Search results for: error correction
512 Two Stage Control Method Using a Disturbance Observer and a Kalman Filter
Authors: Hiromitsu Ogawa, Manato Ono, Naohiro Ban, Yoshihisa Ishida
Abstract:
This paper describes the two stage control using a disturbance observer and a Kalman filter. The system feedback uses the estimated state when it controls the speed. After the change-over point, its feedback uses the controlled plant output when it controls the position. To change the system continually, a change-over point has to be determined pertinently, and the controlled plant input has to be adjusted by the addition of the appropriate value. The proposed method has noise-reduction effect. It changes the system continually, even if the controlled plant identification has the error. Although the conventional method needs a speed sensor, the proposed method does not need it. The proposed method has a superior robustness compared with the conventional two stage control.
Keywords: Disturbance observer, kalman filter, optimal control, two stage control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961511 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: A. Mirrashid, M. Khoshbin, A. Atghaei, H. Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.
Keywords: Attention, fire detection, smoke detection, spatiotemporal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356510 Words Reordering based on Statistical Language Model
Authors: Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou
Abstract:
There are multiple reasons to expect that detecting the word order errors in a text will be a difficult problem, and detection rates reported in the literature are in fact low. Although grammatical rules constructed by computer linguists improve the performance of grammar checker in word order diagnosis, the repairing task is still very difficult. This paper presents an approach for repairing word order errors in English text by reordering words in a sentence and choosing the version that maximizes the number of trigram hits according to a language model. The novelty of this method concerns the use of an efficient confusion matrix technique for reordering the words. The comparative advantage of this method is that works with a large set of words, and avoids the laborious and costly process of collecting word order errors for creating error patterns.Keywords: Permutations filtering, Statistical languagemodel N-grams, Word order errors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587509 Projective Synchronization of a Class of Fractional-Order Chaotic Systems
Authors: Zahra Yaghoubi, Nooshin Bigdeli, Karim Afshar
Abstract:
This paper at first presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. After that a drive-response synchronization method with linear output error feedback is presented for “generalized projective synchronization" for a class of fractional-order chaotic systems via a scalar transmitted signal. Genesio_Tesi and Duffing systems are used to illustrate the effectiveness of the proposed synchronization method. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812508 Design and Implementation of a Neural Network for Real-Time Object Tracking
Authors: Javed Ahmed, M. N. Jafri, J. Ahmad, Muhammad I. Khan
Abstract:
Real-time object tracking is a problem which involves extraction of critical information from complex and uncertain imagedata. In this paper, we present a comprehensive methodology to design an artificial neural network (ANN) for a real-time object tracking application. The object, which is tracked for the purpose of demonstration, is a specific airplane. However, the proposed ANN can be trained to track any other object of interest. The ANN has been simulated and tested on the training and testing datasets, as well as on a real-time streaming video. The tracking error is analyzed with post-regression analysis tool, which finds the correlation among the calculated coordinates and the correct coordinates of the object in the image. The encouraging results from the computer simulation and analysis show that the proposed ANN architecture is a good candidate solution to a real-time object tracking problem.
Keywords: Image processing, machine vision, neural networks, real-time object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3508507 Modeling of Surface Roughness in Vibration Cutting by Artificial Neural Network
Authors: H. Soleimanimehr, M. J. Nategh , S. Amini
Abstract:
Development of artificial neural network (ANN) for prediction of aluminum workpieces' surface roughness in ultrasonicvibration assisted turning (UAT) has been the subject of the present study. Tool wear as the main cause of surface roughness was also investigated. ANN was trained through experimental data obtained on the basis of full factorial design of experiments. Various influential machining parameters were taken into consideration. It was illustrated that a multilayer perceptron neural network could efficiently model the surface roughness as the response of the network, with an error less than ten percent. The performance of the trained network was verified by further experiments. The results of UAT were compared with the results of conventional turning experiments carried out with similar machining parameters except for the vibration amplitude whence considerable reduction was observed in the built-up edge and the surface roughness.Keywords: Aluminum, Artificial Neural Network (ANN), BuiltupEdge, Surface Roughness, Tool Wear, Ultrasonic VibrationAssisted Turning (UAT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755506 No-Reference Image Quality Assessment using Blur and Noise
Authors: Min Goo Choi, Jung Hoon Jung, Jae Wook Jeon
Abstract:
Assessment for image quality traditionally needs its original image as a reference. The conventional method for assessment like Mean Square Error (MSE) or Peak Signal to Noise Ratio (PSNR) is invalid when there is no reference. In this paper, we present a new No-Reference (NR) assessment of image quality using blur and noise. The recent camera applications provide high quality images by help of digital Image Signal Processor (ISP). Since the images taken by the high performance of digital camera have few blocking and ringing artifacts, we only focus on the blur and noise for predicting the objective image quality. The experimental results show that the proposed assessment method gives high correlation with subjective Difference Mean Opinion Score (DMOS). Furthermore, the proposed method provides very low computational load in spatial domain and similar extraction of characteristics to human perceptional assessment.Keywords: No Reference, Image Quality Assessment, blur, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3879505 Error Effects on SAR Image Resolution using Range Doppler Imaging Algorithm
Authors: Su Su Yi Mon, Fang Jiancheng
Abstract:
Synthetic Aperture Radar (SAR) is an imaging radar form by taking full advantage of the relative movement of the antenna with respect to the target. Through the simultaneous processing of the radar reflections over the movement of the antenna via the Range Doppler Algorithm (RDA), the superior resolution of a theoretical wider antenna, termed synthetic aperture, is obtained. Therefore, SAR can achieve high resolution two dimensional imagery of the ground surface. In addition, two filtering steps in range and azimuth direction provide accurate enough result. This paper develops a simulation in which realistic SAR images can be generated. Also, the effect of velocity errors in the resulting image has also been investigated. Taking some velocity errors into account, the simulation results on the image resolution would be presented. Most of the times, algorithms need to be adjusted for particular datasets, or particular applications.
Keywords: Synthetic Aperture Radar (SAR), Range Doppler Algorithm (RDA), Image Resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3348504 An Agent Oriented Architecture to Supply Integration in ERP Systems
Authors: Hassan Haghighi, Sajad Ghorbani, Maryam Mohebati, Mohammad Mahdi Javanmard
Abstract:
One of the most important aspects expected from ERP systems is to integrate various operations existing in administrative, financial, commercial, human resources, and production departments of the consumer organization. Also, it is often needed to integrate the new ERP system with the organization legacy systems when implementing the ERP package in the organization. Without relying on an appropriate software architecture to realize the required integration, ERP implementation processes become error prone and time consuming; in some cases, the ERP implementation may even encounters serious risks. In this paper, we propose a new architecture that is based on the agent oriented vision and supplies the integration expected from ERP systems using several independent but cooperator agents. Besides integration which is the main issue of this paper, the presented architecture will address some aspects of intelligence and learning capabilities existing in ERP systems
Keywords: enterprise resource planning, software architecture, agent oriented architecture, integration, intelligence, learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838503 ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal
Authors: Somkiat Lerkvaranyu, Yoshikazu Miyanaga
Abstract:
In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.
Keywords: OFDM, TWTA, nonlinear distortion, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678502 Performance Evaluation of One and Two Dimensional Prime Codes for Optical Code Division Multiple Access Systems
Authors: Gurjit Kaur, Neena Gupta
Abstract:
In this paper, we have analyzed and compared the performance of various coding schemes. The basic ID prime sequence codes are unique in only dimension, i.e. time slots, whereas 2D coding techniques are not unique by their time slots but with their wavelengths also. In this research, we have evaluated and compared the performance of 1D and 2D coding techniques constructed using prime sequence coding pattern for Optical Code Division Multiple Access (OCDMA) system on a single platform. Analysis shows that 2D prime code supports lesser number of active users than 1D codes, but they are having large code family and are the most secure codes compared to other codes. The performance of all these codes is analyzed on basis of number of active users supported at a Bit Error Rate (BER) of 10-9.Keywords: CDMA, OCDMA, BER, OOC, PC, EPC, MPC, 2-D PC/PC, λc, λa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123501 Dynamic Modeling of a Robot for Playing a Curved 3D Percussion Instrument Utilizing a Finite Element Method
Authors: Prakash Persad, Kelvin Loutan, Jr., Trichelle Seepersad
Abstract:
The Finite Element Method is commonly used in the analysis of flexible manipulators to predict elastic displacements and develop joint control schemes for reducing positioning error. In order to preserve simplicity, regular geometries, ideal joints and connections are assumed. This paper presents the dynamic FE analysis of a 4- degrees of freedom open chain manipulator, intended for striking a curved 3D surface percussion musical instrument. This was done utilizing the new MultiBody Dynamics Module in COMSOL, capable of modeling the elastic behavior of a body undergoing rigid body type motion.
Keywords: Dynamic modeling, Entertainment robots, Finite element method, Flexible robot manipulators, Multibody dynamics, Musical robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263500 Learning Monte Carlo Data for Circuit Path Length
Authors: Namal A. Senanayake, A. Beg, Withana C. Prasad
Abstract:
This paper analyzes the patterns of the Monte Carlo data for a large number of variables and minterms, in order to characterize the circuit path length behavior. We propose models that are determined by training process of shortest path length derived from a wide range of binary decision diagram (BDD) simulations. The creation of the model was done use of feed forward neural network (NN) modeling methodology. Experimental results for ISCAS benchmark circuits show an RMS error of 0.102 for the shortest path length complexity estimation predicted by the NN model (NNM). Use of such a model can help reduce the time complexity of very large scale integrated (VLSI) circuitries and related computer-aided design (CAD) tools that use BDDs.Keywords: Monte Carlo data, Binary decision diagrams, Neural network modeling, Shortest path length estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595499 Impact of Metallic Furniture on UWB Channel Statistical Characteristics by BER
Authors: Yu-Shuai Chen , Chien-Ching Chiu , Chung-Hsin Huang, Chien-Hung Chen
Abstract:
The bit error rate (BER) performance for ultra-wide band (UWB) indoor communication with impact of metallic furniture is investigated. The impulse responses of different indoor environments for any transmitter and receiver location are computed by shooting and bouncing ray/image and inverse Fourier transform techniques. By using the impulse responses of these multipath channels, the BER performance for binary pulse amplitude modulation (BPAM) impulse radio UWB communication system are calculated. Numerical results have shown that the multi-path effect by the metallic cabinets is an important factor for BER performance. Also the outage probability for the UWB multipath environment with metallic cabinets is more serious (about 18%) than with wooden cabinets. Finally, it is worth noting that in these cases the present work provides not only comparative information but also quantitative information on the performance reduction.Keywords: UWB, multipath, outage probability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431498 Modeling of Bio Scaffolds: Structural and Fluid Transport Characterization
Authors: Sahba Sadir, M. R. A. Kadir, A. Öchsner, M. N. Harun
Abstract:
Scaffolds play a key role in tissue engineering and can be produced in many different ways depending on the applications and the materials used. Most researchers used an experimental trialand- error approach into new biomaterials but computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. This paper develops the model of scaffolds and Computational Fluid Dynamics that show the value of computer simulations in determining the influence of the geometrical scaffold parameter porosity, pore size and shape on the permeability of scaffolds, magnitude of velocity, drop pressure, shear stress distribution and level and the proper design of the geometry of the scaffold. This creates a need for more advanced studies that include aspects of dynamic conditions of a micro fluid passing through the scaffold were characterized for tissue engineering applications and differentiation of tissues within scaffolds.
Keywords: Scaffold engineering, Tissue engineering, Cellularstructure, Biomaterial, Computational fluid dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039497 Career Counseling Program for the Psychological Well-Being of Freshmen University Students
Authors: Sheila Marie G. Hocson
Abstract:
One of the vital developmental tasks that an individual faces during adolescence is choosing a career. Arriving at a career decision is difficult and anxious for many adolescents in the tertiary level. The main purpose of this study is to determine the factors relating to career indecision among freshmen college students as basis for the formulation of a comprehensive career counseling program for the psychological well-being of freshmen university students. The subjects were purposively selected. The Slovin-s formula was used in determining the sample size, using a 0.05 margin of error in getting the total number of samples per college and per major. The researcher made use of descriptive correlational study in determining significant factors relating to career indecision. Multiple Regression Analysis indicated that career thoughts, career decisions and vocational identity as factors related to career indecision.Keywords: career decisions, career guidance program, career thoughts, vocational identity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4195496 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore , the number of centers will be considered since it affects the performance of approximation.
Keywords: Extended kalmin filter (EKF), classification problem, radial basis function networks (RBFN), finite impulse response (FIR)filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399495 Learning Flexible Neural Networks for Pattern Recognition
Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh
Abstract:
Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495494 Limitation Imposed by Polarization-Dependent Loss on a Fiber Optic Communication System
Authors: Farhan Hussain, M.S.Islam
Abstract:
Analytically the effect of polarization dependent loss on a high speed fiber optic communication link has been investigated. PDL and the signal's incoming state of polarization (SOP) have a significant co-relation between them and their various combinations produces different effects on the system behavior which has been inspected. Pauli's spin operator and PDL parameters are combined together to observe the attenuation effect induced by PDL in a link containing multiple PDL elements. It is found that in the presence of PDL the Q-factor and BER at the receiver undergoes fluctuation causing the system to be unstable and results show that it is mainly due to optical-signal-to-parallel-noise ratio (OSNItpar) that these parameters fluctuate. Generally the Q-factor, BER deteriorates as the value of average PDL in the link increases except for depolarized light for which the system parameters improves when PDL increases.Keywords: Bit Error Rate (BER), Optical-signal-to-noise ratio (OSNR), Polarization-dependent loss (PDL), State of polarization (SOP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725493 RANFIS : Rough Adaptive Neuro-Fuzzy Inference System
Authors: Sandeep Chandana, Rene V. Mayorga
Abstract:
The paper presents a new hybridization methodology involving Neural, Fuzzy and Rough Computing. A Rough Sets based approximation technique has been proposed based on a certain Neuro – Fuzzy architecture. A New Rough Neuron composition consisting of a combination of a Lower Bound neuron and a Boundary neuron has also been described. The conventional convergence of error in back propagation has been given away for a new framework based on 'Output Excitation Factor' and an inverse input transfer function. The paper also presents a brief comparison of performances, of the existing Rough Neural Networks and ANFIS architecture against the proposed methodology. It can be observed that the rough approximation based neuro-fuzzy architecture is superior to its counterparts.
Keywords: Boundary neuron, neuro-fuzzy, output excitation factor, RANFIS, rough approximation, rough neural computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704492 Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links
Authors: Moustafa Ahmed, Ahmed Bakry, Safwat W. Z. Mahmoud
Abstract:
We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links.
Keywords: Bit error rate, dispersion, frequency chirp, fiber communications, semiconductor laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3309491 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis
Authors: Kunya Bowornchockchai
Abstract:
The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0) without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt is the time series data at time t, respectively.Keywords: Box–Jenkins Method, Holt’s Method, Mean Absolute Percentage Error (MAPE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707490 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting
Authors: R. Behmanesh, I. Rahimi
Abstract:
recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.Keywords: RNN, DOE, regression, control chart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659489 Objective Performance of Compressed Image Quality Assessments
Authors: Ratchakit Sakuldee, Somkait Udomhunsakul
Abstract:
Measurement of the quality of image compression is important for image processing application. In this paper, we propose an objective image quality assessment to measure the quality of gray scale compressed image, which is correlation well with subjective quality measurement (MOS) and least time taken. The new objective image quality measurement is developed from a few fundamental of objective measurements to evaluate the compressed image quality based on JPEG and JPEG2000. The reliability between each fundamental objective measurement and subjective measurement (MOS) is found. From the experimental results, we found that the Maximum Difference measurement (MD) and a new proposed measurement, Structural Content Laplacian Mean Square Error (SCLMSE), are the suitable measurements that can be used to evaluate the quality of JPEG200 and JPEG compressed image, respectively. In addition, MD and SCLMSE measurements are scaled to make them equivalent to MOS, given the rate of compressed image quality from 1 to 5 (unacceptable to excellent quality).
Keywords: JPEG, JPEG2000, objective image quality measurement, subjective image quality measurement, correlation coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188488 Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel
Authors: Muhammad Sameer Ahmed, Piotr Remlein, Tansal Gucluoglu
Abstract:
The technique called as Generalized frequency division multiplexing (GFDM) used in the free space optical channel can be a good option for implementation free space optical communication systems. This technique has several strengths e.g. good spectral efficiency, low peak-to-average power ratio (PAPR), adaptability and low co-channel interference. In this paper, the impact of weather conditions such as haze, rain and fog on GFDM over the gamma-gamma channel model is discussed. A Trade off between link distance and system performance under intense weather conditions is also analysed. The symbol error probability (SEP) of GFDM over the gamma-gamma turbulence channel is derived and verified with the computer simulations.
Keywords: Free space optics, generalized frequency division multiplexing, weather conditions, gamma gamma distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 681487 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. O. Ebrahim, P. K. Jain
Abstract:
Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). Changing the connection of the stator windings from delta to star at no load can achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.
Keywords: Artificial Neural Network, ANN, Energy Saving Mode, ESM, Induction Motor, IM, star/delta switch, supervisory control, fluid transportation, reliability, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386486 Optimized Calculation of Hourly Price Forward Curve (HPFC)
Authors: Ahmed Abdolkhalig
Abstract:
This paper examines many mathematical methods for molding the hourly price forward curve (HPFC); the model will be constructed by numerous regression methods, like polynomial regression, radial basic function neural networks & a furrier series. Examination the models goodness of fit will be done by means of statistical & graphical tools. The criteria for choosing the model will depend on minimize the Root Mean Squared Error (RMSE), using the correlation analysis approach for the regression analysis the optimal model will be distinct, which are robust against model misspecification. Learning & supervision technique employed to determine the form of the optimal parameters corresponding to each measure of overall loss. By using all the numerical methods that mentioned previously; the explicit expressions for the optimal model derived and the optimal designs will be implemented.Keywords: Forward curve, furrier series, regression, radial basic function neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4228485 A Comparative Analysis of Artificial Neural Network and Autoregressive Integrated Moving Average Model on Modeling and Forecasting Exchange Rate
Authors: Mogari I. Rapoo, Diteboho Xaba
Abstract:
This paper examines the forecasting performance of Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) models with the published exchange rate obtained from South African Reserve Bank (SARB). ARIMA is one of the popular linear models in time series forecasting for the past decades. ARIMA and ANN models are often compared and literature revealed mixed results in terms of forecasting performance. The study used the MSE and MAE to measure the forecasting performance of the models. The empirical results obtained reveal the superiority of ARIMA model over ANN model. The findings further resolve and clarify the contradiction reported in literature over the superiority of ARIMA and ANN models.
Keywords: ARIMA, artificial neural networks models, error metrics, exchange rates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359484 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy
Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko
Abstract:
In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.
Keywords: Inverse problems, multi-component solutions, neural networks, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927483 Comparisons of Surveying with Terrestrial Laser Scanner and Total Station for Volume Determination of Overburden and Coal Excavations in Large Open-Pit Mine
Authors: B. Keawaram, P. Dumrongchai
Abstract:
The volume of overburden and coal excavations in open-pit mine is generally determined by conventional survey such as total station. This study aimed to evaluate the accuracy of terrestrial laser scanner (TLS) used to measure overburden and coal excavations, and to compare TLS survey data sets with the data of the total station. Results revealed that, the reference points measured with the total station showed 0.2 mm precision for both horizontal and vertical coordinates. When using TLS on the same points, the standard deviations of 4.93 cm and 0.53 cm for horizontal and vertical coordinates, respectively, were achieved. For volume measurements covering the mining areas of 79,844 m2, TLS yielded the mean difference of about 1% and the surface error margin of 6 cm at the 95% confidence level when compared to the volume obtained by total station.
Keywords: Mine, survey, terrestrial laser scanner, total station.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663