Search results for: printing machines.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 441

Search results for: printing machines.

381 Analysis of the Communication Methods of an iCIM 3000 System within the Frame of Research Purpose

Authors: Radovan Holubek, Daynier Rolando Delgado Sobrino, Roman Ruzarovsky

Abstract:

Current trends in manufacturing are characterized by production broadening, innovation cycle shortening, and the products having a new shape, material and functions. The production strategy focused on time needed change from the traditional functional production structure to flexible manufacturing cells and lines. Production by automated manufacturing system (AMS) is one of the most important manufacturing philosophies in the last years. The main goals of the project we are involved in lies on building a laboratory in which will be located a flexible manufacturing system consisting of at least two production machines with NC control (milling machines, lathe). These machines will be linked to a transport system and they will be served by industrial robots. Within this flexible manufacturing system a station for the quality control consisting of a camera system and rack warehouse will be also located. The design, analysis and improvement of this manufacturing system, specially with a special focus on the communication among devices constitute the main aims of this paper. The key determining factors for the manufacturing system design are: the product, the production volume, the used machines, the disposable manpower, the disposable infrastructure and the legislative frame for the specific cases.

Keywords: Paperless manufacturing, flexible manufacturing, robotized manufacturing, material flow, iCIM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
380 LED Lighting Interviews and Assessment in Forest Machines

Authors: Rauno Pääkkönen, Fabriziomaria Gobba, Leena Korpinen

Abstract:

The objective of the study is to assess the implementation of LED lighting into forest machine work in the dark. In addition, the paper includes a wide variety of important and relevant safety and health parameters. In modern, computerized work in the cab of forest machines, artificial illumination is a demanding task when performing duties, such as the visual inspections of wood and computer calculations. We interviewed entrepreneurs and gathered the following as the most pertinent themes: (1) safety, (2) practical problems, and (3) work with LED lighting. The most important comments were in regards to the practical problems of LED lighting. We found indications of technical problems in implementing LED lighting, like snow and dirt on the surfaces of lamps that dim the emission of light. Moreover, service work in the dark forest is dangerous and increases the risks of on-site accidents. We also concluded that the amount of blue light to the eyes should be assessed, especially, when the drivers are working in a semi-dark cab.

Keywords: Forest machines, health, LED, safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
379 Operating Equipment Effectiveness with a Reliability Indicator

Authors: Carl D. Hays III

Abstract:

The purpose of this theory paper is to add a reliability indicator to Operating Equipment Effectiveness (OpEE) which is used to evaluate the productivity of machines and equipment with wheels and tracks. OpEE is a derivative of Overall Equipment Effectiveness (OEE) which has been widely used for many decades in factories that manufacture products. OEE has three variables, Availability Rate, Work Rate, and Quality Rate. When OpEE was converted from OEE, the Quality Rate variable was replaced with Travel Rate. Travel Rate is essentially utilization which is a common performance indicator in machines and equipment. OpEE was designed for machines operated in remote locations such as forests, roads, fields, and farms. This theory paper intends to add the Quality Rate variable back to OpEE by including a reliability indicator in the dashboard view. This paper will suggest that the OEE quality variable can be used with a reliability metric and combined with the OpEE score. With this dashboard view of both performance metrics and reliability, fleet managers will have a more complete understanding of equipment productivity and reliability. This view will provide both leading and lagging indicators of performance in machines and equipment. The lagging indicators will indicate the trends and the leading indicators will provide an overall performance score to manage.

Keywords: Operating Equipment Effectiveness, Operating Equipment Effectiveness, IoT, Contamination Monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507
378 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques

Authors: Surinder Deswal

Abstract:

The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.

Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
377 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.

Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
376 Effectiveness Evaluation of a Machine Design Process Based on the Computation of the Specific Output

Authors: Barenten Suciu

Abstract:

In this paper, effectiveness of a machine design process is evaluated on the basis of the specific output calculus. Concretely, a screw-worm gear mechanical transmission is designed by using the classical and the 3D-CAD methods. Strength analysis and drawing of the designed parts is substantially aided by employing the SolidWorks software. Quality of the design process is assessed by manufacturing (printing) the parts, and by computing the efficiency, specific load, as well as the specific output (work) of the mechanical transmission. Influence of the stroke, travelling velocity and load on the mechanical output, is emphasized. Optimal design of the mechanical transmission becomes possible by the appropriate usage of the acquired results.

Keywords: Mechanical transmission, design, screw, worm-gear, efficiency, specific output, 3D-printing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
375 One-Class Support Vector Machines for Protein-Protein Interactions Prediction

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.

Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
374 Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.

Keywords: Bioinformatics, protein-protein interactions, support vector machines, protein features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
373 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines

Authors: Mona Soliman Habib

Abstract:

This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.

Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
372 Determination of Material Properties for Biodegradable Polylactic Acid Plastic Used in 3D Printers

Authors: Juraj Beniak, Ľubomír Šooš, Peter Križan, Miloš Matúš

Abstract:

Within Rapid Prototyping technologies are used many types of materials. Many of them are recyclable but there are still as plastic like, so practically they do not degrade in the landfill. Polylactic acid (PLA) is one of the special plastic materials, which are biodegradable and available for 3D printing within Fused Deposition Modeling (FDM) technology. The question is, if the mechanical properties of produced models are comparable to similar technical plastic materials which are usual for prototype production. Presented paper shows the experiments results for tensile strength measurements for specimens prepared with different 3D printer settings and model orientation. Paper contains also the comparison of tensile strength values with values measured on specimens produced by conventional technologies as injection moulding.

Keywords: 3D printing, biodegradable plastic, fused deposition modeling, PLA plastic, rapid prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
371 FEA-Based Calculation of Performances of IPM Machines with Five Topologies for Hybrid- Electric Vehicle Traction

Authors: Aimeng Wang, Dejun Ma, Hui Wang

Abstract:

The paper presents a detailed calculation of characteristic of five different topology permanent magnet machines for high performance traction including hybrid -electric vehicles using finite element analysis (FEA) method. These machines include V-shape single layer interior PM, W-shape single-layer interior PM, Segment interior PM and surface PM on the rotor and with distributed winding on the stator. The performance characteristics which include the back-emf voltage and its harmonic, magnet mass, iron loss and ripple torque are compared and analyzed. One of a 7.5kW IPM prototype was tested and verified finite-element analysis results. The aim of the paper is given some guidance and reference for machine designer which are interested in IPM machine selection for high performance traction application.

Keywords: Interior permanent magnet machine, finite-element analysis (FEA), five topologies, electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3925
370 Characterization of 3D Printed Re-Entrant Chiral Auxetic Geometries

Authors: Tatheer Zahra

Abstract:

Auxetic materials have counteractive properties due to re-entrant geometry that enables them to possess Negative Poisson’s Ratio (NPR). These materials have better energy absorbing and shock resistance capabilities as compared to conventional positive Poisson’s ratio materials. The re-entrant geometry can be created through 3D printing for convenient application of these materials. This paper investigates the mechanical properties of 3D printed chiral auxetic geometries of various sizes. Small scale samples were printed using an ordinary 3D printer and were tested under compression and tension to ascertain their strength and deformation characteristics. A maximum NPR of -9 was obtained under compression and tension. The re-entrant chiral cell size has been shown to affect the mechanical properties of the re-entrant chiral auxetics.

Keywords: Auxetic materials, 3D printing, Negative Poisson’s Ratio, re-entrant chiral auxetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
369 An Algorithm for an Optimal Staffing Problem in Open Shop Environment

Authors: Daniela I. Borissova, Ivan C. Mustakerov

Abstract:

The paper addresses a problem of optimal staffing in open shop environment. The problem is to determine the optimal number of operators serving a given number of machines to fulfill the number of independent operations while minimizing staff idle. Using a Gantt chart presentation of the problem it is modeled as twodimensional cutting stock problem. A mixed-integer programming model is used to get minimal job processing time (makespan) for fixed number of machines' operators. An algorithm for optimal openshop staffing is developed based on iterative solving of the formulated optimization task. The execution of the developed algorithm provides optimal number of machines' operators in the sense of minimum staff idle and optimal makespan for that number of operators. The proposed algorithm is tested numerically for a real life staffing problem. The testing results show the practical applicability for similar open shop staffing problems.

Keywords: Integer programming, open shop problem, optimal staffing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318
368 Glass Bottle Inspector Based on Machine Vision

Authors: Huanjun Liu, Yaonan Wang, Feng Duan

Abstract:

This text studies glass bottle intelligent inspector based machine vision instead of manual inspection. The system structure is illustrated in detail in this paper. The text presents the method based on watershed transform methods to segment the possible defective regions and extract features of bottle wall by rules. Then wavelet transform are used to exact features of bottle finish from images. After extracting features, the fuzzy support vector machine ensemble is putted forward as classifier. For ensuring that the fuzzy support vector machines have good classification ability, the GA based ensemble method is used to combining the several fuzzy support vector machines. The experiments demonstrate that using this inspector to inspect glass bottles, the accuracy rate may reach above 97.5%.

Keywords: Intelligent Inspection, Support Vector Machines, Ensemble Methods, watershed transform, Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3895
367 Machine Morphisms and Simulation

Authors: Janis Buls

Abstract:

This paper examines the concept of simulation from a modelling viewpoint. How can one Mealy machine simulate the other one? We create formalism for simulation of Mealy machines. The injective s–morphism of the machine semigroups induces the simulation of machines [1]. We present the example of s–morphism such that it is not a homomorphism of semigroups. The story for the surjective s–morphisms is quite different. These are homomorphisms of semigroups but there exists the surjective s–morphism such that it does not induce the simulation.

Keywords: Mealy machine, simulation, machine semigroup, injective s–morphism, surjective s–morphisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
366 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
365 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry

Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri

Abstract:

This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.

Keywords: Serial manufacturing process, production planning, wire and cable industry, goal programming approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
364 The Low-Cost Design and 3D Printing of Structural Knee Orthotics for Athletic Knee Injury Patients

Authors: Alexander Hendricks, Sean Nevin, Clayton Wikoff, Melissa Dougherty, Jacob Orlita, Rafiqul Noorani

Abstract:

Knee orthotics play an important role in aiding in the recovery of those with knee injuries, especially athletes. However, structural knee orthotics is often very expensive, ranging between $300 and $800. The primary reason for this project was to answer the question: can 3D printed orthotics represent a viable and cost-effective alternative to present structural knee orthotics? The primary objective for this research project was to design a knee orthotic for athletes with knee injuries for a low-cost under $100 and evaluate its effectiveness. The initial design for the orthotic was done in SolidWorks, a computer-aided design (CAD) software available at Loyola Marymount University. After this design was completed, finite element analysis (FEA) was utilized to understand how normal stresses placed upon the knee affected the orthotic. The knee orthotic was then adjusted and redesigned to meet a specified factor-of-safety of 3.25 based on the data gathered during FEA and literature sources. Once the FEA was completed and the orthotic was redesigned based from the data gathered, the next step was to move on to 3D-printing the first design of the knee brace. Subsequently, physical therapy movement trials were used to evaluate physical performance. Using the data from these movement trials, the CAD design of the brace was refined to accommodate the design requirements. The final goal of this research means to explore the possibility of replacing high-cost, outsourced knee orthotics with a readily available low-cost alternative.

Keywords: Knee Orthotics, 3D printing, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
363 Indoor Air Pollution of the Flexographic Printing Environment

Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević

Abstract:

The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.

Keywords: Flexographic printing, indoor air, multiple regression analysis, pollution emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
362 A Robust LS-SVM Regression

Authors: József Valyon, Gábor Horváth

Abstract:

In comparison to the original SVM, which involves a quadratic programming task; LS–SVM simplifies the required computation, but unfortunately the sparseness of standard SVM is lost. Another problem is that LS-SVM is only optimal if the training samples are corrupted by Gaussian noise. In Least Squares SVM (LS–SVM), the nonlinear solution is obtained, by first mapping the input vector to a high dimensional kernel space in a nonlinear fashion, where the solution is calculated from a linear equation set. In this paper a geometric view of the kernel space is introduced, which enables us to develop a new formulation to achieve a sparse and robust estimate.

Keywords: Support Vector Machines, Least Squares SupportVector Machines, Regression, Sparse approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
361 Using the PGAS Programming Paradigm for Biological Sequence Alignment on a Chip Multi-Threading Architecture

Authors: M. Bakhouya, S. A. Bahra, T. El-Ghazawi

Abstract:

The Partitioned Global Address Space (PGAS) programming paradigm offers ease-of-use in expressing parallelism through a global shared address space while emphasizing performance by providing locality awareness through the partitioning of this address space. Therefore, the interest in PGAS programming languages is growing and many new languages have emerged and are becoming ubiquitously available on nearly all modern parallel architectures. Recently, new parallel machines with multiple cores are designed for targeting high performance applications. Most of the efforts have gone into benchmarking but there are a few examples of real high performance applications running on multicore machines. In this paper, we present and evaluate a parallelization technique for implementing a local DNA sequence alignment algorithm using a PGAS based language, UPC (Unified Parallel C) on a chip multithreading architecture, the UltraSPARC T1.

Keywords: Partitioned Global Address Space, Unified Parallel C, Multicore machines, Multi-threading Architecture, Sequence alignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
360 An Electrically Small Silver Ink Printed FR4 Antenna for RF Transceiver Chip CC1101

Authors: F. Majeed, D. V. Thiel, M. Shahpari

Abstract:

An electrically small meander line antenna is designed for impedance matching with RF transceiver chip CC1101. The design provides the flexibility of tuning the reactance of the antenna over a wide range of values: highly capacitive to highly inductive. The antenna was printed with silver ink on FR4 substrate using the screen printing design process. The antenna impedance was perfectly matched to CC1101 at 433 MHz. The measured radiation efficiency of the antenna was 81.3% at resonance. The 3 dB and 10 dB fractional bandwidth of the antenna was 14.5% and 4.78%, respectively. The read range of the antenna was compared with a copper wire monopole antenna over a distance of five meters. The antenna, with a perfect impedance match with RF transceiver chip CC1101, shows improvement in the read range compared to a monopole antenna over the specified distance.

Keywords: Meander line antenna, RFID, Silver ink printing, Impedance matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
359 Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection

Authors: Ehsan Amid, Sina Rezaei Aghdam, Hamidreza Amindavar

Abstract:

Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the "one-againstone" method and different kernels are utilized for each pair of the classes in multiclass classification of the different defects. In the proposed system, a decision tree is employed in the first stage for two-class classification of the steel surfaces to "defect" and "non-defect", in order to decrease the time complexity. Based on the experimental results, generated from over one thousand images, the proposed multiclass classification scheme is more accurate than the conventional methods and the overall system yields a sufficient performance which can meet the requirements in steel manufacturing.

Keywords: Steel Surface Defect Detection, Support Vector Machines, Kernel Methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
358 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: S. Chahba, R. Sehab, A. Akrad, C. Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: Electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit fault diagnosis, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451
357 Interfacing and Replication of Electronic Machinery Using MATLAB / SIMULINK

Authors: Abdulatif Abdusalam, Mohamed Shaban

Abstract:

This paper introduces Interfacing and Replication of electronic tools based on the MATLAB/ SIMULINK mock-up package. Mock-up components contain dc-dc converters, power issue rectifiers, motivation machines, dc gear, synchronous gear, and more entire systems. The power issue rectifier model includes solid state device models. The tools provide clear-cut structures and mock-up of complex energy systems, connecting with power electronic machines.

Keywords: Power electronics, Machine, Matlab/Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3049
356 Investigating the Effectiveness of a 3D Printed Composite Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.

Keywords: Additive manufacturing, carbon fiber, composite tooling, molds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
355 Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses

Authors: A. Mourtzikou, D. Sygkridou, T. Georgakopoulos, G. Katsagounos, E. Stathatos

Abstract:

Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm2 were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte.

Keywords: Dye-sensitized solar panels, inkjet printing, quasi-solid-state electrolyte, semi-transparency, scale up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
354 A Comparison of Different Soft Computing Models for Credit Scoring

Authors: Nnamdi I. Nwulu, Shola G. Oroja

Abstract:

It has become crucial over the years for nations to improve their credit scoring methods and techniques in light of the increasing volatility of the global economy. Statistical methods or tools have been the favoured means for this; however artificial intelligence or soft computing based techniques are becoming increasingly preferred due to their proficient and precise nature and relative simplicity. This work presents a comparison between Support Vector Machines and Artificial Neural Networks two popular soft computing models when applied to credit scoring. Amidst the different criteria-s that can be used for comparisons; accuracy, computational complexity and processing times are the selected criteria used to evaluate both models. Furthermore the German credit scoring dataset which is a real world dataset is used to train and test both developed models. Experimental results obtained from our study suggest that although both soft computing models could be used with a high degree of accuracy, Artificial Neural Networks deliver better results than Support Vector Machines.

Keywords: Artificial Neural Networks, Credit Scoring, SoftComputing Models, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
353 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities

Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat

Abstract:

The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.

Keywords: Maintenance, complexity, simulation, multi-agent systems, AnyLogic platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
352 DIFFER: A Propositionalization approach for Learning from Structured Data

Authors: Thashmee Karunaratne, Henrik Böstrom

Abstract:

Logic based methods for learning from structured data is limited w.r.t. handling large search spaces, preventing large-sized substructures from being considered by the resulting classifiers. A novel approach to learning from structured data is introduced that employs a structure transformation method, called finger printing, for addressing these limitations. The method, which generates features corresponding to arbitrarily complex substructures, is implemented in a system, called DIFFER. The method is demonstrated to perform comparably to an existing state-of-art method on some benchmark data sets without requiring restrictions on the search space. Furthermore, learning from the union of features generated by finger printing and the previous method outperforms learning from each individual set of features on all benchmark data sets, demonstrating the benefit of developing complementary, rather than competing, methods for structure classification.

Keywords: Machine learning, Structure classification, Propositionalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222