Search results for: Markov Decision Process (MDP)
5622 Standardization and Adaption Requirements in Production System Transplants
Authors: G. Schuh, T. Potente, D. Kupke, S. Ivanescu
Abstract:
As German companies roll out their standardized production systems to offshore manufacturing plants, they face the challenge of implementing them in different cultural environments. Studies show that the local adaptation is one of the key factors for a successful implementation. Thus the question arises of where the line between standardization and adaptation can be drawn. To answer this question the influence of culture on production systems is analysed in this paper. The culturally contingent components of production systems are identified. Also the contingency factors are classified according to their impact on the necessary adaptation changes and implementation effort. Culturally specific decision making, coordination, communication and motivation patterns require one-time changes in organizational and process design. The attitude towards rules requires more intense coaching and controlling. Lastly a framework is developed to depict standardization and adaption needs when transplanting production systems into different cultural environments.Keywords: Culture, influence of national culture on production systems, lean production, production systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18265621 Momentum Accounting in Public Management: A Case Study in a Brazilian Navy-s Services Provider Military Organization
Authors: Rodrigo Barreiros Leal, Aracéli Cristina de Sousa Ferreira
Abstract:
This study examines the possibility to apply the theory of multidimensional accounting (momentum accounting) in a Brazilian Navy-s Services Provider Military Organization (Organização Militar Prestadora de Serviços - OMPS). In general, the core of the said theory is the fact that Accounting does not recognize the inertia of transactions occurring in an entity, and that occur repeatedly in some cases, regardless of the implementation of new actions by its managers. The study evaluates the possibility of greater use of information recorded in the financial statements of the unit of analysis, within the strategic decisions of the organization. As a research strategy, we adopted the case study. The results infer that it is possible to use the theory in the context of a multidimensional OMPS, promoting useful information for decision-making and thereby contributing to the strengthening of the necessary alignment of its administration with the current desires of the Brazilian society.
Keywords: Multidimensional Accounting, Public Management, Decision Making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28795620 A Generic Approach to Reuse Unified Modeling Language Components Following an Agile Process
Authors: Rim Bouhaouel, Naoufel Kraïem, Zuhoor Al Khanjari
Abstract:
Unified Modeling Language (UML) is considered as one of the widespread modeling language standardized by the Object Management Group (OMG). Therefore, the model driving engineering (MDE) community attempts to provide reuse of UML diagrams, and do not construct it from scratch. The UML model appears according to a specific software development process. The existing method generation models focused on the different techniques of transformation without considering the development process. Our work aims to construct an UML component from fragments of UML diagram basing on an agile method. We define UML fragment as a portion of a UML diagram, which express a business target. To guide the generation of fragments of UML models using an agile process, we need a flexible approach, which adapts to the agile changes and covers all its activities. We use the software product line (SPL) to derive a fragment of process agile method. This paper explains our approach, named RECUP, to generate UML fragments following an agile process, and overviews the different aspects. In this paper, we present the approach and we define the different phases and artifacts.Keywords: UML, component, fragment, agile, SPL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9175619 eTransformation Framework for the Cognitive Systems
Authors: Ana Hol
Abstract:
Digital systems are in the Cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber, for example, does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new shared economy business models such as Uber, and 3. New requirements for demand driven, cognitive systems capable of learning and just-in-time decision-making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.
Keywords: System implementations, AI supported systems, cognitive systems, eTransformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9535618 K-best Night Vision Devices by Multi-Criteria Mixed-Integer Optimization Modeling
Authors: Daniela I. Borissova, Ivan C. Mustakerov
Abstract:
The paper describes an approach for defining of k-best night vision devices based on multi-criteria mixed-integer optimization modeling. The parameters of night vision devices are considered as criteria that have to be optimized. Using different user preferences for the relative importance between parameters different choice of k-best devices can be defined. An ideal device with all of its parameters at their optimum is used to determine how far the particular device from the ideal one is. A procedure for evaluation of deviation between ideal solution and k-best solutions is presented. The applicability of the proposed approach is numerically illustrated using real night vision devices data. The proposed approach contributes to quality of decisions about choice of night vision devices by making the decision making process more certain, rational and efficient.
Keywords: K-best devices, mixed-integer model, multi-criteria problem, night vision devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18045617 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW
Authors: Farhad Kolahan, Mehdi Heidari
Abstract:
Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21875616 Simulation of the Extensional Flow Mixing of Molten Aluminium and Fly Ash Nanoparticles
Authors: O. Ualibek, C. Spitas, V. Inglezakis, G. Itskos
Abstract:
This study presents simulations of an aluminium melt containing an initially non-dispersed fly ash nanoparticle phase. Mixing is affected predominantly by means of forced extensional flow via either straight or slanted orifices. The sensitivity to various process parameters is determined. The simulated process is used for the production of cast fly ash-aluminium nanocomposites. The possibilities for rod and plate stock grading in the context of a continuous casting process implementation are discussed.Keywords: Metal matrix composites, fly ash nanoparticles, aluminium 2024, agglomeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10025615 Contractor Selection in Saudi Arabia
Authors: M. A. Bajaber, M. A. Taha
Abstract:
Contractor selection in Saudi Arabia is very important due to the large construction boom and the contractor role to get over construction risks. The need for investigating contractor selection is due to the following reasons; large number of defaulted or failed projects (18%), large number of disputes attributed to contractor during the project execution stage (almost twofold), the extension of the General Agreement on Tariffs and Trade (GATT) into construction industry, and finally the few number of researches. The selection strategy is not perfect and considered as the reason behind irresponsible contractors. As a response, this research was conducted to review the contractor selection strategies as an integral part of a long advanced research to develop a good selection model. Many techniques can be used to form a selection strategy; multi criteria for optimizing decision, prequalification to discover contractor-s responsibility, bidding process for competition, third party guarantee to enhance the selection, and fuzzy techniques for ambiguities and incomplete information.
Keywords: Bidding, Construction industry, Contractor selection, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31415614 Design Patterns for Emergency Management Processes
Authors: Tomáš Ludík, Jiří Barta, Josef Navrátil
Abstract:
Natural or human made disasters have a significant negative impact on the environment. At the same time there is an extensive effort to support management and decision making in emergency situations by information technologies. Therefore the purpose of the paper is to propose a design patterns applicable in emergency management, enabling better analysis and design of emergency management processes and therefore easier development and deployment of information systems in the field of emergency management. It will be achieved by detailed analysis of existing emergency management legislation, contingency plans and information systems. The result is a set of design patterns focused at emergency management processes that enable easier design of emergency plans or development of new information system. These results will have a major impact on the development of new information systems as well as to more effective and faster solving of emergencies.
Keywords: Analysis and Design, Business Process Modeling Notation, Contingency Plans, Design Patterns, Emergency Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30995613 A Probabilistic Optimization Approach for a Gas Processing Plant under Uncertain Feed Conditions and Product Requirements
Authors: G. Mesfin, M. Shuhaimi
Abstract:
This paper proposes a new optimization techniques for the optimization a gas processing plant uncertain feed and product flows. The problem is first formulated using a continuous linear deterministic approach. Subsequently, the single and joint chance constraint models for steady state process with timedependent uncertainties have been developed. The solution approach is based on converting the probabilistic problems into their equivalent deterministic form and solved at different confidence levels Case study for a real plant operation has been used to effectively implement the proposed model. The optimization results indicate that prior decision has to be made for in-operating plant under uncertain feed and product flows by satisfying all the constraints at 95% confidence level for single chance constrained and 85% confidence level for joint chance constrained optimizations cases.Keywords: Butane, Feed composition, LPG, Productspecification, Propane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13985612 Proposal of a Model Supporting Decision-Making Based On Multi-Objective Optimization Analysis on Information Security Risk Treatment
Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu
Abstract:
Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.
Keywords: Information security risk treatment, Selection of risk measures, Risk acceptanceand Multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17215611 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15005610 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process
Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.
Abstract:
It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16495609 The System Identification and PID Lead-lag Control for Two Poles Unstable SOPDT Process by Improved Relay Method
Authors: V. K. Singh, P. K. Padhy
Abstract:
This paper describes identification of the two poles unstable SOPDT process, especially with large time delay. A new modified relay feedback identification method for two poles unstable SOPDT process is proposed. Furthermore, for the two poles unstable SOPDT process, an additional Derivative controller is incorporated parallel with relay to relax the constraint on the ratio of delay to the unstable time constant, so that the exact model parameters of unstable processes can be identified. To cope with measurement noise in practice, a low pass filter is suggested to get denoised output signal toimprove the exactness of model parameter of unstable process. PID Lead-lag tuning formulas are derived for two poles unstable (SOPDT) processes based on IMC principle. Simulation example illustrates the effectiveness and the simplicity of the proposed identification and control method.Keywords: IMC structure, PID Lead-lag controller, Relayfeedback, SOPDT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20975608 A Framework for Identifying the Critical Factors Affecting the Decision to Adopt and Use Inter-Organizational Information Systems
Authors: K. Bouchbout, Z. Alimazighi
Abstract:
The importance of inter-organizational system (IOS) has been increasingly recognized by organizations. However, IOS adoption has proved to be difficult and, at this stage, why this is so is not fully uncovered. In practice, benefits have often remained concentrated, primarily accruing to the dominant party, resulting in low rates of adoption and usage, and often culminating in the failure of the IOS. The main research question is why organizations initiate or join IOS and what factors influence their adoption and use levels. This paper reviews the literature on IOS adoption and proposes a theoretical framework in order to identify the critical factors to capture a complete picture of IOS adoption. With our proposed critical factors, we are able to investigate their relative contributions to IOS adoption decisions. We obtain findings that suggested that there are five groups of factors that significantly affect the adoption and use decision of IOS in the Supply Chain Management (SCM) context: 1) interorganizational context, 2) organizational context, 3) technological context, 4) perceived costs, and 5) perceived benefits.Keywords: Business-to-Business relationships, buyer-supplier relationships, Critical factors, Interorganizational Information Systems, IOS adoption and use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20495607 Fuzzy Approach for Ranking of Motor Vehicles Involved in Road Accidents
Authors: Lazim Abdullah, N orhanadiah Zam
Abstract:
Increasing number of vehicles and lack of awareness among road users may lead to road accidents. However no specific literature was found to rank vehicles involved in accidents based on fuzzy variables of road users. This paper proposes a ranking of four selected motor vehicles involved in road accidents. Human and non-human factors that normally linked with road accidents are considered for ranking. The imprecision or vagueness inherent in the subjective assessment of the experts has led the application of fuzzy sets theory to deal with ranking problems. Data in form of linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. The Multi Criteria Decision Making, fuzzy TOPSIS was applied in computational procedures. From the analysis, it shows that motorcycles vehicles yielded the highest closeness coefficient at 0.6225. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the motorcycles recorded the first rank.
Keywords: Road accidents, decision making, closeness coefficient, fuzzy number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15425606 Automation of Heat Exchanger using Neural Network
Authors: Sudhir Agashe, Ashok Ghatol, Sujata Agashe
Abstract:
In this paper the development of a heat exchanger as a pilot plant for educational purpose is discussed and the use of neural network for controlling the process is being presented. The aim of the study is to highlight the need of a specific Pseudo Random Binary Sequence (PRBS) to excite a process under control. As the neural network is a data driven technique, the method for data generation plays an important role. In light of this a careful experimentation procedure for data generation was crucial task. Heat exchange is a complex process, which has a capacity and a time lag as process elements. The proposed system is a typical pipe-in- pipe type heat exchanger. The complexity of the system demands careful selection, proper installation and commissioning. The temperature, flow, and pressure sensors play a vital role in the control performance. The final control element used is a pneumatically operated control valve. While carrying out the experimentation on heat exchanger a welldrafted procedure is followed giving utmost attention towards safety of the system. The results obtained are encouraging and revealing the fact that if the process details are known completely as far as process parameters are concerned and utilities are well stabilized then feedback systems are suitable, whereas neural network control paradigm is useful for the processes with nonlinearity and less knowledge about process. The implementation of NN control reinforces the concepts of process control and NN control paradigm. The result also underlined the importance of excitation signal typically for that process. Data acquisition, processing, and presentation in a typical format are the most important parameters while validating the results.Keywords: Process identification, neural network, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15735605 Understanding and Predicting Foam in Anaerobic Digester
Authors: I. R. Kanu, T. J. Aspray, A. J. Adeloye
Abstract:
As a result of the ambiguity and complexity surrounding anaerobic digester foaming, efforts have been made by various researchers to understand the process of anaerobic digester foaming so as to proffer a solution that can be universally applied rather than site specific. All attempts ranging from experimental analysis to comparative review of other process has not fully explained the conditions and process of foaming in anaerobic digester. Studying the current available knowledge on foam formation and relating it to anaerobic digester process and operating condition, this piece of work presents a succinct and enhanced understanding of foaming in anaerobic digesters as well as introducing a simple method to identify the onset of anaerobic digester foaming based on analysis of historical data from a field scale system.
Keywords: Anaerobic digester, foam, biogas, surfactants, wastewater sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29705604 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)
Abstract:
Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economic, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economic factors for site selection of landfill areas and using GIS for a decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/Turkey city, Güzelyurt district practice.Keywords: GIS, landfill, solid waste, spatial analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31805603 Detergent Removal from Rinsing Water by Peroxi Electrocoagulation Process
Authors: A. Benhadji, M. Taleb Ahmed
Abstract:
Among the various methods of treatment, advanced oxidation processes (AOP) are the most promising ones. In this study, Peroxi Electrocoagulation Process (PEP) was investigated for the treatment of detergent wastewater. The process was compared with electrooxidation treatment. The results showed that chemical oxygen demand (COD) was high 7584 mgO2.L-1, while the biochemical oxygen demand was low (250 mgO2.L-1). This wastewater was hardly biodegradable. Electrochemical process was carried out for the removal of detergent using a glass reactor with a volume of 1 L and fitted with three electrodes. A direct current (DC) supply was used. Samples were taken at various current density (0.0227 A/cm2 to 0.0378 A/cm2) and reaction time (1-2-3-4 and 5 hour). Finally, the COD was determined. The results indicated that COD removal efficiency of PEP was observed to increase with current intensity and reached to 77% after 5 h. The highest removal efficiency was observed after 5 h of treatment.
Keywords: Advanced oxidation processes, chemical oxygen demand, COD, detergent, peroxi electrocoagulation process, PEP, wastewater
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9175602 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.
Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3845601 Modeling And Analysis of Simple Open Cycle Gas Turbine Using Graph Networks
Authors: Naresh Yadav, I.A. Khan, Sandeep Grover
Abstract:
This paper presents a unified approach based graph theory and system theory postulates for the modeling and analysis of Simple open cycle Gas turbine system. In the present paper, the simple open cycle gas turbine system has been modeled up to its subsystem level and system variables have been identified to develop the process subgraphs. The theorems and algorithms of the graph theory have been used to represent behavioural properties of the system like rate of heat and work transfers rates, pressure drops and temperature drops in the involved processes of the system. The processes have been represented as edges of the process subgraphs and their limits as the vertices of the process subgraphs. The system across variables and through variables has been used to develop terminal equations of the process subgraphs of the system. The set of equations developed for vertices and edges of network graph are used to solve the system for its process variables.Keywords: Simple open cycle gas turbine, Graph theoretic approach, process subgraphs, gas turbines system modeling, systemtheory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26425600 A Bi-Objective Preventive Healthcare Facility Network Design with Incorporating Cost and Time Saving
Authors: Mehdi Seifbarghy, Keyvan Roshan
Abstract:
Main goal of preventive healthcare problems are at decreasing the likelihood and severity of potentially life-threatening illnesses by protection and early detection. The levels of establishment and staffing costs along with summation of the travel and waiting time that clients spent are considered as objectives functions of the proposed nonlinear integer programming model. In this paper, we have proposed a bi-objective mathematical model for designing a network of preventive healthcare facilities so as to minimize aforementioned objectives, simultaneously. Moreover, each facility acts as M/M/1 queuing system. The number of facilities to be established, the location of each facility, and the level of technology for each facility to be chosen are provided as the main determinants of a healthcare facility network. Finally, to demonstrate performance of the proposed model, four multi-objective decision making techniques are presented to solve the model.Keywords: Preventive healthcare problems, Non-linear integer programming models, Multi-objective decision making techniques
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17705599 A Data Mining Model for Detecting Financial and Operational Risk Indicators of SMEs
Authors: Ali Serhan Koyuncugil, Nermin Ozgulbas
Abstract:
In this paper, a data mining model to SMEs for detecting financial and operational risk indicators by data mining is presenting. The identification of the risk factors by clarifying the relationship between the variables defines the discovery of knowledge from the financial and operational variables. Automatic and estimation oriented information discovery process coincides the definition of data mining. During the formation of model; an easy to understand, easy to interpret and easy to apply utilitarian model that is far from the requirement of theoretical background is targeted by the discovery of the implicit relationships between the data and the identification of effect level of every factor. In addition, this paper is based on a project which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK).
Keywords: Risk Management, Financial Risk, Operational Risk, Financial Early Warning System, Data Mining, CHAID Decision Tree Algorithm, SMEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31245598 Change Management in Business Process Modeling Based on Object Oriented Petri Net
Authors: Bassam Atieh Rajabi, Sai Peck Lee
Abstract:
Business Process Modeling (BPM) is the first and most important step in business process management lifecycle. Graph based formalism and rule based formalism are the two most predominant formalisms on which process modeling languages are developed. BPM technology continues to face challenges in coping with dynamic business environments where requirements and goals are constantly changing at the execution time. Graph based formalisms incur problems to react to dynamic changes in Business Process (BP) at the runtime instances. In this research, an adaptive and flexible framework based on the integration between Object Oriented diagramming technique and Petri Net modeling language is proposed in order to support change management techniques for BPM and increase the representation capability for Object Oriented modeling for the dynamic changes in the runtime instances. The proposed framework is applied in a higher education environment to achieve flexible, updatable and dynamic BP.Keywords: Business Process Modeling, Change Management, Graph Based Modeling, Rule Based Modeling, Object Oriented PetriNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20385597 Frame and Burst Acquisition in TDMA Satellite Communication Networks with Transponder Hopping
Authors: Vitalice K. Oduol, C. Ardil
Abstract:
The paper presents frame and burst acquisition in a satellite communication network based on time division multiple access (TDMA) in which the transmissions may be carried on different transponders. A unique word pattern is used for the acquisition process. The search for the frame is aided by soft-decision of QPSK modulated signals in an additive white Gaussian channel. Results show that when the false alarm rate is low the probability of detection is also low, and the acquisition time is long. Conversely when the false alarm rate is high, the probability of detection is also high and the acquisition time is short. Thus the system operators can trade high false alarm rates for high detection probabilities and shorter acquisition times.
Keywords: burst acquisition, burst time plan, frame acquisition, satellite access, satellite TDMA, unique word detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91575596 Stock Characteristics and Herding Formation: Evidence from the United States Equity Market
Authors: Chih-Hsiang Chang, Fang-Jyun Su
Abstract:
This paper explores whether stock characteristics influence the herding formation among investors in the US equity market. To extend the research scope of the existing literature, this paper further examines the role that stock risk characteristics play in the US equity market, and the way they influence investors’ decision-making. First, empirical results show that whether general stocks or high-risk stocks, there are no herding behaviors among the investors in the US equity market during the whole research period or during four great events. Moreover, stock characteristics have great influence on investors’ trading decisions. Finally, there is a bidirectional lead-lag relationship of the herding formation between high-risk stocks and low-risk stocks, but the influence of high-risk stocks on the low-risk stocks is stronger than that of low-risk stocks on the high-risk stocks.
Keywords: Stock characteristics, herding formation, investment decision, US equity market, lead-lag relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9995595 Developing New Processes and Optimizing Performance Using Response Surface Methodology
Authors: S. Raissi
Abstract:
Response surface methodology (RSM) is a very efficient tool to provide a good practical insight into developing new process and optimizing them. This methodology could help engineers to raise a mathematical model to represent the behavior of system as a convincing function of process parameters. Through this paper the sequential nature of the RSM surveyed for process engineers and its relationship to design of experiments (DOE), regression analysis and robust design reviewed. The proposed four-step procedure in two different phases could help system analyst to resolve the parameter design problem involving responses. In order to check accuracy of the designed model, residual analysis and prediction error sum of squares (PRESS) described. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with one or more responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.Keywords: Response Surface Methodology (RSM), Design of Experiments (DOE), Process modeling, Process setting, Process optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18375594 A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy
Authors: Farhad Kolahan, A. Hamid Khajavi
Abstract:
In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.
Keywords: AWJ machining, Mathematical modeling, Simulated Annealing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17755593 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281