly unstable having loose boundaries, mild slope of water surface and bed, irregular siltation of huge sediment coming from upstream, among others. The groins are installed in the river bank to deflect the flowing water away from the vulnerable zones. The conventional groins are found to be unstable and ineffective. The combined groin having both impermeable and permeable components in the same structure improves the flow field to function better over others. The main goal of this study is to analyze the hydraulic characteristics induced by the combined groins of different alignments by using a 2D numerical model, iRIC Nays2DH. In this numerical simulation, the K-ε model for turbulence and Cubic Interpolation Pseudo-particle (CIP) method for advective terms are utilized. A particular flow condition is applied in the channel for all sets of groins with different alignments. The simulation results reveal that the combined groins alter the flow patterns considerably, with no significant recirculation of flow in the groin field. The effect of different alignments of groins is found somewhat different. Based on hydraulic features caused by the groins, the combined groin that aligns the permeable component towards slightly downstream performs better over others.

Keywords: Combined groin, alignment, hydraulic characteristics, numerical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362
10263 Investigation and Perfection of Centrifugal Compressor Stages by CFD Methods

Authors: Y. Galerkin, L. Marenina

Abstract:

Stator elements «Vane diffuser + crossover + return channel» of stages with different specific speed were investigated by CFD calculations. The regime parameter was introduced to present efficiency and loss coefficient performance of all elements together. Flow structure demonstrated advantages and disadvantages of design. Flow separation in crossovers was eliminated by its shape modification. Efficiency increased visibly. Calculated CFD performances are in acceptable correlation with predicted ones by engineering design method. The information obtained is useful for design method better calibration.

Keywords: Vane diffuser, return channel, crossover, efficiency, loss coefficient, inlet flow angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
10262 The Performance Analysis of Valveless Micropump with Contoured Nozzle/Diffuser

Authors: Cheng-Chung Yang, Jr-Ming Miao, Fuh-Lin Lih, Tsung-Lung Liu, Ming-Hui Ho

Abstract:

The operation performance of a valveless micro-pump is strongly dependent on the shape of connected nozzle/diffuser and Reynolds number. The aims of present work are to compare the performance curves of micropump with the original straight nozzle/diffuser and contoured nozzle/diffuser under different back pressure conditions. The tested valveless micropumps are assembled of five pieces of patterned PMMA plates with hot-embracing technique. The structures of central chamber, the inlet/outlet reservoirs and the connected nozzle/diffuser are fabricated with laser cutting machine. The micropump is actuated with circular-type PZT film embraced on the bottom of central chamber. The deformation of PZT membrane with various input voltages is measured with a displacement laser probe. A simple testing facility is also constructed to evaluate the performance curves for comparison. In order to observe the evaluation of low Reynolds number multiple vortex flow patterns within the micropump during suction and pumping modes, the unsteady, incompressible laminar three-dimensional Reynolds-averaged Navier-Stokes equations are solved. The working fluid is DI water with constant thermo-physical properties. The oscillating behavior of PZT film is modeled with the moving boundary wall in way of UDF program. With the dynamic mesh method, the instants pressure and velocity fields are obtained and discussed.Results indicated that the volume flow rate is not monotony increased with the oscillating frequency of PZT film, regardless of the shapes of nozzle/diffuser. The present micropump can generate the maximum volume flow rate of 13.53 ml/min when the operation frequency is 64Hz and the input voltage is 140 volts. The micropump with contoured nozzle/diffuser can provide 7ml/min flow rate even when the back pressure is up to 400 mm-H2O. CFD results revealed that the flow central chamber was occupied with multiple pairs of counter-rotating vortices during suction and pumping modes. The net volume flow rate over a complete oscillating periodic of PZT

Keywords: valveless micropump、PZT diagraph、contoured nozzle/diffuser、vortex flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
10261 Pollutant Loads of Urban Runoff from a Mixed Residential-Commercial Catchment

Authors: Carrie Ho, Tan Yee Yong

Abstract:

Urban runoff quality for a mixed residential-commercial land use catchment in Miri, Sarawak was investigated for three storm events in 2011. Samples from the three storm events were tested for five water quality parameters, namely, TSS, COD, BOD5, TP, and Pb. Concentration of the pollutants were found to vary significantly between storms, but were generally influenced by the length of antecedent dry period and the strength of rainfall intensities. Runoff from the study site showed a significant level of pollution for all the parameters investigated. Based on the National Water Quality Standards for Malaysia (NWQS), stormwater quality from the study site was polluted and exceeded class III water for TSS and BOD5, with maximum EMCs of 177 and 24 mg/L, respectively. Design pollutant load based on a design storm of 3-month average recurrence interval (ARI) for TSS, COD, BOD5, TP, and Pb were estimated to be 40, 9.4, 5.4, 1.7, and 0.06 kg/ha, respectively. The design pollutant load for the pollutants can be used to estimate loadings from similar catchments within Miri City.

Keywords: Mixedland-use, urban runoff, pollutant load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
10260 Mathematical Models of Flow Shop and Job Shop Scheduling Problems

Authors: Miloš Šeda

Abstract:

In this paper, mathematical models for permutation flow shop scheduling and job shop scheduling problems are proposed. The first problem is based on a mixed integer programming model. As the problem is NP-complete, this model can only be used for smaller instances where an optimal solution can be computed. For large instances, another model is proposed which is suitable for solving the problem by stochastic heuristic methods. For the job shop scheduling problem, a mathematical model and its main representation schemes are presented.

Keywords: Flow shop, job shop, mixed integer model, representation scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4639
10259 Heat Transfer and Frictional Characteristics in Rectangular Channel with Inclined Perforated Baffles

Authors: Se Kyung Oh, Ary Bachtiar Krishna Putra, Soo Whan Ahn

Abstract:

A numerical study on the turbulent flow and heat transfer characteristics in the rectangular channel with different types of baffles is carried out. The inclined baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of 5o. Reynolds number is varied between 23,000 and 57,000. The SST turbulence model is applied in the calculation. The validity of the numerical results is examined by the experimental data. The numerical results of the flow field depict that the flow patterns around the different baffle type are entirely different and these significantly affect the local heat transfer characteristics. The heat transfer and friction factor characteristics are significantly affected by the perforation density of the baffle plate. It is found that the heat transfer enhancement of baffle type II (3 hole baffle) has the best values.

Keywords: Turbulent flow, rectangular channel, inclined baffle, heat transfer, friction factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
10258 Numerical Simulation of Convective Heat Transfer and Fluid Flow through Porous Media with Different Moving and Heated Walls

Authors: Laith Jaafer Habeeb

Abstract:

The present study is concerned with the free convective two dimensional flow and heat transfer, within the framework of Boussinesq approximation, in anisotropic fluid filled porous rectangular enclosure subjected to end-to-end temperature difference have been investigated using Lattice Boltzmann method fornon-Darcy flow model. Effects of the moving lid direction (top, bottom, left, and right wall moving in the negative and positive x&ydirections), number of moving walls (one or two opposite walls), the sliding wall velocity, and four different constant temperatures opposite walls cases (two surfaces are being insulated and the twoother surfaces areimposed to be at constant hot and cold temperature)have been conducted. The results obtained are discussed in terms of the Nusselt number, vectors, contours, and isotherms.

Keywords: Numerical simulation, lid-driven cavity flow, saturated porous medium, different velocity and heated walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584