Search results for: noise constraint.
1045 Jitter Transfer in High Speed Data Links
Authors: Tsunwai Gary Yip
Abstract:
Phase locked loops for data links operating at 10 Gb/s or faster are low phase noise devices designed to operate with a low jitter reference clock. Characterization of their jitter transfer function is difficult because the intrinsic noise of the device is comparable to the random noise level in the reference clock signal. A linear model is proposed to account for the intrinsic noise of a PLL. The intrinsic noise data of a PLL for 10 Gb/s links is presented. The jitter transfer function of a PLL in a test chip for 12.8 Gb/s data links was determined in experiments using the 400 MHz reference clock as the source of simultaneous excitations over a wide range of frequency. The result shows that the PLL jitter transfer function can be approximated by a second order linear model.Keywords: Intrinsic phase noise, jitter in data link, PLL jitter transfer function, high speed clocking in electronic circuit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19451044 Analysis of Noise Level Effects on Signal-Averaged Electrocardiograms
Authors: Chun-Cheng Lin
Abstract:
Noise level has critical effects on the diagnostic performance of signal-averaged electrocardiogram (SAECG), because the true starting and end points of QRS complex would be masked by the residual noise and sensitive to the noise level. Several studies and commercial machines have used a fixed number of heart beats (typically between 200 to 600 beats) or set a predefined noise level (typically between 0.3 to 1.0 μV) in each X, Y and Z lead to perform SAECG analysis. However different criteria or methods used to perform SAECG would cause the discrepancies of the noise levels among study subjects. According to the recommendations of 1991 ESC, AHA and ACC Task Force Consensus Document for the use of SAECG, the determinations of onset and offset are related closely to the mean and standard deviation of noise sample. Hence this study would try to perform SAECG using consistent root-mean-square (RMS) noise levels among study subjects and analyze the noise level effects on SAECG. This study would also evaluate the differences between normal subjects and chronic renal failure (CRF) patients in the time-domain SAECG parameters. The study subjects were composed of 50 normal Taiwanese and 20 CRF patients. During the signal-averaged processing, different RMS noise levels were adjusted to evaluate their effects on three time domain parameters (1) filtered total QRS duration (fQRSD), (2) RMS voltage of the last QRS 40 ms (RMS40), and (3) duration of the low amplitude signals below 40 μV (LAS40). The study results demonstrated that the reduction of RMS noise level can increase fQRSD and LAS40 and decrease the RMS40, and can further increase the differences of fQRSD and RMS40 between normal subjects and CRF patients. The SAECG may also become abnormal due to the reduction of RMS noise level. In conclusion, it is essential to establish diagnostic criteria of SAECG using consistent RMS noise levels for the reduction of the noise level effects.Keywords: Signal-averaged electrocardiogram, Ventricular latepotentials, Chronic renal failure, Noise level effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18011043 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)
Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos
Abstract:
The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.
Keywords: Rotor noise, acoustic tool, GPU Programming, UAV noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20571042 Noise Estimation for Speech Enhancement in Non-Stationary Environments-A New Method
Authors: Ch.V.Rama Rao, Gowthami., Harsha., Rajkumar., M.B.Rama Murthy, K.Srinivasa Rao, K.AnithaSheela
Abstract:
This paper presents a new method for estimating the nonstationary noise power spectral density given a noisy signal. The method is based on averaging the noisy speech power spectrum using time and frequency dependent smoothing factors. These factors are adjusted based on signal-presence probability in individual frequency bins. Signal presence is determined by computing the ratio of the noisy speech power spectrum to its local minimum, which is updated continuously by averaging past values of the noisy speech power spectra with a look-ahead factor. This method adapts very quickly to highly non-stationary noise environments. The proposed method achieves significant improvements over a system that uses voice activity detector (VAD) in noise estimation.Keywords: Noise estimation, Non-stationary noise, Speechenhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23401041 A Hybrid Search Algorithm for Solving Constraint Satisfaction Problems
Authors: Abdel-Reza Hatamlou, Mohammad Reza Meybodi
Abstract:
In this paper we present a hybrid search algorithm for solving constraint satisfaction and optimization problems. This algorithm combines ideas of two basic approaches: complete and incomplete algorithms which also known as systematic search and local search algorithms. Different characteristics of systematic search and local search methods are complementary. Therefore we have tried to get the advantages of both approaches in the presented algorithm. The major advantage of presented algorithm is finding partial sound solution for complicated problems which their complete solution could not be found in a reasonable time. This algorithm results are compared with other algorithms using the well known n-queens problem.Keywords: Constraint Satisfaction Problem, Hybrid SearchAlgorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761040 Coexistence of Two Different Types of Intermittency near the Boundary of Phase Synchronization in the Presence of Noise
Authors: Olga I. Moskalenko, Maksim O. Zhuravlev, Alexey A. Koronovskii, Alexander E. Hramov
Abstract:
Intermittent behavior near the boundary of phase synchronization in the presence of noise is studied. In certain range of the coupling parameter and noise intensity the intermittency of eyelet and ring intermittencies is shown to take place. Main results are illustrated using the example of two unidirectional coupled Rössler systems. Similar behavior is shown to take place in two hydrodynamical models of Pierce diode coupled unidirectional.Keywords: Chaotic oscillators, phase synchronization, noise, intermittency of intermittencies, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19511039 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series
Authors: Mohammad H. Fattahi
Abstract:
Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. Noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.
Keywords: Chaotic behavior, wavelet, noise reduction, river flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20931038 The Anti-Noise and Anti-Wear Systems for Railways
Authors: Brigita Altenbaher
Abstract:
In recent years there has been a continuous increase of axle loads, tonnage, train speed and train length which has increased both the productivity in the rail sector and the risk of rail breaks and derailments. On the other hand, the environmental requirements (e.g. noise reduction) for railway operations will become tighter in the future. In our research we developed a new composite material which does not change braking properties, is capable of taking extremely high pressure loads, reduces noise and is environmentally friendly. Part of our research was also the development of technology which will be able to apply this material to the rail. The result of our research was the system which reduces the wear out significantly and almost completely eliminates the squealing noise at the same time, and by using only one special material.Keywords: Active protection, composite material, lubrication, noise reduction, reduction at source, railway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22511037 Impulse Noise Reduction in Brain Magnetic Resonance Imaging Using Fuzzy Filters
Authors: Benjamin Y. M. Kwan, Hon Keung Kwan
Abstract:
Noise contamination in a magnetic resonance (MR) image could occur during acquisition, storage, and transmission in which effective filtering is required to avoid repeating the MR procedure. In this paper, an iterative asymmetrical triangle fuzzy filter with moving average center (ATMAVi filter) is used to reduce different levels of salt and pepper noise in a brain MR image. Besides visual inspection on filtered images, the mean squared error (MSE) is used as an objective measurement. When compared with the median filter, simulation results indicate that the ATMAVi filter is effective especially for filtering a higher level noise (such as noise density = 0.45) using a smaller window size (such as 3x3) when operated iteratively or using a larger window size (such as 5x5) when operated non-iteratively.Keywords: Brain images, Fuzzy filters, Magnetic resonance imaging, Salt and pepper noise reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22121036 An Efficient Gaussian Noise Removal Image Enhancement Technique for Gray Scale Images
Authors: V. Murugan, R. Balasubramanian
Abstract:
Image enhancement is a challenging issue in many applications. In the last two decades, there are various filters developed. This paper proposes a novel method which removes Gaussian noise from the gray scale images. The proposed technique is compared with Enhanced Fuzzy Peer Group Filter (EFPGF) for various noise levels. Experimental results proved that the proposed filter achieves better Peak-Signal-to-Noise-Ratio PSNR than the existing techniques. The proposed technique achieves 1.736dB gain in PSNR than the EFPGF technique.
Keywords: Gaussian noise, adaptive bilateral filter, fuzzy peer group filter, switching bilateral filter, PSNR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24771035 Numerical Investigation on the Interior Wind Noise of a Passenger Car
Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian
Abstract:
With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.
Keywords: Wind noise, computational fluid dynamics, finite element method, passenger car.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8601034 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response under Sinusoidal Signal and White Noise Excitation
Authors: R. J. Chang
Abstract:
A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise are analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.
Keywords: Cyclostationary, Duffing system, Gaussian linearization, sinusoidal signal and white noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901033 Reduction of Impulsive Noise in OFDM System Using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, Impulsive Noise, SSRLS, BER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26991032 A Compact Pi Network for Reducing Bit Error Rate in Dispersive FIR Channel Noise Model
Authors: Kavita Burse, R.N. Yadav, S.C. Shrivastava, Vishnu Pratap Singh Kirar
Abstract:
During signal transmission, the combined effect of the transmitter filter, the transmission medium, and additive white Gaussian noise (AWGN) are included in the channel which distort and add noise to the signal. This causes the well defined signal constellation to spread causing errors in bit detection. A compact pi neural network with minimum number of nodes is proposed. The replacement of summation at each node by multiplication results in more powerful mapping. The resultant pi network is tested on six different channels.Keywords: Additive white Gaussian noise, digitalcommunication system, multiplicative neuron, Pi neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16671031 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement
Authors: Pogula Rakesh, T. Kishore Kumar
Abstract:
Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR) and SNR Loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.
Keywords: Adaptive filter, Adaptive Noise Canceller, Mean Squared Error, Noise reduction, NLMS, RLS, SNR, SNR Loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31821030 Robust Statistics Based Algorithm to Remove Salt and Pepper Noise in Images
Authors: V.R.Vijaykumar, P.T.Vanathi, P.Kanagasabapathy, D.Ebenezer
Abstract:
In this paper, a robust statistics based filter to remove salt and pepper noise in digital images is presented. The function of the algorithm is to detect the corrupted pixels first since the impulse noise only affect certain pixels in the image and the remaining pixels are uncorrupted. The corrupted pixels are replaced by an estimated value using the proposed robust statistics based filter. The proposed method perform well in removing low to medium density impulse noise with detail preservation upto a noise density of 70% compared to standard median filter, weighted median filter, recursive weighted median filter, progressive switching median filter, signal dependent rank ordered mean filter, adaptive median filter and recently proposed decision based algorithm. The visual and quantitative results show the proposed algorithm outperforms in restoring the original image with superior preservation of edges and better suppression of impulse noise
Keywords: Image denoising, Nonlinear filter, Robust Statistics, and Salt and Pepper Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22011029 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet
Authors: Amir Moslemi, Amir Movafeghi, Shahab Moradi
Abstract:
One of the most important challenging factors in medical images is nominated as noise. Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjects to low quality due to the noise. Quality of CT images is dependent on absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete Wavelet Transform (DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).Keywords: Computed Tomography (CT), noise reduction, curve-let, contour-let, Signal to Noise Peak-Peak Ratio (PSNR), Structure Similarity (Ssim), Absorbed Dose to Patient (ADP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29181028 A novel Iterative Approach for Phase Noise Cancellation in Multi-Carrier Code Division Multiple Access (MC-CDMA) Systems
Authors: Joumana Farah, François Marx, Clovis Francis
Abstract:
The aim of this paper is to emphasize and alleviate the effect of phase noise due to imperfect local oscillators on the performances of a Multi-Carrier CDMA system. After the cancellation of Common Phase Error (CPE), an iterative approach is introduced which iteratively estimates Inter-Carrier Interference (ICI) components in the frequency domain and cancels their contribution in the time domain. Simulation are conducted in order to investigate the achievable performances for several parameters, such as the spreading factor, the modulation order, the phase noise power and the transmission Signal-to-Noise Ratio.
Keywords: Inter-carrier Interference, Multi-Carrier Code DivisionMultiple Access, Orthogonal Frequency Division Multiplexing, Phase noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15531027 A Kernel Based Rejection Method for Supervised Classification
Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy
Abstract:
In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14441026 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis
Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi
Abstract:
Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structureborne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using onboard are presented. By conducting a Statistical Energy Analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The conclusion on effective damping treatment in the offshore platform is made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.Keywords: Statistical energy analysis, damping treatment, noise control, offshore platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21211025 Environmental Capacity and Sustainability of European Regional Airports: A Case Study
Authors: Nicola Gualandi, Luca Mantecchini, Davide Serrau
Abstract:
Airport capacity has always been perceived in the traditional sense as the number of aircraft operations during a specified time corresponding to a tolerable level of average delay and it mostly depends on the airside characteristics, on the fleet mix variability and on the ATM. The adoption of the Directive 2002/30/EC in the EU countries drives the stakeholders to conceive airport capacity in a different way though. Airport capacity in this sense is fundamentally driven by environmental criteria, and since acoustical externalities represent the most important factors, those are the ones that could pose a serious threat to the growth of airports and to aviation market itself in the short-medium term. The importance of the regional airports in the deregulated market grew fast during the last decade since they represent spokes for network carriers and a preferential destination for low-fares carriers. Not only regional airports have witnessed a fast and unexpected growth in traffic but also a fast growth in the complaints for the nuisance by the people living near those airports. In this paper the results of a study conducted in cooperation with the airport of Bologna G. Marconi are presented in order to investigate airport acoustical capacity as a defacto constraint of airport growth.Keywords: Airport acoustical capacity, airport noise, air traffic noise, sustainability of regional airports.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16561024 A Novel Impulse Detector for Filtering of Highly Corrupted Images
Authors: Umesh Ghanekar
Abstract:
As the performance of the filtering system depends upon the accuracy of the noise detection scheme, in this paper, we present a new scheme for impulse noise detection based on two levels of decision. In this scheme in the first stage we coarsely identify the corrupted pixels and in the second stage we finally decide whether the pixel under consideration is really corrupt or not. The efficacy of the proposed filter has been confirmed by extensive simulations.Keywords: Impulse detection, noise removal, image filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14081023 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation
Authors: Oğuzhan Urhan
Abstract:
In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.
Keywords: Fast motion estimation, low-complexity motion estimation, video coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8531022 Constraint Active Contour Model with Application to Automated Three-Dimensional Airway Wall Segmentation
Authors: Kuo-Lung Lor, Chi-Hsuan Tsou, Yeun-Chung Chang, Chung-Ming Chen
Abstract:
For evaluating the severity of Chronic Obstructive Pulmonary Disease (COPD), one is interested in inspecting the airway wall thickening due to inflammation. Although airway segmentations have being well developed to reconstruct in high order, airway wall segmentation remains a challenge task. While tackling such problem as a multi-surface segmentation, the interrelation within surfaces needs to be considered. We propose a new method for three-dimensional airway wall segmentation using spring structural active contour model. The method incorporates the gravitational field of the image and repelling force field of the inner lumen as the soft constraint and the geometric spring structure of active contour as the hard constraint to approximate a three-dimensional coupled surface readily for thickness measurements. The results show the preservation of topology constraints of coupled surfaces. In conclusion, our springy, soft-tissue-like structure ensures the globally optimal solution and waives the shortness following by the inevitable improper inner surface constraint.
Keywords: active contour model, airway wall, COPD, geometric spring structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761021 Adaptive Non-linear Filtering Technique for Image Restoration
Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, S. K. Nayak, C. Ardil
Abstract:
Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.
Keywords: Filtering, Decision Based Algorithm, noise, imagerestoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21571020 A Novel Fuzzy Technique for Image Noise Reduction
Authors: Hamed Vahdat Nejad, Hameed Reza Pourreza, Hasan Ebrahimi
Abstract:
A new fuzzy filter is presented for noise reduction of images corrupted with additive noise. The filter consists of two stages. In the first stage, all the pixels of image are processed for determining noisy pixels. For this, a fuzzy rule based system associates a degree to each pixel. The degree of a pixel is a real number in the range [0,1], which denotes a probability that the pixel is not considered as a noisy pixel. In the second stage, another fuzzy rule based system is employed. It uses the output of the previous fuzzy system to perform fuzzy smoothing by weighting the contributions of neighboring pixel values. Experimental results are obtained to show the feasibility of the proposed filter. These results are also compared to other filters by numerical measure and visual inspection.Keywords: Additive noise, Fuzzy logic, Image processing, Noise reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21101019 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise
Authors: J. P. Dubois, Omar M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18121018 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction
Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal
Abstract:
The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.Keywords: Acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9731017 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained.
Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6181016 Assessment of Noise Pollution in the City of Biskra, Algeria
Authors: Tallal Abdel Karim Bouzir, Nourdinne Zemmouri, Djihed Berkouk
Abstract:
In this research, a quantitative assessment of the urban sound environment of the city of Biskra, Algeria, was conducted. To determine the quality of the soundscape based on in-situ measurement, using a Landtek SL5868P sound level meter in 47 points, which have been identified to represent the whole city. The result shows that the urban noise level varies from 55.3 dB to 75.8 dB during the weekdays and from 51.7 dB to 74.3 dB during the weekend. On the other hand, we can also note that 70.20% of the results of the weekday measurements and 55.30% of the results of the weekend measurements have levels of sound intensity that exceed the levels allowed by Algerian law and the recommendations of the World Health Organization. These very high urban noise levels affect the quality of life, the acoustic comfort and may even pose multiple risks to people's health.Keywords: Noise pollution, road traffic, sound intensity, public health, noise monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064