Search results for: interfacial shear strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1760

Search results for: interfacial shear strength

890 Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation

Authors: Sura Al-Khafaji, Phil Purnell

Abstract:

Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system.

Keywords: Compressive strength, coupling effect, statistical analysis, ultrasonic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
889 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: Numerical simulation, CFD, k-ω (SST), cold room, dates, cooling rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
888 Pre and Post Mordant Effect of Alum on Gamma Rays Assisted Cotton Fabric by Using Ipomoea indica Leaves Extract

Authors: Abdul Hafeez, Shahid Adeel, Ayesha Hussain

Abstract:

There are number of plants species in the universe which give the protections from different diseases and give colour for the foods and textiles. The environmental condition of the universe suggested toward the ecofriendly textiles. The aim of the paper is to analyze the influence of pre & post mordanting of alum on radiated cotton fabric with Gamma Radiation of different doses by using Ipomoea indica leaves extract. Alum used as mordant with the concentration of 2, 4, 6, 8 and 10% as pre and post mordanting to observe the effect of light and colour fastness of radiated cotton. 6% of alum concentration in pre mordanting gave good colour strength 117.82 with darker in shade toward the greenish tone and in post mordanting 6% concentration gave good colour strength 102.19. The lab values show that the colour is darker in tone and gave bluish effect. Further results showed that alum gave good light and rubbing fastness on gamma radiated cotton fabric.

Keywords: Ipomoea indica, gamma radiation, alum, light fastness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
887 Structural Analysis of Warehouse Rack Construction for Heavy Loads

Authors: C. Kozkurt, A. Fenercioglu, M. Soyaslan

Abstract:

In this study rack systems that are structural storage units of warehouses have been analyzed as structural with Finite Element Method (FEA). Each cell of discussed rack system storages pallets which have from 800 kg to 1000 kg weights and 0.80x1.15x1.50 m dimensions. Under this load, total deformations and equivalent stresses of structural elements and principal stresses, tensile stresses and shear stresses of connection elements have been analyzed. The results of analyses have been evaluated according to resistance limits of structural and connection elements. Obtained results have been presented as visual and magnitude.

Keywords: warehouse, structural analysis, AS/RS, FEM, FEA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3705
886 Preliminary Studies of MWCNT/PVDF Polymer Composites

Authors: Esther Lorrayne M. Pereira, Adriana Souza M. Batista, Fabíola A. S. Ribeiro, Adelina P. Santos, Clascídia A. Furtado, Luiz O. Faria

Abstract:

The combination of multi–walled carbon nanotubes (MWCNTs) with polymers offers an attractive route to reinforce the macromolecular compounds as well as the introduction of new properties based on morphological modifications or electronic interactions between the two constituents. As they are only a few nanometers in dimension, it offers ultra-large interfacial area per volume between the nano-element and polymer matrix. Nevertheless, the use of MWCNTs as a rough material in different applications has been largely limited by their poor processability, insolubility, and infusibility. Studies concerning the nanofiller reinforced polymer composites are justified in an attempt to overcome these limitations. This work presents one preliminary study of MWCNTs dispersion into the PVDF homopolymer. For preparation, the composite components were diluted in n,n-dimethylacetamide (DMAc) with mechanical agitation assistance. After complete dilution, followed by slow evaporation of the solvent at 60°C, the samples were dried. Films of about 80 μm were obtained. FTIR and UV-Vis spectroscopic techniques were used to characterize the nanocomposites. The appearance of absorption bands in the FTIR spectra of nanofilled samples, when compared to the spectrum of pristine PVDF samples, are discussed and compared with the UV-Vis measurements.

Keywords: Composites materials, FTIR, MWNTs, PVDF, UVVis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
885 CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline

Authors: Anand B. Desamala, Anjali Dasari, Vinayak Vijayan, Bharath K. Goshika, Ashok K. Dasmahapatra, Tapas K. Mandal

Abstract:

In the present study, computational fluid dynamics (CFD) simulation has been executed to investigate the transition boundaries of different flow patterns for moderately viscous oil-water (viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032 N/m.) two-phase flow through a horizontal pipeline with internal diameter and length of 0.025 m and 7.16 m respectively. Volume of Fluid (VOF) approach including effect of surface tension has been employed to predict the flow pattern. Geometry and meshing of the present problem has been drawn using GAMBIT and ANSYS FLUENT has been used for simulation. A total of 47037 quadrilateral elements are chosen for the geometry of horizontal pipeline. The computation has been performed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, co-axial flow and a T-junction as entry section. The simulation correctly predicts the transition boundaries of wavy stratified to stratified mixed flow. Other transition boundaries are yet to be simulated. Simulated data has been validated with our own experimental results.

Keywords: CFD simulation, flow pattern transition, moderately viscous oil-water flow, prediction of flow transition boundary, VOF technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
884 Cold-pressed Kenaf and Fibreglass Hybrid Composites Laminates: Effect of Fibre Types

Authors: Z. Salleh, M. N. Berhan, Koay Mei Hyie, D. H. Isaac

Abstract:

Natural fibres have emerged as the potential reinforcement material for composites and thus gain attraction by many researchers. This is mainly due to their applicable benefits as they offer low density, low cost, renewable, biodegradability and environmentally harmless and also comparable mechanical properties with synthetic fibre composites. The properties of hybrid composites highly depends on several factors, including the interaction of fillers with the polymeric matrix, shape and size (aspect ratio), and orientation of fillers [1]. In this study, natural fibre kenaf composites and kenaf/fibreglass hybrid composites were fabricated by a combination of hand lay-up method and cold-press method. The effect of different fibre types (powder, short and long) on the tensile properties of composites is investigated. The kenaf composites with and without the addition of fibreglass were then characterized by tensile testing and scanning electron microscopy. A significant improvement in tensile strength and modulus were indicated by the introduction of long kenaf/woven fibreglass hybrid composite. However, the opposite trends are observed in kenaf powder composite. Fractographic observation shows that fibre/matrix debonding causes the fibres pull out. This phenomenon results in the fibre and matrix fracture.

Keywords: Kenaf, Fibreglass, Hybrid Composite, Tensile Strength, Tensile Modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
883 Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis

Authors: Gaoyong Luo

Abstract:

The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.

Keywords: Edge strength, Fast lifting wavelet, Image denoising, Local variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
882 Application of Voltammetry to Study Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection

Authors: Mandlenkosi George Robert Mahlobo, Peter Apata Olubambi, Philippe Refait

Abstract:

The aim of this study was to use voltammetry as a method to understand the behavior of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP which was only applied on two of the three coupons at the protection potential -0.8 V vs. Cu/CuSO4 for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from ohmic drop. Voltammetry was finally performed the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduce the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect, from the decreased potential, and an induced effect, associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.

Keywords: Carbon steel, cathodic protection, voltammetry, unsaturated soil, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85
881 Recycled Asphalt Pavement with Warm Mix Additive for Sustainable Road Construction

Authors: Meor Othman Hamzah, Lillian Gungat, Nur Izzi Md. Yusoff, Jan Valentin

Abstract:

The recent hike in raw materials costs and the quest for preservation of the environment has prompted asphalt industries to adopt greener road construction technology. This paper presents a study on such technology by means of asphalt recycling and use of warm mix asphalt (WMA) additive. It evaluates the effects of a WMA named RH-WMA on binder rheological properties and asphalt mixture performance. The recycled asphalt, obtained from local roads, was processed, fractionated, and incorporated with virgin aggregate and binder. For binder testing, the recycled asphalt was extracted and blended with virgin binder. The binder and mixtures specimen containing 30 % and 50 % recycled asphalt contents were mixed with 3 % RH-WMA. The rheological properties of the binder were evaluated based on fundamental, viscosity, and frequency sweep tests. Indirect tensile strength and resilient modulus tests were carried out to assess the mixture’s performances. The rheological properties and strength performance results showed that the addition of RH-WMA slightly reduced the binder and mixtures stiffness. The percentage of recycled asphalt increased the stiffness of binder and mixture, and thus improves the resistance to rutting. Therefore, the integration of recycled asphalt and RH-WMA can be an alternative material for road sustainable construction for countries in the tropics.

Keywords: Recycled asphalt, warm mix additive, rheological, mixture performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
880 Static Study of Piezoelectric Bimorph Beams with Delamination Zone

Authors: A. Zemirline, M. Ouali, A. Mahieddine

Abstract:

The FOSDT (the First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed.

Keywords: Beam, Delamination, Piezoelectricity, Static.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
879 Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites

Authors: S. Alrekabi, A. Cundy, A. Lampropoulos, I. Savina

Abstract:

Due to their remarkable mechanical properties, multi-wall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes tend to form large agglomerates and bundles as a consequence of Van der Waals forces. In this study, effective dispersion of low concentrations of MWCNTs at 0.01%, 0.025%, and 0.05% by weight of cement in the composite was achieved by applying different sonication conditions in combination with the use of polycarboxylate ether as a surfactant. UV-Visible spectroscopy and Transmission electron microscopy (TEM) were used to assess the dispersion of MWCNTs in water, while the dispersion states of MWCNTs within the cement composites and their surface interactions were examined by scanning electron microscopy (SEM). A high sonication intensity applied over a short time period significantly enhanced the dispersion of MWCNTs at initial mixing stages, and 0.025% of MWCNTs wt. of cement, caused 86% and 27% improvement in tensile strength and compressive strength respectively, compared with a plain cement mortar.

Keywords: Dispersion, multiwall carbon nanotubes, mechanical performance, sonication conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
878 The Effect of Intermediate Stiffeners on Steel Reinforced Concrete Beams Behaviors

Authors: Teguh Sudibyo, Cheng-Cheng Chen

Abstract:

Eight steel reinforced concrete beams (SRC), were fabricated and tested under earthquake type cyclic loading. The effectiveness of intermediate stiffeners, such as mid-span stiffener and plastic hinge zone stiffeners, in enhancing composite action and ductility of SRC beams was investigated. The effectiveness of strengthened beam-to-column (SBC) and weakened beam-to-column (WBC) connections in enhancing beam ductility was also studied. It was found that: (1) All the specimens possessed fairly high flexural ductility and were found adequate for structures in high seismic zones. (2) WBC connections induced stress concentration which caused extra damage to concrete near the flange tapering zone. This extra damage inhibited the flexural strength development and the ductility of the specimens with WBC connections to some extent. (3) Specimens with SBC connections demonstrated higher flexural strength and ductility compared to specimens with WBC connections. (4) The intermediate stiffeners, especially combination of plastic hinge zone stiffener and mid span stiffeners, have an obvious effect in enhancing the ductility of the beams with SBC connection.

Keywords: Composite beam, concrete encased steel beam, steel reinforced concrete, stiffeners.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3836
877 Fatigue Strength of S275 Mild Steel under Cyclic Loading

Authors: T. Aldeeb, M. Abduelmula

Abstract:

This study examines the fatigue life of S275 mild steel at room temperature. Mechanical components can fail under cyclic loading during period of time, known as the fatigue phenomenon. In order to prevent fatigue induced failures, material behavior should be investigated to determine the endurance limit of the material for safe design and infinite life, thus leading to reducing the economic cost and loss in human lives. The fatigue behavior of S275 mild steel was studied and investigated. Specimens were prepared in accordance with ASTM E3-11, and fatigue tests of the specimen were conducted in accordance with ASTM E466-07 on a smooth plate, with a continuous radius between ends (hourglass-shaped plate). The method of fatigue testing was applied with constant load amplitude and constant frequency of 4 Hz with load ratio (Fully Reversal R= -1). Surface fractures of specimens were investigated using Scanning Electron Microscope (SEM). The experimental results were compared with the results of a Finite Element Analysis (FEA), using simulation software. The experiment results indicated that the endurance fatigue limit of S275 mild steel was 195.47 MPa.

Keywords: Fatigue life, fatigue strength, finite element analysis, S275 mild steel, scanning electron microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
876 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: Heterogeneous catalysis, photodegradation, reactive oxygen species, TiO2 nanowires.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
875 Comparative Finite Element Simulation of Nonlinear Vibrations and Sensor Output Voltage of Smart Piezolaminated Structures

Authors: Ruediger Schmidt, Thang Duy Vu

Abstract:

Two geometrically nonlinear plate theories, based either on first- or third-order transverse shear deformation theory are used for finite element modeling and simulation of the transient response of smart structures incorporating piezoelectric layers. In particular the time histories of nonlinear vibrations and sensor voltage output of a thin beam with a piezoelectric patch bonded to the surface due to an applied step force are studied.

Keywords: Nonlinear vibrations, piezoelectric patches, sensor voltage output, smart structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
874 Efficacy of Recovery Tech Virtual Reality Rehabilitation System for Shoulder Impingement Syndrome

Authors: Kasra Afsahi, Maryam Soheilifar, Nazanin Vahed, Omid Seyed Esmaeili, S. Hossein Hosseini

Abstract:

The most common cause of shoulder pain occurs when rotator cuff tendons become trapped under the bony area in the shoulder. This pilot study was performed to evaluate the feasibility of Virtual Reality based rehabilitation of shoulder impingement syndrome in athletes. Three consecutive patients with subacromial impingement syndrome were enrolled. The participants were rehabilitated for 5 times a week for 4 weeks, 20 sessions in total (with duration of each session being 60 minutes). In addition to the conventional rehabilitation program, a 10-minute game-based virtual reality exercise was administered. Primary outcome measures were range of motion evaluated with goniometer, pain sensation, disability intensity using ‘The Disabilities of the Arm, Shoulder and Hand Questionnaire’, muscle strength using ‘dynamometer’; pain threshold with 'algometer' and level of satisfaction. There were significant improvements in the range of motion, pain sensation, disability, pain threshold and muscle strength compared to basis (P < 0.05). There were no major adverse effects. This study showed the usefulness of VR therapy as an adjunct to conventional physiotherapy in improving function in patients with shoulder impingement syndrome.

Keywords: Shoulder impingement syndrome, VR therapy, feasibility, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 359
873 Effect of Tube Thickness on the Face Bending for Blind-Bolted Connection to Concrete Filled Tubular Structures

Authors: Mohammed Mahmood, Walid Tizani, Carlo Sansour

Abstract:

In this paper, experimental testing and numerical analysis were used to investigate the effect of tube thickness on the face bending for concrete filled hollow sections connected to other structural members using Extended Hollobolts. Six samples were tested experimentally by applying pull-out load on the bolts. These samples were designed to fail by column face bending. The main variable in all tests is the column face thickness. Finite element analyses were also performed using ABAQUS 6.11 to extend the experimental results and to quantify the effect of column face thickness. Results show that, the column face thickness has a clear impact on the connection strength and stiffness. However, the amount of improvement in the connection stiffness by changing the column face thickness from 5mm to 6.3mm seems to be higher than that when increasing it from 6.3mm to 8mm. The displacement at which the bolts start pulling-out from their holes increased with the use of thinner column face due to the high flexibility of the section. At the ultimate strength, the yielding of the column face propagated to the column corner and there was no yielding in its walls. After the ultimate resistance is reached, the propagation of the yielding was mainly in the column face with a miner yielding in the walls.

Keywords: Anchored bolted connection, Extended Hollobolt, Column faces bending and concrete filled hollow sections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
872 Effect of Silica Fume on the Properties of Steel-Fiber Reinforced Self-compacting Concrete

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, M. F. Nuruddin, Ali Elheber

Abstract:

Implementing significant advantages in the supply of self-compacting concrete (SCC) is necessary because of the, negative features of SCC. Examples of these features are the ductility problem along with the very high cost of its constituted materials. Silica fume with steel fiber can fix this matter by improving the ductility and decreasing the total cost of SCC by varying the cement ingredients. Many different researchers have found that there have not been enough research carried out on the steel fiber-reinforced self-compacting concrete (SFRSCC) produced with silica fume. This paper inspects both the fresh and the mechanical properties of SFRSCC with silica fume, the fresh qualities where slump flow, slump T50 and V- funnel. While, the mechanical characteristics were the compressive strength, ultrasound pulse velocity (UPV) and elastic modulus of the concrete samples. The experimental results have proven that steel fiber can enhance the mechanical features. In addition, the silica fume within the entire hybrid mix may possibly adapt the fiber dispersion and strengthen deficits due to the fibers. It could also improve the strength plus the bond between the fiber and the matrix with a dense calcium silicate-hydrate gel in SFRSCC. The concluded result was predicted using linear mathematical models and was found to be in great agreement with the experimental results.

Keywords: Self-compacting concrete, silica fume, steel fiber, fresh and mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
871 Investigation into the Bond between CFRP and Steel Plates

Authors: S. Fawzia, M. A. Karim

Abstract:

The use of externally bonded Carbon Fiber Reinforced Polymer (CFRP) reinforcement has proven to be an effective technique to strengthen steel structures. An experimental study on CFRP bonded steel plate with double strap joint has been conducted and specimens are tested under tensile loadings. An empirical model has been developed using stress-based approach to predict ultimate capacity of the CFRP bonded steel structure. The results from the model are comparable with the experimental result with a reasonable accuracy.

Keywords: Carbon fibre reinforced polymer, shear stress, slip, effective bond, steel structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
870 Identifying the Strength of Cyclones and Earthquakes Requiring Military Disaster Response

Authors: Chad A. Long

Abstract:

The United States military is now commonly responding to complex humanitarian emergencies and natural disasters around the world. From catastrophic earthquakes in Haiti to typhoons devastating the Philippines, U.S. military assistance is requested when the event exceeds the local government's ability to assist the population. This study assesses the characteristics of catastrophes that surpass a nation’s individual ability to respond and recover from the event. The paper begins with a historical summary of military aid and then analyzes over 40 years of the United States military humanitarian response. Over 300 military operations were reviewed and coded based on the nature of the disaster. This in-depth study reviewed the U.S. military’s deployment events for cyclones and earthquakes to determine the strength of the natural disaster requiring external assistance. The climatological data for cyclone landfall and magnitude data for earthquake epicenters were identified, grouped into regions and analyzed for time-based trends. The results showed that foreign countries will likely request the U.S. military for cyclones with speeds greater or equal to 125 miles an hour and earthquakes at the magnitude of 7.4 or higher. These results of this study will assist the geographic combatant commands in determining future military response requirements.

Keywords: Cyclones, earthquakes, natural disasters, military.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
869 The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination

Authors: O. Abiodun Adeyinka, B. Adeyemo Adesesan

Abstract:

The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.

Keywords: Logistic Regression LoR, Kernel Density Estimator KDE, Handwriting, Confidence Interval, Repeatability, Reproducibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435
868 Association between Single Nucleotide Polymorphism of Calpain1 Gene and Meat Tenderness Traits in Different Genotypes of Chicken: Malaysian Native and Commercial Broiler Line

Authors: Abtehal Y. Anaas, Mohd. Nazmi Bin Abd. Manap

Abstract:

Meat Tenderness is one of the most important factors affecting consumers' assessment of meat quality. Variation in meat tenderness is genetically controlled and varies among breeds, and it is also influenced by environmental factors that can affect its creation during rigor mortis and postmortem. The final postmortem meat tenderization relies on the extent of proteolysis of myofibrillar proteins caused by the endogenous activity of the proteolytic calpain system. This calpain system includes different calcium-dependent cysteine proteases, and an inhibitor, calpastatin. It is widely accepted that in farm animals including chickens, the μ-calpain gene (CAPN1) is a physiological candidate gene for meat tenderness. This study aimed to identify the association of single nucleotide polymorphism (SNP) markers in the CAPN1 gene with the tenderness of chicken breast meat from two Malaysian native and commercial broiler breed crosses. Ten, five months old native chickens and ten, 42 days commercial broilers were collected from the local market and breast muscles were removed two hours after slaughter, packed separately in plastic bags and kept at -20ºC for 24 h. The tenderness phenotype for all chickens’ breast meats was determined by Warner-Bratzler Shear Force (WBSF). Thawing and cooking losses were also measured in the same breast samples before using in WBSF determination. Polymerase chain reaction (PCR) was used to identify the previously reported C7198A and G9950A SNPs in the CAPN1 gene and assess their associations with meat tenderness in the two breeds. The broiler breast meat showed lower shear force values and lower thawing loss rates than the native chickens (p<0.05), whereas there were similar in the rates of cooking loss. The study confirms some previous results that the markers CAPN1 C7198A and G9950A were not significantly associated with the variation in meat tenderness in chickens. Therefore, further study is needed to confirm the functional molecular mechanism of these SNPs and evaluate their associations in different chicken populations.

Keywords: CAPNl, chicken, meat tenderness, meat quality, SNPs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
867 The Effect of Strength Training and Consumption of Glutamine Supplement on GH/IGF1 Axis

Authors: Alireza Barari

Abstract:

Physical activity and diet are factors that influence the body's structure. The purpose of this study was to compare the effects of four weeks of resistance training, and glutamine supplement consumption on growth hormone (GH), and Insulin-like growth factor 1 (IGF-1) Axis. 40 amateur male bodybuilders, participated in this study. They were randomly divided into four equal groups, Resistance (R), Glutamine (G), Resistance with Glutamine (RG), and Control (C). The R group was assigned to a four week resistance training program, three times/week, three sets of 10 exercises with 6-10 repetitions, at the 80-95% 1RM (One Repetition Maximum), with 120 seconds rest between sets), G group is consuming l-glutamine (0.1 g/kg-1/day-1), RG group resistance training with consuming L-glutamine, and C group continued their normal lifestyle without exercise training. GH, IGF1, IGFBP-III plasma levels were measured before and after the protocol. One-way ANOVA indicated significant change in GH, IGF, and IGFBP-III between the four groups, and the Tukey test demonstrated significant increase in GH, IGF1, IGFBP-III plasma levels in R, and RG group. Based upon these findings, we concluded that resistance training at 80-95% 1RM intensity, and resistance training along with oral glutamine shows significantly increase secretion of GH, IGF-1, and IGFBP-III in amateur males, but the addition of oral glutamine to the exercise program did not show significant difference in GH, IGF-1, and IGFBP-III.

Keywords: Strength, glutamine, growth hormone, insulin-like growth factor 1.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030
866 Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys

Authors: I. Kurashvili, G. Darsavelidze, G. Bokuchava, A. Sichinava, I. Tabatadze

Abstract:

The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si1-xGex(x≤0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~1015 cm-3) significant strengthening is revealed, while at the high boron concentration (~1019 cm-3) strengthening effect and activation characteristics of relaxation origin IF processes are reduced.

Keywords: Dislocation, internal friction, microhardness, relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
865 Bridging Stress Modeling of Composite Materials Reinforced by Fibers Using Discrete Element Method

Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski

Abstract:

The problem of toughening in brittle materials reinforced by fibers is complex, involving all of the mechanical properties of fibers, matrix and the fiber/matrix interface, as well as the geometry of the fiber. Development of new numerical methods appropriate to toughening simulation and analysis is necessary. In this work, we have performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of toughening contributed by random fibers. Then with a numerical program, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers of high strength and low elasticity modulus are beneficial to toughening; (ii) fibers of relatively high elastic modulus compared to the matrix may result in substantial matrix damage due to spalling effect; (iii) employment of high-strength synthetic fibers is a good option for toughening. We expect that the combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed. The present work can guide the design of ceramic composites of high performance through the optimization of the parameters.

Keywords: Bridging stress, discrete element method, fiber reinforced composites, toughening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
864 Intelligent Path Planning for Rescue Robot

Authors: Sohrab Khanmohammadi, Raana Soltani Zarrin

Abstract:

In this paper, a heuristic method for simultaneous rescue robot path-planning and mission scheduling is introduced based on project management techniques, multi criteria decision making and artificial potential fields path-planning. Groups of injured people are trapped in a disastrous situation. These people are categorized into several groups based on the severity of their situation. A rescue robot, whose ultimate objective is reaching injured groups and providing preliminary aid for them through a path with minimum risk, has to perform certain tasks on its way towards targets before the arrival of rescue team. A decision value is assigned to each target based on the whole degree of satisfaction of the criteria and duties of the robot toward the target and the importance of rescuing each target based on their category and the number of injured people. The resulted decision value defines the strength of the attractive potential field of each target. Dangerous environmental parameters are defined as obstacles whose risk determines the strength of the repulsive potential field of each obstacle. Moreover, negative and positive energies are assigned to the targets and obstacles, which are variable with respects to the factors involved. The simulation results show that the generated path for two cases studies with certain differences in environmental conditions and other risk factors differ considerably.

Keywords: Artificial potential field, GERT, path planning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
863 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar

Authors: B.S. Al-Tulaian, M. J. Al-Shannag, A.M. Al-Hozaimy

Abstract:

The development of new construction materials using  recycled plastic is important to both the construction and the plastic  recycling industries. Manufacturing of fibers from industrial or  postconsumer plastic waste is an attractive approach with such  benefits as concrete performance enhancement, and reduced needs  for land filling. The main objective of this study is to investigate the  effect of Plastic fibers obtained locally from recycled waste on plastic  shrinkage cracking of ordinary cement based mortar. Parameters  investigated include: fiber length ranging from 20 to 50mm, and fiber  volume fraction ranging from 0% to 1.5% by volume. The test results  showed significant improvement in crack arresting mechanism and  substantial reduction in the surface area of cracks for the mortar  reinforced with recycled plastic fibers compared to plain mortar.  Furthermore, test results indicated that there was a slight decrease in  compressive strength of mortar reinforced with different lengths and  contents of recycled fibers compared to plain mortar. This study  suggests that adding more than 1% of RP fibers to mortar, can be  used effectively for controlling plastic shrinkage cracking of cement  based mortar, and thus results in waste reduction and resources  conservation.

 

Keywords: Mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052
862 Evaluation of Traditional Methods in Construction and Their Effects on Reinforced-Concrete Buildings Behavior

Authors: E. H. N. Gashti, M. Zarrini, M. Irannezhad, J. R. Langroudi

Abstract:

Using ETABS software, this study analyzed 23 buildings to evaluate effects of mistakes during construction phase on buildings structural behavior. For modelling, two different loadings were assumed: 1) design loading and 2) loading due to the effects of mistakes in construction phase. Research results determined that considering traditional construction methods for buildings resulted in a significant increase in dead loads and consequently intensified the displacements and base-shears of buildings under seismic loads.

Keywords: Reinforced-concrete buildings, Construction mistakes, Base-shear, displacements, Failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
861 Comparison of Methods of Testing Composite Slabs

Authors: J. Holomek, R. Karásek, M. Bajer, J. Barnat

Abstract:

Composite steel-concrete slabs using thin-walled corrugated steel sheets with embossments represent a modern and effective combination of steel and concrete. However, the design of new types of sheeting is conditional on the execution of expensive and time-consuming laboratory testing. The effort to develop a cheaper and faster method has lead to many investigations all over the world. In our paper we compare the results from our experiments involving vacuum loading, four-point bending and small-scale shear tests.

Keywords: Composite slab, embossment, four-point bending, small-scale test, steel sheet, thin-walled, vacuum loading

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924