Search results for: training method.
8781 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: Outlier detection, generative adversary networks, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10748780 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.
Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13238779 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model
Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi
Abstract:
Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25578778 Particle Swarm Optimization with Interval-valued Genotypes and Its Application to Neuroevolution
Authors: Hidehiko Okada
Abstract:
The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well approximate hidden target functions despite the fact that no training data was explicitly provided.
Keywords: Evolutionary algorithms, swarm intelligence, particle swarm optimization, neural network, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19668777 A Study of Feedback Strategy to Improve Inspector Performance by Using Computer Based Training
Authors: Santirat Nansaarng, Sittichai Kaewkuekool, Supreeya Siripattanakunkajorn
Abstract:
The purpose of this research was to study the inspector performance by using computer based training (CBT). Visual inspection task was printed circuit board (PCB) simulated on several types of defects. Subjects were 16 undergraduate randomly selected from King Mongkut-s University of Technology Thonburi and test for 20/20. Then, they were equally divided on performance into two groups (control and treatment groups) and were provided information before running the experiment. Only treatment group was provided feedback information after first experiment. Results revealed that treatment group was showed significantly difference at the level of 0.01. The treatment group showed high percentage on defects detected. Moreover, the attitude of inspectors on using the CBT to inspection was showed on good. These results have been showed that CBT could be used for training to improve inspector performance.
Keywords: Training, Feedback, Computer based Training (CBT)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14228776 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.
As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.
Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19168775 Handwritten Character Recognition Using Multiscale Neural Network Training Technique
Authors: Velappa Ganapathy, Kok Leong Liew
Abstract:
Advancement in Artificial Intelligence has lead to the developments of various “smart" devices. Character recognition device is one of such smart devices that acquire partial human intelligence with the ability to capture and recognize various characters in different languages. Firstly multiscale neural training with modifications in the input training vectors is adopted in this paper to acquire its advantage in training higher resolution character images. Secondly selective thresholding using minimum distance technique is proposed to be used to increase the level of accuracy of character recognition. A simulator program (a GUI) is designed in such a way that the characters can be located on any spot on the blank paper in which the characters are written. The results show that such methods with moderate level of training epochs can produce accuracies of at least 85% and more for handwritten upper case English characters and numerals.Keywords: Character recognition, multiscale, backpropagation, neural network, minimum distance technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19288774 Ceramic Employees’ Occupational Health and Safety Training Expectations in Turkey
Authors: Erol Karaca
Abstract:
This study aims to analyze ceramic employees’ occupational health and safety training expectations. To that general objective, the study tries to examine whether occupational health and safety training expectations of ceramic employees meaningfully differentiate depending on demographic features and professional, social and economic conditions. For this purpose, a questionnaire was developed by the researcher. The research data were collected through this questionnaire called “Questionnaire of Occupational Health and Safety Training Expectation” (QSOHSTE). QSOHSTE was applied to 125 ceramic employees working in Kütahya, Turkey. Data obtained from questionnaire were analyzed via SPSS 21. The findings, obtained from the study, revealed that employees’ agreement level to occupational health and safety training expectation statements is generally high-level. The findings reveal that employees expect professional interest such as increased development and investment, preventive measures for accidents, interventions to evaluate the working conditions, establishment of safe working environments and sustainment of adequate equipment for occupational health and safety training process. Besides these findings, employees’ agreement level to occupational health and safety training expectation statements also varies in terms of educational level, professional seniority, income level and perception of economic condition.
Keywords: Occupational Health and Safety, Occupational Training, Occupational Expectation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24268773 Human Resources and Business Result: An Empirical Approach Based On RBV Theory
Authors: XhevrieMamaqi
Abstract:
Organization capacity learning is a process referring to the sum total of individual and collective learning through training programs, experience and experimentation, among others. Today, in-business ongoing training is one of the most important strategies for human capital development and it is crucial to sustain and improve workers’ knowledge and skills. Many organizations, firms and business are adopting a strategy of continuous learning, encouraging employees to learn new skills continually to be innovative and to try new processes and work in order to achieve a competitive advantage and superior business results. This paper uses the Resource Based View and Capacities (RBV) approach to construct a hypothetical relationships model between training and business results. The test of the model is applied on transversal data. A sample of 266 business of Spanish sector service has been selected. A Structural Equation Model (SEM) is used to estimate the relationship between ongoing training, represented by two latent dimension denominated Human and Social Capital resources and economic business results. The coefficients estimated have shown the efficient of some training aspectsexplaining the variation in business results.
Keywords: Business results, Human and Social Capital resources, training, RBV Theory, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18608772 The Performance of Predictive Classification Using Empirical Bayes
Authors: N. Deetae, S. Sukparungsee, Y. Areepong, K. Jampachaisri
Abstract:
This research is aimed to compare the percentages of correct classification of Empirical Bayes method (EB) to Classical method when data are constructed as near normal, short-tailed and long-tailed symmetric, short-tailed and long-tailed asymmetric. The study is performed using conjugate prior, normal distribution with known mean and unknown variance. The estimated hyper-parameters obtained from EB method are replaced in the posterior predictive probability and used to predict new observations. Data are generated, consisting of training set and test set with the sample sizes 100, 200 and 500 for the binary classification. The results showed that EB method exhibited an improved performance over Classical method in all situations under study.
Keywords: Classification, Empirical Bayes, Posterior predictive probability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15978771 Neural Network Optimal Power Flow(NN-OPF) based on IPSO with Developed Load Cluster Method
Authors: Mat Syai'in, Adi Soeprijanto
Abstract:
An Optimal Power Flow based on Improved Particle Swarm Optimization (OPF-IPSO) with Generator Capability Curve Constraint is used by NN-OPF as a reference to get pattern of generator scheduling. There are three stages in Designing NN-OPF. The first stage is design of OPF-IPSO with generator capability curve constraint. The second stage is clustering load to specific range and calculating its index. The third stage is training NN-OPF using constructive back propagation method. In training process total load and load index used as input, and pattern of generator scheduling used as output. Data used in this paper is power system of Java-Bali. Software used in this simulation is MATLAB.Keywords: Optimal Power Flow, Generator Capability Curve, Improved Particle Swarm Optimization, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19518770 The Effects of Neuromuscular Training on Limits of Stability in Female Individuals
Authors: Yen-Ting Wang, Yu-Tien Tsai, Tzuhui A. Tseng, I-Tsun Chiang, Alex J.Y. Lee
Abstract:
This study examined the effects of neuromuscular training (NT) on limits of stability (LOS) in female individuals. Twenty female basketball amateurs were assigned into NT experimental group or control group by volunteer. All the players were underwent regular basketball practice, 90 minutes, 3 times per week for 6 weeks, but the NT experimental group underwent extra NT with plyometric and core training, 50 minutes, 3 times per week for 6 weeks during this period. Limits of stability (LOS) were evaluated by the Biodex Balance System. One factor ANCOVA was used to examine the differences between groups after training. The significant level for statistic was set at p<.05. Results showed that the right direction LOS scores at level 3 indicated a significant interaction between the trained/untrained groups × pre/post repeated measures with post-training scores higher than pre-training scores in the NT experimental group. The study demonstrated that Six weeks NT can improve the postural stability in young female individuals.
Keywords: Balance control, neuromuscular control and posture stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16888769 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home
Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo
Abstract:
Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.Keywords: Training, rehabilitation, SCI patient, welfare, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20378768 Software Model for a Computer Based Training for an HVDC Control Desk Simulator
Authors: José R. G. Braga, Joice B. Mendes, Guilherme H. Caponetto, Alexandre C. B. Ramos
Abstract:
With major technological advances and to reduce the cost of training apprentices for real-time critical systems, it was necessary the development of Intelligent Tutoring Systems for training apprentices in these systems. These systems, in general, have interactive features so that the learning is actually more efficient, making the learner more familiar with the mechanism in question. In the home stage of learning, tests are performed to obtain the student's income, a measure on their use. The aim of this paper is to present a framework to model an Intelligent Tutoring Systems using the UML language. The various steps of the analysis are considered the diagrams required to build a general model, whose purpose is to present the different perspectives of its development.Keywords: Computer based training, Hypermedia, Software modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16078767 Intercultural Mediation Training and the Training Process of Common Sense Leaders by the Leadership of Universities Communication and Artistic Campaigns
Authors: Bilgehan Gültekin, Tuba Gültekin
Abstract:
It is quite essential to form dialogue mechanisms and dialogue channels to solve intercultural communication issues. Therefore, every country should develop a intercultural education project which aims to resolve international communication issues. For proper mediation training, the first step is to reach an agreement on the actors to run the project. The strongest mediation mechanisms in the world should be analyzed and initiated within the educational policies. A communication-based mediation model should be developed for international mediation training. Mediators can use their convincing communication skills as a part of this model. At the first, fundamental stages of the mediation training should be specified within the scope of the model. Another important topic at this point is common sence and peace leaders to act as an ombudsman in this process. Especially for solving some social issues and conflicts, common sense leaders acting as an ombudsman would lead to effective communication. In mediation training that is run by universities and non-governmental organizations, another phase is to focus on conducting the meetings. In intercultural mediation training, one of the most critical topics is to conduct the meeting traffic and performing a shuttle diplomacy. Meeting traffic is where the mediator organizes meetings with the parties with initiative powers, in order to contribute to the solution of the issue, and schedule these meetings. In this notice titled “ Intercultural mediation training and the training process of common sense leaders by the leadership of universities communication and artistic campaigns" , communication models and strategies about this topic will be constructed and an intercultural art activities and perspectives will be presented.Keywords: Intercultural communication, mediation education, common sense leaders, artistic sensitivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14708766 Margin-Based Feed-Forward Neural Network Classifiers
Authors: Han Xiao, Xiaoyan Zhu
Abstract:
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17258765 Effect of Aquatic and Land Plyometric Training on Selected Physical Fitness Variables in Intercollegiate Male Handball Players
Authors: Nisith K. Datta, Rakesh Bharti
Abstract:
The purpose of the study was to find out the effects of Aquatic and Land plyometric training on selected physical variables in intercollegiate male handball players. To achieve this purpose of the study, forty five handball players of Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat were selected as players at random and their age ranged between 18 to 21 years. The selected players were divided into three equal groups of fifteen players each. Group I underwent Aquatic plyometric training, Group II underwent Land plyometric training and Group III Control group for three days per week for twelve weeks. Control Group did not participate in any special training programme apart from their regular activities as per their curriculum. The following physical fitness variables namely speed; leg explosive power and agility were selected as dependent variables. All the players of three groups were tested on selected dependent variables prior to and immediately after the training programme. The analysis of covariance was used to analyze the significant difference, if any among the groups. Since, three groups were compared, whenever the obtained ‘F’ ratio for adjusted posttest was found to be significant, the Scheffe’s test to find out the paired mean differences, if any. The 0.05 level of confidence was fixed as the level of significance to test the ‘F’ ratio obtained by the analysis of covariance, which was considered as an appropriate. The result of the study indicates due to Aquatic and Land plyometric training on speed, explosive power, and agility has been improved significantly.Keywords: Aquatic training, explosive power, plyometric training, speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17228764 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording
Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy
Abstract:
Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23298763 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: Computer vision, deep learning, object detection, semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8278762 The Effect of Strength Training and Consumption of Glutamine Supplement on GH/IGF1 Axis
Authors: Alireza Barari
Abstract:
Physical activity and diet are factors that influence the body's structure. The purpose of this study was to compare the effects of four weeks of resistance training, and glutamine supplement consumption on growth hormone (GH), and Insulin-like growth factor 1 (IGF-1) Axis. 40 amateur male bodybuilders, participated in this study. They were randomly divided into four equal groups, Resistance (R), Glutamine (G), Resistance with Glutamine (RG), and Control (C). The R group was assigned to a four week resistance training program, three times/week, three sets of 10 exercises with 6-10 repetitions, at the 80-95% 1RM (One Repetition Maximum), with 120 seconds rest between sets), G group is consuming l-glutamine (0.1 g/kg-1/day-1), RG group resistance training with consuming L-glutamine, and C group continued their normal lifestyle without exercise training. GH, IGF1, IGFBP-III plasma levels were measured before and after the protocol. One-way ANOVA indicated significant change in GH, IGF, and IGFBP-III between the four groups, and the Tukey test demonstrated significant increase in GH, IGF1, IGFBP-III plasma levels in R, and RG group. Based upon these findings, we concluded that resistance training at 80-95% 1RM intensity, and resistance training along with oral glutamine shows significantly increase secretion of GH, IGF-1, and IGFBP-III in amateur males, but the addition of oral glutamine to the exercise program did not show significant difference in GH, IGF-1, and IGFBP-III.
Keywords: Strength, glutamine, growth hormone, insulin-like growth factor 1.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10508761 Personal Digital Assistants for Fieldwork Training in College Campus
Authors: Takaharu Miyoshi, Tadahiko Higuchi
Abstract:
Education supported by mobile computers has been widely done for some time. Teachers have attempted to use mobile computers and to find concrete subjects for student-s fieldwork training in college education. The purpose of this research is to develop software for Personal Digital Assistant (PDA) to conduct fieldwork in our campus, and to report a fieldwork class using PDAs in the curriculum of the Department of Regional Environment Studies.
Keywords: Development of software for PDA, fieldwork training, computer supported education, experiential learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11848760 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.
Keywords: Visual search, deep learning, convolutional neural network, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8258759 Contribution for Rural Development through Training in Organic Farming
Authors: Raquel P. F. Guiné, Daniela V. T. A. Costa, Paula M. R. Correia, Moisés Castro, Luis T. Guerra, Cristina A. Costa
Abstract:
The aim of this work was to characterize a potential target group of people interested in participating into a training program in organic farming in the context of mobile-learning. The information sought addressed in particular, but not exclusively, possible contents, formats and forms of evaluation that will contribute to define the course objectives and curriculum, as well as to ensure that the course meets the needs of the learners and their preferences. The sample was selected among different European countries. The questionnaires were delivered electronically for answering on-line and in the end 135 consented valid questionnaires were obtained. The results allowed characterizing the target group and identifying their training needs and preferences towards m-learning formats, giving valuable tools to design the training offer.Keywords: Mobile-learning, organic farming, rural development, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20788758 Training in Psychology in Brazil – Reflections on the Role of Early Supervised Internships in Undergraduate Courses
Authors: Ana Paula Melchiors Stahlschmidt, Cristina Py de Pinto Gomes Mairesse
Abstract:
This paper presents observations on the early supervised internships in Psychology, currently called basic internships in Brazil, and its importance in professional training. The work is an experience report and focuses on the Professional training, illustrated by the reality of a Brazilian institution, used as a case study. It was developed from the authors' experience as academic supervisors of this kind of practice throughout this undergraduate course, combined with aspects investigated in the post-doctoral research of one of them. Theoretical references on the subject and related national legislation are analyzed, as well as reports of students who experienced at least one semester of this type of practice, articulated to the observations of the authors. The results demonstrate the importance of the early supervised internships as a way of creating opportunities for the students of a first contact with the professional reality and the practice of psychologists in different fields of insertion, preparing them for further experiments that require more involvement in activities of training and practices in Psychology.
Keywords: Training of psychologists, Internships in Psychology, Supervised internships, Combination of theory and practice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15118757 Issues in the User Interface Design of a Content Rich Vocational Training Application for Digitally Illiterate Users
Authors: Jamie Otelsberg, Nagarajan Akshay, Rao R. Bhavani
Abstract:
This paper discusses our preliminary experiences in the design of a user interface of a computerized content-rich vocational training courseware meant for users with little or no computer experience. In targeting a growing population with limited access to skills training of any sort, we faced numerous challenges, including language and cultural differences, resource limits, gender boundaries and, in many cases, the simple lack of trainee motivation. With the size of the unskilled population increasing much more rapidly than the numbers of sufficiently skilled teachers, there is little choice but to develop teaching techniques that will take advantage of emerging computer-based training technologies. However, in striving to serve populations with minimal computer literacy, one must carefully design the user interface to accommodate their cultural, social, educational, motivational and other differences. Our work, which uses computer based and haptic simulation technologies to deliver training to these populations, has provided some useful insights on potential user interface design approaches.
Keywords: User interface design, digitally illiterate, vocational training, navigation issues, computer human interaction, human factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23778756 Influence of Social-Psychological Training on Selected Features of University Students
Authors: Anežka Hamranová, Blandína Šramová, Katarína Fichnová
Abstract:
We presented results of research aimed on findings influence of social - psychological training (realized with students of Constantine the Philosopher University- future teachers within their undergraduate preparation) on the choice of intrapersonal and interpersonal features. After social- psychological training using Interpersonal Check List (ICL) we found out shift of behavior to more adaptive forms in categories, which are characterized by extroversive friendly behavior, willingness to cooperation, conformity regard to social situation, responsible and regardful behavior. Using State-Trait Anxiety Inventory (STAI) we found out the cut down of state anxiety and of trait anxiety. The report was processed within grants KEGA 3/5269/07 and VEGA 1/3675/06.Keywords: Intrapersonal and interpersonal features, social -psychological training, social competences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15728755 STLF Based on Optimized Neural Network Using PSO
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22248754 Design of an Intelligent Location Identification Scheme Based On LANDMARC and BPNs
Authors: S. Chaisit, H.Y. Kung, N.T. Phuong
Abstract:
Radio frequency identification (RFID) applications have grown rapidly in many industries, especially in indoor location identification. The advantage of using received signal strength indicator (RSSI) values as an indoor location measurement method is a cost-effective approach without installing extra hardware. Because the accuracy of many positioning schemes using RSSI values is limited by interference factors and the environment, thus it is challenging to use RFID location techniques based on integrating positioning algorithm design. This study proposes the location estimation approach and analyzes a scheme relying on RSSI values to minimize location errors. In addition, this paper examines different factors that affect location accuracy by integrating the backpropagation neural network (BPN) with the LANDMARC algorithm in a training phase and an online phase. First, the training phase computes coordinates obtained from the LANDMARC algorithm, which uses RSSI values and the real coordinates of reference tags as training data for constructing an appropriate BPN architecture and training length. Second, in the online phase, the LANDMARC algorithm calculates the coordinates of tracking tags, which are then used as BPN inputs to obtain location estimates. The results show that the proposed scheme can estimate locations more accurately compared to LANDMARC without extra devices.
Keywords: BPNs, indoor location, location estimation, intelligent location identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20118753 Impacts of E-Learning on Educational Policy: Policy of Sensitization and Training in E-Learning in Saudi Arabia
Authors: Layla Albdr
Abstract:
Saudi Arabia instituted the policy of sensitizing and training stakeholders for e-learning and witnessed wide adoption in many institutions. However, it is at the infancy stage and needs time to develop to mirror the US and UK. The majority of the higher education institutions in Saudi Arabia have adopted e-learning as an alternative to traditional methods to advance education. Conversely, effective implementation of the policy of sensitization and training of stakeholders for e-learning implementation has not been attained because of various challenges. The objectives included determining the challenges and opportunities of the e-learning policy of sensitization and training of stakeholders in Saudi Arabia's higher education and examining if sensitization and training of stakeholder's policy will help promote the implementation of e-learning in institutions. The study employed a descriptive research design based on qualitative analysis. The researcher recruited 295 students and 60 academic staff from four Saudi Arabian universities to participate in the study. An online questionnaire was used to collect the data. The data were then analyzed and reported both quantitatively and qualitatively. The analysis provided an in-depth understanding of the opportunities and challenges of e-learning policy in Saudi Arabian universities. The main challenges identified as internal challenges were the lack of educators’ interest in adopting the policy, and external challenges entailed lack of ICT infrastructure and Internet connectivity. The study recommends encouraging, sensitizing, and training all stakeholders to address these challenges and adopt the policy.
Keywords: e-learning, educational policy, Saudi Arabian higher education, policy of sensitization and training
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6088752 Heart Rate Variability in Responders and Non- Responders to Live-Moderate, Train-Low Altitude Training
Authors: Michael J. Hamlin, Apiwan Manimmanakorn, Gavin R. Sandercock, Jenny J. Ross, Robert H. Creasy, John Hellemans
Abstract:
The aim of this study was to compare the effects of an altitude training camp on heart rate variability and performance in elite triathletes. Ten athletes completed 20 days of live-high, train-low training at 1650m. Athletes underwent pre and post 800-m swim time trials at sea-level, and two heart rate variability tests at 1650m on the first and last day of the training camp. Based on their time trial results, athletes were divided into responders and non-responders. Relative to the non-responders, the responders sympathetic-toparasympathetic ratio decreased substantially after 20 days of altitude training (-0.68 ± 1.08 and -1.2 ± 0.96, mean ± 90% confidence interval for supine and standing respectively). In addition, sympathetic activity while standing was also substantially lower post-altitude in the responders compared to the non-responders (-1869 ± 4764 ms2). Results indicate that responders demonstrated a change to more vagal predominance compared to non-responders.Keywords: parasympathetic predominance, poor performance, triathlon, 800-m swim
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794